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In the case that the matrix of a linear complementarity problem consists of the sum of a 
positive semi-definite matrix and a co-positive matrix a general condition is deduced implying 
that the Lemke algorithm will terminate with a complementarity solution. Applications are 
presented on bi-matrix games, convex quadratic programming and multi-period programs. 
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1. Introduction 

We cons ider  a l inear c o m p l e m e n t a r i t y  p rob l em where ,  g iven an n -vec to r  c and 
an n x n -mat r ix  A, m - v e c t o r s  2, ~/, are to be  de t e rmined  sat isfying:  

A z - w = c ,  z ,w>-O,  (z, w) = 0. (1) 

( =  re fe rs  to the-na tura l  order ing on R" and (z, w) is the inner p roduc t  of  z and 

w). Such  a pair  (2, if) is called a c o m p l e m e n t a r y  solution.  Solving the p r o b l e m  
with  the L e m k e - a l g o r i t h m ,  a pos i t ive  auxi l iary  vec to r  is in t roduced ,  t r ans fo rming  

the sy s t em into: 

A z + O h - w = c ,  z,w,  0=>0, ( z , w ) = 0 ,  (2) 

h being any  fixed pos i t ive  n -vec to r  and 0 be ing a scalar.  A combina t i on  (L if, #) 
sa t i s fying (2) is called an a l m o s t - c o m p l e m e n t a r y  solut ion,  abb rev i a t ed  ac-solu-  

tion. 
Clear ly ,  defining # : =  maxi{ci/hi [ ci > 0}, an a l m o s t - c o m p l e m e n t a r y  basic  solu- 

t ion is avai lable  by  (z °, w °, 0 °) :=  (0, #h - c, #), toge ther  wi th  a ray  of ac-so lu t ions  
(z °, w °, 0°)+x(0, h, l)lX-->0}. Star t ing f rom this par t icular  basic  solut ion 
(z °, w °, 0 °) the L e m k e - a l g o r i t h m  cons t ruc t s  a series of  pa i rwise  ad jacen t  bas ic  
solut ions of  the sys t em A z  + O h - w  = c, z, w, 0 >= O, which  are all ac-so lu t ions  
(cf. [11], [2]). 

Conce rn ing  the t e rmina t ion  of  the a lgor i thm there  are  th ree  possibi l i t ies:  
(a) because  of  cycl ing the a lgor i thm will not s top,  
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(b) the algorithm stops at a basic ac-solution (z*, w*, 0") with 0* > 0, or, 
(c) stops with a basic ac-solution with 0* = 0; 

clearly, in the latter case a complementarity solution is identified. If system (2) is 
non-degenerate, cycling is impossible; otherwise, it is possible to endow the 
Lemke-algorithm with an anti-cycling procedure. Further, the standard theory 
concerning the Lemke-algorithm shows that stopping at basic ac-solution 
(z*, w*, 0") with 0* > 0 implies the existence of a ray of ac-solutions 

{(z*, w*, 0") + h(z_, w, 0_) [ A > 0}, with z ~ 0. 

Evidently, any condition imposed on the linear complementarity problem which 
rules out the existence of such a ray of ac-solutions, implies that the Lemke- 
algorithm will terminate with a complementary solution and proves the existence 
of a complementary solution in a constructive manner. 

In the main theorem such a general condition is deduced with respect to 
complementarity problems where the matrix can be written as the sum of a 
symmetric positive semi-definite matrix and a co-positive matrix (note: a square 
matrix B is called co-positive if for every non-negative vector x: (x, Bx)>O) .  

Accordingly, (2) is written: 

( M + N ) z + O h - w = c ,  z,w, 0>_--0, ( z , w ) = 0 ,  (3) 

where M is a symmetric positive semi-definite n x n-matrix, N a co-positive 
matrix, c an n-vector, and where h is any positive auxiliary vector with 
dimension n. 

2. The main theorem 

Theorem 2.0. I f  there exist vectors x, y E R", y => 0, satisfying Mx  - N ' y  > c (N '  
being the transpose of  N) ,  then, with respect to complementarity problem (3), 
there is no ray of  ac-solutions {(z*, w*, 0*) + A(_z,w, 0) [ A > 0} with simul- 
taneously 0* > 0 and z ~ O. 

