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In the case that the matrix of a linear complementarity problem consists of the sum of a
positive semi-definite matrix and a co-positive matrix a general condition is deduced implying
that the Lemke algorithm will terminate with a complementarity solution. Applications are
presented on bi-matrix games, convex quadratic programming and multi-period programs.
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1. Introduction

We consider a linear complementarity problem where, given an n-vector ¢ and
an n X n-matrix A, m-vectors 2, w are to be determined satisfying:

Az—-w=g, zZwz0, {(z,w)=0. ¢}

(= refers to the natural ordering on R” and {z, w) is the inner product of z and
w). Such a pair (3, w) is called a complementary solution. Solving the problem
with the Lemke-algorithm, a positive auxiliary vector is introduced, transforming
the system into:

Az+60h—~w=c, zw,0=0, (z,w)=0, 2)

h being any fixed positive n-vector and 6 being a scalar. A combination (3, W, §)
satisfying (2) is called an almost-complementary solution, abbreviated ac-solu-
tion.

Clearly, defining 8 := max{c/h; | ¢; > 0}, an almost-complementary basic solu-
tion is available by (z°, w®, 8°) := (0, 6k — c, 8), together with a ray of ac-solutions
(2% w® 69+A0, h, 1) I A = 0}. Starting from this particular basic solution
(z°% w®, 6% the Lemke-algorithm constructs a series of pairwise adjacent basic
solutions of the system Az+6h—~w=c, z, w,# =0, which are all ac-solutions
(cf. [11], [2D).

Concerning the termination of the algorithm there are three possibilities:

(a) because of cycling the algorithm will not stop,
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(b) the algorithm stops at a basic ac-solution (z*, w*, 8*) with 6* > 0, or,

(c) stops with a basic ac-solution with 8* =0;
clearly, in the latter case a complementarity solution is identified. If system (2) is
non-degenerate, cycling is impossible; otherwise, it is possible to endow the
Lemke-algorithm with an anti-cycling procedure. Further, the standard theory
concerning the Lemke-algorithm shows that stopping at basic ac-solution
(z*, w*, %) with 8* > 0 implies the existence of a ray of ac-solutions

{(z*, w*, 0%+ A (z, w, ) l A=0}, with z#0.

Evidently, any condition imposed on the linear complementarity problem which
rules out the existence of such a ray of ac-solutions, implies that the Lemke-
algorithm will terminate with a complementary solution and proves the existence
of a complementary solution in a constructive manner.

In the main theorem such a general condition is deduced with respect to
complementarity problems where the matrix can be written as the sum of a
symmetric positive semi-definite matrix and a co-positive matrix (note: a square
matrix B is called co-positive if for every non-negative vector x: (x, Bx)= 0).
Accordingly, (2) is written:

(M+N)z+0h—w=c, z,w,0=0, (z,w)=0, 3)

where M is a symmetric positive semi-definite n X n-matrix, N a co-positive
matrix, ¢ an n-vector, and where h is any positive auxiliary vector with
dimension n.

2. The main theorem

Theorem 2.0. If there exist vectors x, y ER", y =20, satisfying Mx — N'y=c (N’
being the transpose of N), then, with respect to complementarity problem (3),
there is no ray of ac-solutions {(z*, w*,0%)+A(z,w, ) | A =0} with simul-
taneously 6* >0 and z # 0.

In the light of the preceding remarks the consequence of the theorem is
obvious:

Corollary 2.1, If the system Mx— N'y=c, y =0, is solvable (M symmetric pos.
semi-def., N co-positive), then Lemke’s algorithm applied to (3) (with h > 0)
terminates in a complementary solution.

The proof of our theorem is based on two auxiliary properties:

Proposition 2.2. Let M, N be n X n-matrices, M symmetric positive semi-definite,
N co-positive. Let c €ER". If the system (M + N)z=20,{c,z)>0,{z,(M + N)z)=
0, z€R} is solvable, then the system Mx— N'y=c, xER", yER" is non-
solvable.
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Proof. If z ER/ satisfies (z, (M + N)z)=0, then the assumptions on M and N
imply: {z, Nz) =0, (z, Mz) = 0. The latter implies Mz = 0. Consequently, we may
conclude that every z € R} with {z, (M + N)z)=0, (M + N)z =0, satisfies Nz =
0, as well. Now, suppose Z € R} and x ER", y €R] are solutions of the first and
the second system resp. Then, with Nz =0, Mz =0, Z, X, y =0, we have

0=(7,N2)=—(X, MZ)+(§, N2) = —(Z, M = N'§) = —(Z, ¢)<0.

