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Abstract. Detection systems based on photon counting 
have to discriminate between two types of fluctuations 
in the photon count: those resulting from statistical 
fluctuations (= noise) and those caused by changes in 
the radiance set by the source (= signal). In contrast 
with earlier studies on ways of discriminating noise 
from signal changes, no specific assumptions are made 
about the source. An optimal discrimination-method 
has been developed for a detector that has no prior 
information about the mean of the Poisson distri- 
bution that describes its input signal. Because the 
detector has no prior information at its disposal it has 
to assume an a priori probability for the mean in a 
unique and objective way and it has to estimate the 
actual mean using Bayes rule of inference. This new 
discrimination-method is discussed in the context of 
signal processing in the visual system, but is generally 
applicable in all systems where photon-noise is 
important. 

1 Introduction 

Photon counting is the basis of several detection 
procedures used in for example nuclear physics and in 
medical diagnostical methods such as scintigraphy. 
Signal processing in the visual system at low lumin- 
ances also appears to be based on photon counting 
(Hecht et al., 1942). One of the problems in the above 
mentioned fields of application is how to eliminate the 
noise caused by statistical fluctuations of the radiation 
field. Often the methods used for eliminating noise are 
adhoc ones. We shall discuss and solve this problem in 
relation to vision, but the results are formulated in 
such a way that they can also be applied in other fields. 
Vision at low luminances appears to be based on the 
analysis of individual photon absorptions in the retinal 

receptors. A number of receptors cooperate in so- 
called retinal receptive fields that function rather like 
flux-detectors (Enroth-Cugell and Shapley, 1973). The 
initial stages of the visual system can be regarded as 
arrays of detectors covering the retinal surface, each 
detector having its own receptor-input-group or "aper- 
ture". The visual system has to abstract both structural 
and metrical information from the fluxes sampled by 
the apertures. Structural information concerns the 
spatial and temporal structure of the irradiance distri- 
bution, whereas metrical information concerns mom- 
entary local irradiance magnitudes. Individual de- 
tectors are assumed to process only metrical infor- 
mation. When the aperture is small the photon absorp- 
tions permit the extraction of large amounts of struc- 
tural information but only little metrical information. 
In contradistinction a large aperture causes a coarse 
spatial resolution and reduces the structural infor- 
mation supplied by the array of detectors, whereas the 
available metrical information exceeds that for the 
smaller aperture. Therefore, in practice, we have to find 
a criterion which ensures that both structural and 
metrical information are at an optimum level (Snyder 
etal., 1977). We distinguish three types of flux- 
detectors in this paper: change-detectors, increment- 
detectors and decrement-detectors. All three discri- 
minate statistical fluctuations in their inputs from 
variations in the parameters characterizing their input. 
The input parameters are determined by the set-up 
generating the input process and will be called in- 
tended fluxes. An optimum discrimination criterion 
will be derived for each type of detector. Optimum 
detection is defined relative to the maximum number 
of mistakes (false alarms) permitted. 

Bouman and Ampt (1965), noting that the photon 
signal is a Poisson process the spread of which equals 
the square root of the average, proposed a square root 
scaling device as an optimum change-detector. These 
authors did not specify what they meant by optimality, 
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Table 1 

Detector Experimenter 

Prior 
to 
experiment 

First 
period 
of 
experiment 

Between 
periods 

Second 
period 
of experi- 
ment 

After 
second 
period 

* has no prior infor- . potentiality to control 
mation intended flux 

* expects: 
- potential flux 
- potential sample 

* receives a sample �9 sets intended flux 
(physical realisation * has no control over 
of intended flux) resulting actual 

* plates expectation 
- inferred flux 
- expected sample 

* receives new (actual) 
sample (physical 
realisation of new 
intended flux) 

* difference between 
expected sample 
and actual sample 
determines output 
status 

sample 

* makes decision about 
change or no change 
of intended flux 

* sets new intended flux 

�9 reads output status of 
detector 

�9 evaluates output status 
in terms of prior mani- 
pulation of intended 
flux: 
Result: hit, miss, false 
alarm or correct 
rejection 

neither did they prove the optimality of their square- 
root-scaling device. Our analysis reveals that the best 
possible change-detector is rather similar to their 
square-root-scaler. 