In the light of the preceding remarks the consequence of the theorem is 
obvious: 

Corollary 2.1. I f  the system Mx - N ' y  _>-- c, y _-> 0, is solvable (M  symmetric pos. 
semi-def., N co-positive), then Lemke 's  algorithm applied to (3) (with h > O) 
terminates in a complementary solution. 

The proof of our theorem is based on two auxiliary properties: 

Proposition 2.2. Let  M, N be n x n-matrices, M symmetric positive semi-definite, 
N co-positive. Let  c E R n. I f  the system ( M  + N ) z  >= O, (c, z) > O, (z, ( M  + N ) z )  = 

O, z E R ~  is solvable, then the system M x - N ' y > = c ,  x ~ R " ,  y E R ~  is non- 
solvable. 
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Proof.  I f  z E R~ satisfies (z, (M + N ) z ) =  0, then the a s sumpt ions  on M and N 
imply:  (z, Nz)  = 0, (z, Mz} = 0. The  lat ter  implies Mz = 0. Consequen t ly ,  we  m a y  

conc lude  tha t  eve ry  z E R~ with  (z, (M + N ) z )  = 0, (M + N ) z  >= O, satisfies Nz >= 
0, as well. N o w ,  suppose  ~ E Ii~ and ~ ~ R n, y E R~ are solut ions of  the  first and 

the second  sy s t em resp.  Then ,  with Nz  _-__ 0, M2 = 0, 2, ~, y _-> 0, we  h a v e  

0 -< (y, N~)  = - ()~, M~) + (~, N~)  = - (~, M~ - N ' y )  =< - (~, c)  < 0. 

Cont radic t ion:  at  least  one of  the sy s t ems  has  to be  non-so lvable .  

Proposition 2.3. If, with respect to (2), A being co-positive and h being positive, 
there is a ray of ac-solutions (z*, w*, 0") + A ( z , w , O ) ,  A _-->0, with 0 " > 0 ,  x ~ 0 ,  
then A z  >= O, (c, z)  > O, (z, Az )  = O, z_ >-_ O. 

Proof.  With  r e spec t  to such  a ray,  we  have:  

(i) A z + O h - w = O , z , w , O _ > O ,  
(ii) (z, w)  = 0, (z*, w*) = 0, (z, w*) = 0, (z*, w)  = 0. 

Fur ther ,  the a s sumpt ions  imply:  

(iii) (z, Az)  _>- 0 (by co-pos i t iv i ty  of  A and z = 0). 
(iv) (z, h)  > 0 (by pos i t iv i ty  of  h and b y  z > 0, ¢ 0). 

Mult ip lying (i) b y  z ,  equal i ty  (z, w ) =  0 implies  (z, Az)+_0(z ,  h ) =  0, and hence  
by  (iii) and (iv): 

(v) _0 = 0, 

(vi) (z, Az)  = 0. 
Combin ing  (i) and (v), we  have:  

(vii) A z  >- O. 
Mult iplying A(z* + Az) + (0" + ItO_)h - (w* + Aw) = c b y  (z* + )tz), combin ing  the 

resul t  wi th  (ii) en (v), we  find: 

(z* + )tz, A(z* + 2tz)) + O*(z* + )tz, h) = (z* + )tz, c). 

Since the first t e rm is non-nega t ive ,  we  have  fo r  e v e r y  )t _-> 0 the inequal i ty  
O*(z* + )tz, h) <- (z* + )tz_, c). With 0* > 0, z* _--> 0, h > 0, z_ => 0, the lat ter  implies:  

(viii) (c, z_) > 0. 
Thus ,  (i), (vi), (vii) and (viii) p r o v e  the  propos i t ion .  

Clear ly,  our  t h e o r e m  is a s imple  c o n s e q u e n c e  of P ropos i t i ons  2.2 and 2.3. 
N a m e l y ,  the sum of a pos i t ive  semi-def ini te  ma t r ix  and a co-pos i t ive  ma t r ix  is a 

co-pos i t ive  matr ix .  Thus ,  if there  is an ac- ray ,  as m e n t i o n e d  in T h e o r e m  2.0, then  

(by P ropos i t i on  2.3) there  is a z E R~ sa t is fying (M + N ) z  >= O, (c, z) > O, (z, (M + 
N ) z )  = 0, and consequen t ly  (by 2.2) the s y s t e m  Mx + N ' y  > c, x E R", y ~ R~ is 
non-so lvable .  