Contradiction: at least one of the systems has to be non-solvable.

Proposition 2.3. If, with respect to (2), A being co-positive and h being positive,
there is a ray of ac-solutions (z*, w*, 0%)+A(z, w, 8), A =0, with *>0, x# 0,
then Az=0,{(c,z)>0,(z, Az)=0, z=0.

Proof. With respect to such a ray, we have:
(i) Az+6h—-w=0,2,w,0=0,
(i) (z, w) =0, (z*, w*)=0,(z, w*) =0, (z*, w)=0.
Further, the assumptions imply:
(iii) (z, Az) =0 (by co-positivity of A and z=0).
@iv) {z, h)> 0 (by positivity of h and by z=0, #0).
Multiplying (i) by z, equality (z, w) =0 implies (z, Az)+ 6({z, h) = 0, and hence
by (iii) and (iv):
) 8=0,
(vi) (z, Az)=0.
Combining (1) and (v), we have:
(vil) Az=0.
Multiplying A(z* + Az)+ (8% + A0)h — (w* + Aw) = ¢ by (z* + Az), combining the
result with (ii) en (v), we find:

(Z*¥+ Az, A(z¥+ A2)) + 0*(z* 4+ Az, h) = (z* + Az, ¢).

Since the first term is non-negative, we have for every A =0 the inequality

0*(z*+ Az, h) =(z*+ Az, ¢). With *>0, z*=0, h >0, z =0, the latter implies:
(viii) {(c, z) > 0.

Thus, (i), (vi), (vii) and (viii) prove the proposition.

Clearly, our theorem is a simple consequence of Propositions 2.2 and 2.3.
Namely, the sum of a positive semi-definite matrix and a co-positive matrix is a
co-positive matrix. Thus, if there is an ac-ray, as mentioned in Theorem 2.0, then
(by Proposition 2.3) there is a z € R% satisfying (M + N)z =0, (¢, z) > 0, {z, (M +
N)z)=0, and consequently (by 2.2) the system Mx+ N'y=c, xER", yER]L is
non-solvable.

An interesting consequence of Corollary 2.1 can be found by putting M :=0,
c:=—N'u—v, with u, v ER}.
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Corollary 2.4. Let N be a co-positive n X n-matrix. Then, for every u, v € R},
there is a z, w ERY satisfying Nz—w=~N'u—v, {(z, w)=0.

A simple sufficient condition for matrix N to be co-positive, is the criterion
(N + N") =0, being the consequence of the equality (y, Ny)=3(y, (N + N")y), for
every y €ER" In this context, the result published by Jones [10] might be
considered as a special case of Corollary 2.1. Independently, he found in a
similar manner that the Lemke algorithm applied on (2) terminates in a comple-
mentary solution, provided A+ A'=0, k>0, and, in addition, the system
—A'y=c, y €ER! is solvable. In order to illustrate the unifying power of our
main theorem, we shall discuss some applications.

3. Bi-matrix games

We consider a bi-matrix game defined by m X n-matrices A, B. Let

ilu,:l}, Xi={xERi ix]:l}.
i= j=

Then the Nash-equilibrium is defined as a pair (i, £) € U X X such that, for
every u € U, x € X: (u, AL) = (i, AR), (ii, BX) = (ii, Bx). It is well known (see [2])
that, in case the matrices are positive, all Nash-equilibria can be deduced from
solutions of the complementarity problem: B'u —v = s", —Ax —y = —s™, {x, v) =
0, (yu)=0, x,y,u,v=0, where s"€ER", s"ER" are vectors with all

U:={uERZ‘

the complementarity problem if and only if #, £ defined by #4:=(s", @) ',
£:=(s", ¥)7'%, is a Nash-equilibrium. Evidently, putting:

,_ (0B
M:=0, N._(_A 0),

C:=(sn’_sm), Z:=(xa u)’ W:=(D, y)’

the problem can be written in our standard form (3). Observing that N + N’ is
non-negative in the case that B= A (affirming co-positivity), Corollary 2.1
implies that, for B = A >0, the Lemke algorithm will find a complementary
solution. Note: in fact no restriction on A, B is needed. Because, defining
A:=A+aS, b:=B + BS, S being an m X n-matrix all elements one, Nash-
equilibria are independent with respect to the scalars «, B.

