
INTERFACE, A DISPERSED ARCHITECTURE

Chris A. Vissers
Twente University of Technology

Enschede, The Netherlands

0. Abstract

Past and current specification techniques use ti-
ming diagrams and written text to describe the phenome-
nology of an interface.

This paper treats an interface as the architecture
of a number of processes, which are dispersed over the
related system parts and the message path. This approach
yields a precise definition of an interface. With this
definition as starting point, the inherent structure of
an interface is developed. A horizontal and vertical par-
titioning strategy,based on one functional entity per
partition and described by a state description, is used
to specify the structure. This method allows unambiguous
specification, interpretation, and implementation, and
allows a much easier judgement of the quality of an in-
terface. The method has been applied to a number of wi-
dely used interfaces.

]. Introduction

Many com~ittees, charged with standardizing an in ~
terrace struggle many years (8 to 10 years makes no ex-
ception) to get the job done. What are their problems ?
We can find at least three. First, an interface is always
much more complex than a first estimate suggests. Quali-
fication and quantification of the needs of the users is
a difficult task, application dependent, and subject to
different opinions. The definition of the functional con-
tents of an interface that satisfies these needs introdu-
ces an extra choice, and consequently makes agreement one
level more difficult. Second, the disclosure of an inter-
face allows the linkage of products of different compa-
nies into one system, which requires the political will
to make this happen. The third problem is the available
methodology and language for the specification of an in-
terface and its preliminary versions. Conventional metho-
dology uses timing diagrams and written text, often illus-
trated with tables and drawings. This methodology has a
number of serious disadvantages. The most important of
these are discussed in this paper. Bad specification me-
thodology makes an interface difficult to master and do-
cument, and enhances the risk of errors, incompleteness,
inefficiency and vagueness. It also opens the door to
obstruction of progress through vague reasoning. An in-
terface with such characteristics contributes to non-
uniform and unintended interpretations. And faithful to
Murphy's law this has led to system malfunctioning, even
though the interface was scrupulously interpreted.

Therefore, the availability of an efficient tool
that allows unambiguous and clear specification and in-
terpretation of an interface would be of great profit to
both its designers and users. For the designers it faci-
litates a clear discussion and expedites a correct, com-
plete, efficient and clear specification. For the users
it will help to avoid system malfunctioning, caused by
misinterpretation or unauthorized extension of a given
interface.

This paper presents a specification method that
tries to incorporate the desired characteristics. It has
been applied to a number of existing and proposed stan-
dard interfaces [1,2,3] with satisfactory results. The
state description technique, which is closely related
with the method, is reflected in an interface which is
now becoming an international standard. It proved to be
of extreme value Loth in the development and use of this
interface [4,5], The method is based on the definition
of an interface, which will be discussed first. Next,

technique and language for the specification of an inter-
face are discussed. This is followed by the development
of a structuring discipline for an interface, and a dis~
cussion of the character of a standard interface. Finally
some conclusions are drawn.

2. Definition

Few attempts seem to have been undertaken to state a
manageable definition for the concept of interface. It
may be that the term interface itself, and its transla-
tions to various languages(cutting place, tangent plane),
pretends to be clear enough. But the term interface is
currently used with many divergent interpretations.{The
term 'connection' is used in [6] to indicate the same
kind of relation definition as discussed in this paper I.
Therefore, if we want to discuss a specification metho-
dology for it, an adequate definition is demanded.

What we clearly want, is to be able to bring sys-
tem parts that can be considered and designed as sepa-
rate functional entities, into relationship to form a
system with a higher level of functional performance.
The possibility that some system parts can be brought
into relationship makes us say that these system parts can
interface. Therefore an interface can intuitively, but
still informally~ be called a 'relation definition'. In
order to interface, the system parts must be given
certain properties which are attuned to each other.(e.g.
two system parts know the same variable, one as its
producer, the other as its consumer). All properties of
a system part are defined by the complete specification
of its functional behaviour, its architecture. Therefore
we are able to define an interface by specifying the
architectures of the related system parts. Through the
definition of the architecture of each part, the inter-
faces of these parts are concurrently established.
However, in some eases we may desire, or be forced, to
define an interface first, and the complete architectures
later (e.g. for the definition of a standard
Channel-to-I/0 interface). In these cases it is
undesirable, unfeasible, and unnecessary to define the
complete architecture of the related system parts in
order to be able to define their interface.