The use of optimum change-detectors results in 
different thresholds for increments and decrements. 
This difference depends upon the detection accuracy 
("false alarm rate") chosen. In their psychophysical 
experiments Patel and Jones (1968) found differences in 
incremental and decremental thresholds which cor- 
respond with our theoretical results (see discussion). 
According to Cohn (1974) these differences are due to 
the fallacious assumption that the detector knows the 
"intended-flux', whereas in reality only the experimen- 
ter can have this knowledge. Our results are based 
upon the fact that a detector has to make its decision 
solely on the basis of actually sampled fluxes. 

2 Statement of  the Problem 

2.1 Assumptions and Definitions 
The detector receives an external signal, which can 
change at any moment, e.g. as a consequence of 
changes in local irradiance or eye movements. It is the 
task of the detector to signal such changes. 
Schematically, we have the following situation: An 

experimenter adjusts the generator of the signal (e.g. 
the intensity of an incandescent lamp can be set by 
regulating the electrical current through the filament) 
and notes the output signal of a detector. The detector 
samples the signal by counting the number of input 
events accumulated in concatenated periods of equal 
and fixed duration, and compares the succeeding 
samples. The sampling period is a parameter that 
characterizes the detector. The output signal (or 
"state") of the detector is some function of the sequen- 
tial samples. 

The experimenter determines the intended-flux, the 
value of which is not available to the detector. The 
samples can be seen as a realisation of the intended- 
flux. Table 1 shows the different situations during the 
experiment. 

Because the detector may assume no structure a 
priori in the sequence of photon absorptions the 
detector can at best assume a uniform probability of 
occurence of a photon absorption: any prior expec- 
tation of a specific form that differs from a constant 
cannot be based on objective considerations. The 
photon input is assumed to be Poissonian, that is 
"completely random". This means that the probability, 
Pvois(N[2), that the number of input events in a fixed 
period will equal N where 2 is the intended flux is given 
by 

A N . e -A 

PP~ N! (1) 

As said before, the detector knows only the samples. A 
well-built detector can compute from samples which 
values of the intended-flux are the most likely ones. 
Such an estimate of the intended-flux will be called 
inferred-flux. Before any sample has been taken the 
detector can only expect a potential value of intended- 
flux which we shall call potential-flux. 

The experimenter who controls the intended-flux 
also observes the state of the detector. The detector 
may assume two possible states, labelled: "change" 
and "no-change". An observer who is not informed 
about the intended-fluxes cannot evaluate those states, 
but the experimenter can split the detector decisions 
into four groups according to their correctness. 
Following the terminology of decision theory (van 
Trees, 1968; Green and Swets, 1966) we shall call the 
detector decision "change" a "hit" if it is correct (that 
means: conforms to the intended-fluxes) and a "false 
alarm" if it is incorrect. If the detector decides "no- 
change" this decision is called a "miss" if it is incorrect 
and a "correct rejection" if it is correct. 

It is not possible to minimize the likelihood of the 
two types of Wrong answer simultaneously, since they 
are interdependent. We define optimum performance as 



the one which minimizes the probability of a "miss" 
while keeping the false alarm probability below a given 
value. (The higher the false alarm probability the 
noisier the representation of the radiation pattern will 
be at the level of the detector array.) It will be 
appreciated that the optimum is reached when the false 
alarm rate equals the maximum value permitted. 
Therefore we talk about "the" false alarm rate (F.A.R.) 
instead of the maximum value of false alarm rate. 
These considerations lead to the formulation of the 
following three problems which will be solved in the 
sequel : 

Problem I. To derive the optimum discrimination 
criterion, which (as indicated above) minimizes the 
probability of a "miss" for a given false alarm rate 
(F.A.R.), if the detector has no information at all about 
the "intended-flux" (optimum change-detector 
problem). 