An in teres t ing c o n s e q u e n c e  of  Coro l la ry  2.1 can  be found  by  put t ing  M := 0, 

c :=  - N ' u  - v, with u, v E R~_. 
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Corollary 2.4. Le t  N be a co-posi t ive  n x n-matrix.  Then, f o r  every u, v ~ R~-, 

there is a z, w ~ R~+ sat is fying N z  - w = - N ' u  - v, (z, w)  = O. 

A simple sufficient condition for matrix N to be co-positive, is the criterion 
(N + N' )  => 0, being the consequence of the equality (y, Ny)  = l(y, ( N  + N ' ) y ) ,  for  
every  y E R". In this context,  the result published by Jones [10] might be 
considered as a specia l  case of Corollary 2.1. Independently,  he found in a 
similar manner that the Lemke algorithm applied on (2) terminates in a comple- 
mentary solution, provided A+A'>-_O,  h > 0 ,  and, in addition, the system 
- A ' y - - - c ,  y E R~ is solvable. In order to illustrate the unifying power of our 
main theorem, we shall discuss some applications. 

3. Bi-matrix games 

We consider a bi-matrix game defined by m x n-matrices A, B. Le t  

U : = ( u ~ R ' ~ [ ~ u i = I } ,  X : = ( x E R ~ _ [ ~ x j = I } .  
i=1 j=l 

Then the Nash-equilibrium is defined as a pair (a, 2 ) E  U x X such that, for  
every  u E U, x E X :  (u, A 2 )  <= (ft, A2 ) ,  (a, BYe) <-_ (~, Bx) .  It is well known (see [2]) 
that, in case the matrices are positive, all Nash-equilibria can be deduced from 
solutions of the complementari ty problem: B ' u  - v = s", - A x  - y = - s  m, (x, v) = 

0, ( y , u ) = 0 ,  x, y, u, v >-- 0, where s m E R  m, s " E R "  are vectors with all 

components  one. Namely,  for A, B > 0, a combination (2, y, a, 73) is a solution of 
the complementari ty problem if and only if a, 2 defined by t~ := (s m, a)-la, 

:= (s", ~)-~2, is a Nash-equilibrium. Evidently,  putting: 

B'  
M : - - 0 ,  N :__ ( _ O  0 ) '  

c : =  ( s " , - -S in ) ,  Z : =  (X, U), W : =  (V, y) ,  

the problem can be written in our standard form (3). Observing that N + N '  is 
non-negative in the case that B >_-A (affirming co-positivity), Corollary 2.1 
implies that, for  B => A > 0, the Lemke  algorithm will find a complementary 
solution. Note:  in fact  no restriction on A, B is needed. Because,  defining 

:= A + aS,  G := B + flS, S being an m x n-matrix all elements one, Nash- 
equilibria are independent with respect  to the scalars or,/3. 

4. Concave quadratic programming 

Let  Q be a symmetric positive semi-definite n × n-matrix, let A be an 
m × n-matrix, let p ER" ,  r ~ R  m. Consider the quadratic max-problem: 
4~ := sup(p, x) - l(x, Qx), over x E R~, y E R~, such that A x  + y = r. With respect  
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to the s tandard  Lagrang ian  (p, x) - ½(x, Q x )  - (u, A x  - r),  s t ra igh t fo rward  
m e t h o d s  lead to the fo l lowing proper t ies :  

(i) (x, y) is op t imal  and (u, v) is a Lag range  vec tor ,  if and only  if Qx + A ' u  - 

v = p ,  A x + y  = r, (x,  v ) = 0 ,  (y, u) = 0, x , y ,  u, v >-_0, and 

(ii) the s y s t e m  Qx + A ' u  >-p,  A x  <= r, x ,  u >= 0 is solvable ,  if and only if the 
m a x - p r o b l e m  is feas ib le  and ~ < + oo. N o w ,  wri t ing the c o m p l e m e n t a r i t y  p r o b l e m  
of (i) in our  s tandard  fo rm (3), 

0) A0) 
c := ( p , - r ) ,  z := (x, u), w := (v, y), 

implying M is s y m m e t r i c  pos i t ive  semi-defini te ,  N is co-pos i t ive  (note,  N + N '  

= 0), we  m a y  conclude:  
(iii) there  exis ts  an op t imal  solut ion (x, y) and a Lag range  vec to r  (u, v), if and 

only  if the m a x - p r o b l e m  is feas ib le  and d; < + ~;  in that  case  these  quant i t ies  can 
be ca lcula ted  by  L e m k e ' s  a lgor i thm.  