System parts have a relation if they can affect each
other's functional behaviour. Without mutual effect they
ignore each other and the system parts are independent
and unrelated. The mutual effect is through variables
(messages) with a defined behaviour and exchanged via a
message path. Suppose we want to define the effect of
system part A on system part B through wlriable V. The
behaviour of V can be defined through the definition of
the generative mechanism of V, which belongs to A and
forms a portion of A's architecture (the influence of A).
The effect on B through V can be defined through the
definition of that portion of BVs functional behaviour
expressing that effect (the effect on B). Conversely we
can define the effect of B on A through W. This yields,
another portion of AVs and BVs architecture. The two
portions of A's architecture can be specified either as
separate portions if there is no correlation between them,
or integrated if there is. A similar statement can be made
for B.

An interface of two or more systems parts defines for
each system part that portion of its architecture that al-
lows a relation between those system parts to form a sys-
tem providing a desired function.

98

The previous reasoning assumed a functional passive
message path for the exchange of the variables V and W.
Though this is often the case, an interface may contain a
message path that performs logic operations on the vari-
ables it exchanges as explained in section 4.3: Central
message path. Consequently the definition of an inter-
face has to be extended to contain the architecture of
the message path~ as.shown in figure |. As with the
definition of an architecture, the definition of an
interface is a specification problem. This specification
problem concerns not one archlte~'---~ure° but a portion of
each of the related architectures and the message path
in between. In this sense the concepts of architecture
and interface are equivalent. The term relational func-
tion is given to that portion of an architecture tha--a~-Ts
part of the considered interface. The remaining portion
of the architecture is called local function. It forms
the complement of the relational f~n~in the
architecture's total relation with its environment. IILocal

function A l

\ J

/

I
\

~ J

F i g u r e l a : T h r e e r e l a t e d a r c h i - F i g u r e l b : The A-B-C i n t e r f a c e .
t e c t u r e s A, B, a n d C.

This definition provides the basis for a sound
specification method: the interface is specified by the
separate specification of each relational function and
of the message path. Since these items are portions of
an architecture, their description may use the same
techniques and languages as applied to architectures in
general.

3. Description techniques and languages

Three basically different description techniques
are conceivable and used to specify an architecture:
the phenomenological, the assertive, and the generative
description.

3.] Phenomenolo~ical description.

The phenomenologieal description gives an observa-
tion of the behaviour of the input and output variables.
As known from automata theory, that bases its definition
of an automaton on it, this is a valid specification
method. But in order to be complete, the observation
must include all input and output variables, and all
possible sequences of their values. Though this
requirement is not important for the development of
(automata)theory, it is impractical for any architecture
of some complexity, because of the sheer monotony and
inordinate length of the sequences. It is not surpri-
sing that this method is not used in practice for the
specification of architectures. Therefore it is a real
surprise to observe that the conventional specification
method for interfaces is still based on the phenomeno-
logical description, since the timing diagrams are
literally an observation of the signal lines that
exchange the messages among the system parts. Those
diagrams are furthermore by definition incomplete,
as long as they do not contain all input and output
variables of the relation functions. This incompleteness
however, is normal in conventional specification
methodology, since the variables exchanged across the
local function/relational function boarder, are nor-
mally missing in the timing diagrams. (In 4.1 Sources
and sinks we come back to this point). To make things