Problem IIA. To determine the optimum detection 
performance for a given F.A.R., if the detector knows 
only that the intended-flux either increases or stays 
constant. The values of possible changes are unknown 
(optimum increment-detector problem). 

Problem liB.  As IIA but for decrements (optimum 
decrement-detector problem). 

These problems will be solved with the F.A.R. as a 
parameter. The F.A.R. can be regarded as a confidence 
level. 

3 Mathematical Formulation 

3.1 The a priori Probability Density Function for the 
Potential-Flux 

Jaynes (1968) has introduced a method based on 
"transformation groups" to arrive at objective prior 
probability distributions given certain kinds of a priori 
knowledge. In our case an objective a priori probabili- 
ty density function (p.d.f.) Ppr: (0, OO)~[0, O0) can be 
obtained through the following reasoning: 

Let A and B be two detectors observing the same 
Poisson process. As a spectator one notices that the 
two detectors employ different time-scales. Since the 
potential-flux is dependent on the time-scale chosen, 
the same process appears to have different parameters 
for the detector. Objectivity demands that the a priori 
p.d.f, should not depend on the fortuitous choice of 
time-scale, a Let Pp~ be the a priori p.d.f, assumed by the 
detector A and P~, the one assumed by the detector B. 
For every value of the potential flux, 2p, 

P~,(2p) = P~r(2p). (2) 

This equation must hold because of the objectivity 
condition. The two different time-scales are connected 
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with the different time units t A and t B. Thus there is a 
constant ~ such that 

tA = c%. (3) 

If the potential-flux has a value )L A according to 
detector A and a value 2~ to detector B then 2pA = C~2;.B 
This leads us to conclude that the a priori probability 
that 2 A ~ [-2, 2 + d2] will be equal to the a priori proba- 
bility that 2 ~  [~2, e2+ ed2] or: 

PAr(2 ) d2 = P~r(a2) de2. (4) 

Combination of (2) and (4) gives the functional 
equation 

PpA(2) = anAl(a2) (5) 

with 

np~(2) oc 1/2 (6) 

as its unique solution. 
This hyperbolical p.d.f, is an "improper" one in the 

sense that it cannot be normalised. This presents no 
real problem, it is permissible to use this improper a 
priori p.d.f, in the derivation of a proper p.d.f. This will 
be done in Sect. 3.3. 

3.2 The a priori Probability for Sample Results 

From the a priori p.d.f, for the potential-flux one can 
derive which sample values are a priori the most likely. 
The likelihood is given by the relative probabilities: 

P*~(N) oc 1/N. (7) 

P is an improper probability function which can only 
be used to derive a proper a posteriori probability 
function (Sect. 3.4). 

3.3 The a posteriori Probability Density Function 

A sample yields a posteriori information about the 
intended-flux. The a posteriori probability density, 
Pvos(2[N), for the possible values of the intended-flux, 
can be derived by using Bayes rule of inference (Feller, 
1970): 

Ppos(2lN) d2. P*r(N) = Ppois(Nl,~) P,r(2) d2. (S) 

From (1), (7), (8) one obtains: 

nvo~(2]N) oc [2 N-1. e- ~]/[(N - 1)!]. (9) 

The proportionality constant can be found by normali- 
sation; thus we obtain 

n p o s ( 2 ] N  ) = [2 N -1.  e- z]/[-(N - 1)!] = n p o i s ( n  - 112). (10) 

Consequently after a sample result "N" the a posteriori 
probability density is a Poisson distribution with mean 
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N -  1 instead of N. The mean and variance of the a 
posteriori p.d.f, are: 

oo 2N- l . e -Z  ~2N 
(2) = o S 2. ~N-_DT. d2=N ! ~ . e - Z d 2 = N  (11) 

and 

oo 2 N +  1 

var = (2 2) --  ( 2 )  2 ~ - - n ( n  + 1) o S ( ~  i-)! 