An a p p r o a c h  like this is we l l -known;  see fo r  ins tance  [1, 2, 11]. 

5. Invariant optimal solutions in concave quadratic multi-period problems 

We cons ider  a mul t i -per iod  a l locat ion m a x - p r o b l e m  with a d i scoun ted  c o n c a v e  

quadra t ic  ob jec t ive  func t ion  and with a l inear va lua t ion  on the terminal  s ta te  

w 

:=  sup(Tr)h(uh+l, BXh) + ~_~ (~) ' ( (p ,  Xt) -- ~(X,, Qxt ) ) ,  
t = l  

o v e r  {x,} h C R~, {yt} h C R~,  such that:  A x l  + Yl = Bxo + r, AXe - Bx,_~ + Yt = r, 

t = 2 . . . . .  h, where :  0 < 7r < 1, p E R n, Q s y m m e t r i c  pos i t ive  semi-defini te ,  A and 
B m × n-mat r ices ,  r E  R m, h the p lanning hor izon,  x0 g iven initial s tate,  and 

where  uh+~ ~ R~ is the te rminal  va lua t ion  vec tor .  Defining the Lagrang ian  

h 

('n')h(uh÷,, BXh)  + ~ ('rr)'((p, X,) -- ½ (X,, Qx t )  - (ut, A x ,  - B x t - i  - r)  + (re, x,)), 
t = l  

s imilar  p roper t i e s  as (i)-(iii) of  Sec t ion  4 hold with r e spec t  to the c o m p l e m e n -  
tar i ty  p rob lem:  Qxt  + A ' u t  - "rrB'u,+~ - vt = p,  AXb -7-- Bxt-~ + Yt = r, (xt, vt} = O, 

(Yt, ut)  = 0, xt, Yt, ut, v, ~ O, for  all t = 1 . . . . .  h. In tha t  con tex t  (2, p, t~, ~) is called 
an invar ian t  op t imal  solut ion if Q $ + ( A - ' n ' B ) ' t ~ -  ~ = p ,  - ( A - B ) : ~ - ) 3  = - r ,  

(2,/3) = 0, ()3, a )  = 0, 2, 33, a, ~3 > 0; namely ,  put t ing x0 := 2, u.÷l :=  a, one m a y  
ver i fy  tha t  (x,, y,) := (~,)3), t = 1 . . . . .  h, (~e, t3t) :=  (u, v), t = 1 . . . . .  h resp.  are an 
op t imal  solut ion and  a Lag range  sequence ,  indeed.  Wri t ing the definit ion of the 
invar iant  op t imal  solut ion c o n c e p t  in our  s tandard  fo rm (3), where  
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c : =  ( p , - r ) ,  z : =  (x, u),  w : =  (v, y),  

one  m a y  ve r i fy  tha t  the  cond i t i ons  of  C o r o l l a r y  2.1 are  sa t is f ied ,  in the  case  tha t  

0 < ~" _-< 1, B ->_ 0 ( imply ing  N + N '  >_- 0), and ,  in a d d i t i o n  the  s y s t e m  ( A  - B ) ' u  >--_- 

p, ( A - ~ r B ) x  <-r, u , x  >-_0 is so lvab le .  R e c e n t l y ,  s tud ies  c o n c e r n i n g  inva r i an t  

op t ima l  so lu t ions  for  mu l t i - pe r i od  p r o b l e m  are  p u b l i s h e d  by  seve ra l  a u t h o r s  

[3, 4], and  [6-10] .  W e  s tud ied  the  p r o b l e m  i n d e p e n d e n t l y  of  Jones  [10]. A r e c e n t  

s t u d y  on l inear  c o m p l e m e n t a r i t y  and i ts  a p p l i c a t i o n s  in O.R.  is p u b l i s h e d  b y  

Bas t i an  [1]. The  au thor  is i n d e b t e d  to J .F .  B e n d e r s  for  he lp fu l  sugges t ions .  
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