even worse, most specifications only contain the most
significant sequences. Although this cuts down on the
monotony and length of the sequences, it makes the
specification even more incomplete. Hence, the written
text, which usually goes together with the diagrams,
becomes essential to fill up the gaps in the specifica-
tion with timing diagrams. The text, however introduces
several new problems. The use of another language will
inevitably tempt the writer of the specification to
'explain' the diagrams. And so the reader must carefully
distinguish between text that contains additional
specification and text that contains redundant written
specification of the diagrams. Furthermore it is in most
cases not clear whether the text is meant to be asser-
tive, generative, or phenomenological. The observation
of the message path as basis for the description,
results in an intermixed description of the contributing
relational functions and the message path itself. This
burdens the implementer of an architecture to untangle
the relational function, that is part of this architec-
ture, from the total specification. The phenomenological
description is maximally unstructured, opposite to the
nature of human thinking. Therefore the implementer has
to bridge the 'maximum distance' from the phenomeno-
logical specification to his product, a realizable
generative specification.

The previous observations suggest a specification
method for an interface in which each relational func-
tion and the message path is specified individually.
Each individual specification uses one description
technique, preferably not the phenomenological, and
one description language.

3.2 Assertive description.
The assertive description metho,~, originally

introduced to prove program correctness [7,6], speci-
fies an architecture by specifying assertions on the
behaviour of the input and output variables. In so
doing, the assertions form in fact a shorthand notation
for the phenomenological description of the input and
output variables, and allow the latter's drawbacks to
be avoided . The assertive specification can not be
simulated, since this requires a model of the generative
mechanism between inputs and outputs. Simulation can be
highly desirable if we want to check the assertions
against samples of the phenomenological descrlotion.
The specification of the assertions themselves is the
biggest problem in using this technique, in pal~icular
when the architecture is complex. This often requires
that the architecture is specified as a collection of
related partitions, and each partition is specified
assertively. Through this partitioned specification,
internal variables are defined, and the assertive
approach comes close to the generative approach which
is followed in this paper.

3.3 Generative description.

Associated with the phenomenological specifica-
tion of a finite automaton, the type of system to which
we are restricted when we start an implementation, is
a (minimL=n) state machine. This state machine can be
considered as the generative mechanism that maps the
input onto the output. A description of it can replace
the phenomenological description. For complex systems,
as frequently encountered for interfaces, it will
generally be difficult to establish this minimum state
description. Since the generative description is used
to replace a desired input/output behaviour (phenomeno-
logy) the latter is not available to deduce a minim~m~
state description from it. Associated with the minimum
state machine are many equivalent machines with the same
phenomenology which do not contain the minimum set of
internal states. Therefore, although the minimum state
description often appears to be the most attractive
one [2], we often have to be satisfied with a reasonably
good equivalent description, Most of our experience is
based on the use of this type of description for inter-
faces, though an assertive description might equally
well have been chosen.

99

3.4 Language.

The most primitive language in which the generative
mechanism for a finite automaton can be expressed is the
state transition diagram or table, as used in sequential
circuit theory. Though this language has succesful been
used in a number of applications [1,3,4], and remains
quite suitable for specific ('logic') functions, it
appears to work inefficiently for more complex interfa-
ces. In these cases an algorithmic language, that con-
tains primitives for many (numerical and logical) opera-
tions is much more powerful [2]. Some examples of this
are shown in figures8 and 9. It remains essential though,
that the algorithmic description is interpreted as a
state machine description. The representation of the
states is free, since they are internal to the automaton.
The optimum choice is a representation that provides
maximum clarity of specification. This can often be
achieved by adapting state representation and formula-
tion of transition conditions to each other [2]. The
algorithmic language allows also many different
representations for the state transition diagrams or
tables. So these descriptions can be mixed with
algorithmic statements, and simulated on a computer [9].
The possibility of simulating the interface is an
important advantage of the generative description.