�9 e-~d2- N 2 =N. (12) 

The first of these results appears to be intuitively 
obvious, and in fact has often been assumed without 
being derived. Yet it depends crucially on the hyper- 
bolic a priori density, a fact that is seldom appreciated. 

3.4 The a posteriori Probability Function for 
Sequential Samples 

The a posteriori probability function, P*o~(MIN), gives 
the probability that a sample result N will be followed 
by the sample result M: 

P*os(MlN) = ~ Ppoi~(Ml2)" Poo~(2[X)d2 
0 

/ M + N - I \  1 2 u+N 
= /  M ) ( / )  " (13) 

The function P*o~(MIN) is known as the Pascal 
distribution or negative binomial distribution. In 
Fig. 1 this distribution is shown for several values of N 
together with the corresponding Poisson distribution. 
It can be seen that the variance of the Pascal distri- 

bution is larger than that of the Poisson distribution. 
The variance of the Pascal distribution is 2N (that of 
the Poisson distribution N) and its mean is N 
(Abramowitz, 1972). These values of mean and va- 
riance have an immediate intuitive meaning: After an 
input N the inferred-flux has to be N and the expected 
value of the actual flux therefore has to be N also. 
Neither the parameter of the Poisson process (the 
intended-flux), nor the momentaneous value of this 
process (the actual sample) is known. The uncertainty 
in both of these quantities is N, so the total variance 
has to be 2N. The variance is twice the value that is 
often used on an intuitive basis, an immediate con- 
sequence of the hypothetical ignorance of the detector�9 
Figure 1 also shows that the Pascal distribution is 
skew. The maximum value occurs at M - - N - 1  and 
M = N - 2 .  

3.5 The Discrimination Criterion 

After reception of a pair N, M of contiguous and 
different samples the detector has to decide whether or 
not this difference has to be ascribed to a change in 
intended-flux. This means that for each N there has to 
be a subset nC(N) of/N containing the values of the 
actual sample M which must lead to the decision "no 
change". To keep the F.A.R. low nC(N) has to contain 
the sample results which are the most likely to occur if 
the intended-flux has not changed. This means that 
nC(N) has to be chosen in such a way that: 

K~nC(N)~ , > , 
L~nC(N) J ~ PP~176 (14) 
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Fig. 2. Increment- and decrement-thresholds for a change-detector as a function of the value of the first sample with the F.A.R. as parameter. 
The different symbols stand for: �9 threshold if false alarm rate = 0.4000 ; �9 = 0.3000 ; �9 = 0.2000 ; * = 0.1000 ; ~ =  0.0500; �9 = 0.0100;/x = 0.0010; 
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Because of  the m o n o m o d a l  shape of  the Pasca l  
d i s t r ibu t ion  nC(N) has to be an interval  a r o u n d  N. The 
col lect ion of  subsets nC(N) determines  the discrimi-  
na t ion  cr i ter ion completely.  

3.6 Optimality Conditions 

The subsets  nC(N) can be used to calculate  the p roba -  
bi l i ty  tha t  a false a l a rm will occur :  

P(false a l a r m ) =  ~ P*os(MrN). (15) 
MetriC(N) 

So the condi t ion  of  l imited false a l a rm is:  

~, P*os(M[N)<F.A.R. (16) 
MCnC(N) 

The p robab i l i t y  of  a miss is min imized  by  choos ing  
nC(N) as small  as poss ible  for a fixed value of  the false 
a l a rm rate. F o r  a given F.A.R.  the three given pro-  
b lems can be fo rmula ted  ma themat i ca l ly  as :  

Problem I. F i n d  for each N the smallest  AIN and  
ApE SO tha t  

~, P*os(MIN)<-F.A.R. 
MCnC(N) 

while 

nC(N) = I N -  ADE, N + Am]. 