4. Concave quadratic programming
Let Q be a symmetric positive semi-definite n X n-matrix, let A be an

m X n-matrix, let p €R", r&R™ Consider the quadratic max-problem:
& = sup(p, x) — 3{x, Qx), over x ER%, y € RT, such that Ax + y = r. With respect
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to the standard Lagrangian (p,x)—3(x, Qx)—(u, Ax —r), straightforward
methods lead to the following properties:

(1) (x,y) is optimal and (u, v) is a Lagrange vector, if and only if Qx + A'u —
v=p, Ax+y=r{x,0)=0,{(y,u}=0, x,y,u, v =0, and

(ii) the system Qx+A'u=p, Ax=r, x,u=0 is solvable, if and only if the
max-problem is feasible and é <+o. Now, writing the complementarity problem
of (i) in our standard form (3),

we(§ 9 w2 0)

c:=(p,—r), z:=(x,u), wi=(v,y),

implying M is symmetric positive semi-definite, N is co-positive (note, N + N’
= (), we may conclude:

(iii) there exists an optimal solution (x, y) and a Lagrange vector (u, v), if and
only if the max-problem is feasible and ¢ < +; in that case these quantities can
be calculated by Lemke’s algorithm.

An approach like this is well-known; see for instance [1, 2, 11].

5. Invariant optimal solutions in concave quadratic multi-period problems

We consider a multi-period allocation max-problem with a discounted concave
quadratic objective function and with a linear valuation on the terminal state

& := sup(m)"(Ups1, Bxy) + 2}1 (m)' (P, x:) — 3%, Qx1)),

over {x}1CR?, {y}tCRT, such that: Ax,+y,=Bxo+r, Ax,—Bx,_+y=r,
t=2,..,h where: 0< 7 <1, p €R" Q symmetric positive semi-definite, A and
B m X n-matrices, r € R™, h the planning horizon, x, given initial state, and
where u,.; €ERT is the terminal valuation vector. Defining the Lagrangian

h
(m)" {1, Bxy) + ; (m)'(p, x¢)— 3(xi, Qx,) — sy Ax, — Bx,_1 — r)+ {0y, X)),

similar properties as (i)-(iii} of Section 4 hold with respect to the complemen-
tarity problem: Qx,+ A'u,— 7B'uj.i—v,=p, Axp, FBx_ +y,=r {(x,0)=0,
Vo u)=0, X, vy, U, v, 20, for all t =1, ..., h. In that context (X, ¥, &, ©) is called
an invariant optimal solution if Q{+(A—#B)idi—96=p, —(A-B)X—y=—r,
(£,9)=0, (J,a)=0, %, ¥, 4, © =0; namely, putting x,:= X, U, =, one may
verify that (x, y,):=(%¥9), t=1,...,h, (4, d;):=(u,v), t=1,...,h resp. are an
optimal solution and a Lagrange sequence, indeed. Writing the definition of the
invariant optimal solution concept in our standard form (3), where
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v (§ o N=(uln )

c:=(p,—r), z = (x, u), w:i=(v,y),

one may verify that the conditions of Corollary 2.1 are satisfied, in the case that
0<w=1, B=0 (implying N + N'=0), and, in addition the system (A— B)u =
p, (A—wB)x=r, u,x =0 is solvable. Recently, studies concerning invariant
optimal solutions for multi-period problem are published by several authors
[3, 4], and [6~10]. We studied the problem independently of Jones [10]. A recent
study on linear complementarity and its applications in O.R. is published by
Bastian [1]. The author is indebted to J.F. Benders for helpful suggestions.
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