(17) 

Problem IIA. Find  for each N the smallest  AIN so 
tha t  : 

~, P*os(MIN) <= F . A . R .  
MCnC(N) 

while 

nC(N) = [0, N + Am]. (is) 

Problem liB. F i n d  for each N the smal les t  Aoe so 
tha t :  

P*os(MIN) <= F.A.R. 
MCnC(N) 

while 

nC(N) = [ N -  ApE, oe). (19) 

4 D e r i v a t i o n  o f  t h e  O p t i m a l  C r i t e r i o n  

The m e t h o d  of  Lagrange  mult ipl iers ,  which is usual ly  
used for this type of  p roblem,  canno t  be used here 
because  the p robab i l i t y  of  a miss, which is needed,  is 
unknown.  This  is due to the fact tha t  the  de tec tor  
knows  noth ing  abou t  the p robab i l i t y  of  changes in the 
intended-flux.  F o r  small  values of  N and  for given false 
a l a rm rate  the in terval  of  "no-change"  nC(N) can be 
found exact ly by  numer ica l  computa t ion ,  whereas  for 
larger  N an analy t ic  a p p r o x i m a t i o n  can be used. Both  
me thods  are discussed. 
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Fig. 3. F.A.R. intervals for which the increment- 
threshold and the decrement-threshold of the 
change-detector are equal as a function of the value 
of the first sample 

4.1 The Numerical Solution 

Let F .A .R .<I  in the case of Problem I and 
F.A.R. <0.5 in the cases of the Problems [IA and IIB 
been given. If the value of F.A.R. is given the problems 
are defined completely. In the case of Problem I the 
numerical method starts for each N with the interval 
that contains only M = N - 1  [one of the maxima of 

* . Ppos( IN); nC(N) is found by extending this interval 
until the sum of Pp*s over the interval exceeds 
1-F.A.R@ The extension is arranged in such a way 
that (13) holds. 

Figure 2 shows the values of AIN and ADg by which 
the interval nC(N) is determined. The differences be- 
tween the values of A~  and A~E are dependent upon 
the F.A.R. and are due to the form of the Pascal 
distribution (Fig. 1). For  each N you have that ADE is 
less than or equal AIN if F.A.R. is small and ApE is 
greater than or equal A~N if F.A.R. is large. Therefore 
for each N there has to be a value of the F.A.R. that 
leads to an equality of ADz and AIN. Because of the 
discreteness of the Pascal distribution we find for each 
N an interval of F.A.R. values which lead to equal 
increment- and decrement-thresholds. These intervals 
are shown in Fig. 3. 

The numerical solution method is slightly different 
for the three problems. In Case IIA the procedure 
starts with an interval containing all elements less than 
or equal to N and is extended to the right until the 
optimality condition (18) holds. 

In the case of Problem IIB the procedure starts 
with an interval I, containing only 0, which is extended 
to the right until 

~, e*os(M[g) > 1 - F.A.R. (20) 
M s I  

nC(N) has to be the complement of the interval I before 
its last extension. 

Figure 4 shows the values of ArN and AD~ which 
determine the nC(N) for the optimum increment- 
detector and the optimum decrement detector, re- 
spectively. A~x and ADz can be seen as thresholds 
which have to be exceeded before an increment or 
decrement is detected. 

4.2 Asymptotic Analytical Solution 

For large N the Pascal distribution can be approxi- 
mated by the Gaussian distribution with the same 
mean (N) and variance (2N). It is well known that a 
false alarm rate criterion for a Gaussian distribution 
leads to a discrimination criterion proportional to the 
spread of the distribution, 2N. The proportionality 
constant which depends on the F.A.R. is plotted in 
Fig. 5 for the different cases. 

4.3 Comparison of Numerical and Analytical Results 

In Fig. 5 we see that in the case of the change-detector 
the approximate proportionality constants (upper line) 
are smaller than the proportionality constants calcu- 
lated from Fig. 2 by the leasts-square-method. Because 
of the symmetry of the Gauss-distribution the approxi- 
mated proportionality constants for the increment- 
thresholds equal those of the decrement-thresholds. 
The Camp-Paulson approximation (Johnson and 
Kotz, 1969) of the Negative Binomial distribution is 
asymmetrical. Therefore the Camp-Paulson approxi- 
mation can, in contrast with the Gaussian approxima- 
tion, give more insight in the differences between 
increment-thresholds and decrement-thresholds which 
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threshold and decrement threshold of a change detector and the 
threshold of an increment detector and a decrement detector 

depend on the asymmetry of the Negative Binomial 
distribution. Qualitative understanding of the relation 
between the calculated and the approximated pro- 
portionality constants in Fig. 5 can be obtained by the 
use of Camp-Paulson approximation. 

1) In the Camp-Paulson approximation given by 
Johnson and Kotz a minus symbol has to be replaced 
by a plus symbol in the formula for the 
integrationbound: 

K 

P*os,~(M <mIN)=(1/(2~)) ~ e-1/Z"~ du 
- o o  

with 

K = 3 [  m + l  

.[.{N/(mN1)}2/3 + ~_1~_] - 1/2 

Figure 2 shows that the increment-threshold is not 
exactly proportional to the square root of the first 
sample. The increment-threshold differs by an additive 
constant from a severe square-root relation. If we look 
at Fig. 4 we see that the same holds for the threshold of 
the increment-detector. The values of the translation 
constants are nearly the same in both cases. For the 
thresholds of the increment-detector and the 
decrement-detector the proportionality constants can 
well be calculated by the Gaussian approximation. 
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5 Discussion 

We have derived optimum discrimination criteria for 
the change-detector, the increment-detector and the 
decrement-detector. The principal features of the op- 
timum detectors are the form of the discrimination 
criteria they have to use and the interrelation between 
increment thresholds and decrement thresholds. For  a 
change-detector the discrimination criterion is given 
by the minimum differences between successive values 
of the actual-flux necessary to detect an increase or a 
decrease in the intended-flux. These two differences 
can be called increment and decrement threshold 
respectively. The values of these thresholds as well as 
their interrelation are dependent on the maximum 
permissible false alarm rate. For  large values of 
the false alarm rate (F.A.R.>0.06) increment thresh- 
olds are smaller than decrement thresholds while for 
small values of the limit (F.A.R. <0.045) the situation 
is reversed. We could not obtain any simple analytic 
expression for the values of the exact thresholds, but as 
is shown in Figs. 2 and 4 the thresholds can be 
approximated rather well with the square root of "N" 
multiplied by a constant. Thus we obtain the result 
that the square-root-scaler of Bouman and Ampt 
(1965) is not very different from the optimum change- 
detector for a false alarm rate of nearly 15 %. 

It is of interest to know whether the performances 
of the optimum detectors is comparable to the perfor- 
mance of the real visual system. Psychophysical experi- 
ments in which the thresholds for incremental or 
decremental flashes are determined can in principle 
yield information about this. Yet the emperical results 
do not permit a conclusion because whereas many 
experiments have been done on increment thresholds, 
only a few have been done on decrement thresholds. Of 
greatest interest are the experiments in which both 
kinds of thresholds were determined under similar 
conditions (Patel and Jones, I968 ; Short, t966). These 
authors found that increment thresholds exceed the 
decrement thresholds. They used a small false 
alarm rate, F.A.R. =0.025, so their result corresponds 
to our prediction. We do not know of any experiments 
in which both thresholds are measured for different 
values of the false alarm rate. 

From Fig. 5 you obtain that a F.A.R. of less than 
1% forces you to use a criterion of about four times the 
square root of one sample to consider a change as 
"real". This criterion would change if you would 
change the experimental protocol. If the detector could 
sample the "background" for an extended time, it 
could infer the value of the intended flux with greater 

confidence and thus employ a less conservative crite- 
rion. In the limit of a very long exposure to the 
"background" and the task to detect a "flash" in a well 
marked interval, you would have the case of perfect 
prior knowledge of the intended flux of the back- 
ground. Then the analysis invariably used by earlier 
authors would apply again. The case treated by us 
extends this simple paradigm (brief flash of well de- 
fined position in space and time upon an extended and 
enduring background) to the case of complete prior 
ignorance in which the intended flux could vary quite 
unpredictably from moment to moment. 
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