4. Structure.

Human nature does not favour the specification of a
complex system by one single homogeneous function, such
as a large diagram, table or algorithmic expression. We
no longer have confidence that it represents what we
want. Instead we start with smaller individual parts of
specification. For each part we have confidence that its
specification is, or can made to be~ what we want. And
we link up (interface) those parts, often by extension
of their specification, into a larger part of specifica-
tion. Such a partioned specification method raises pro-
blems of its own: where to start, and how to link up the
parts. A general structuring discipline, providing a
structure in which partitions of specification can be
embedded, can greatly help in reducing these problems.
Such a structuring discipline for the specification of
an interface is discussed in the following sections.

4.1 Sources and sinks.
The first class of partitions is called the source

and sink functions layer. To operate as one functional
entity -e.g. a Channel- information is exchanged
between the local and relational function of the channel.
Conventional methodology often hides the variables
carrying this information in vague statements~ such as

' if the Channel is able to communicate with a
device, it places an address on the bus. . .'

Such a statement gives rise to numerous questions:
- Where and how is the ability to communicate

generated ?
- When the channel is able, will it actually

communicate ?
- What happens when the channel is able, but other

activities require the channel's attention ?
- When, where and how are addresses generated, how

and where are they coded ? Etc.
It is therefore necessary to make a clear distinction
between the variables generated by the local function
and by the relational function, and to decide which
of these cross the boundary between local and relational.
The interface is only interested in those locally
generated variables that are inputs to the relational
function. Since their generation is a part of the local
function, which is per definition unknown, we cannot
define their behaviour; But we can define their required
behaviour via a finite automaton, called a source
function:

A source function defines the existence, set of
values, a~e~ehaviour of a local variable,
which is made available as input to the relational
function [3].

V DECSOURCE
(D_~:X)̂ {Ta; } [i] W~:+(D_~=O)/WI

~ [2] DS+D~
[3] DELAY T2

. . . [4] W2:+(p.S_~O)IW2
[5] DS÷p.~.
[6] DELAY T1
[7] -~WI

(_D~:0I^IT2; } v

Ca) (b)

Figure 2: Decoded source.

Graphic (a) and algorithmlc (b) description of a decoded source.
The 1oca| variable 12_$_, whose behaviour is free, is used to deter-
mine the behavJour of the relational variable DS. The behaviour of
DS is as fo]1ows: DS=0 remains at least T1 seconds valid, DS#0 re-
mains at least T2 seconds valid. Each value of DS#0 is enc]osed by
the 'separation message' DS=0. The varlable DS is used in the rela-
tional function. I f DS behaves as DS (i .e. as required), the imple-
mentation of the source is t r i v i a l : a short-circuit ing from ~ to
DS.

The local function represents the complement of the
relational function in the architecturels total relation
with its environment. This leads to the introduction of
the sink function, the counterpart of the source function:

A sink function defines the existence, set of values,
and beha-'~ou~relational variable, which is made
available as input to the local function [3].

A sink function has the same appearance as a source,
therefore no examples are shown. Practical applications
often require the combination of a source and sink func-
tion into one function. Such a function is called a
conversational source or sink function, dependent upon
its main task. The conversational character is required
when the validity time (the time that the value of the
variable remains unchanged) of a relational variable is
defined in a logical way (figure 3) instead of by the
use of time (figure 2).

(a)

(C~._V=I)Ap=3

(C_SZ=O)̂ P=5

(_Cs[x]=i)^CSV=O

(C~[X]=O)ACSV=0

V CODEDSOURCE
[i] WAIT:÷(CSV+(((~Z=I)^P=3)vGSV)A~(C~V=O)AP=S)/WAIT

(b) [2] CS~£~
[3] +WAIT

V

F i g u r e 3: Coded c o n v e r a t i o n a l source.

Graphic (a) and algorithmic (b) description of a coded conversa-
tional source. The local variables CSV and CS are used, together
with the relational variable P, to determine the behaviour of the
relational variables CSV and CS. As long as CSV=O, the code of CS
may change. Analogous to figure 2, CSV=0 may be interpreted as
the separation message. CSV is used both in the relational func-
tion and in the local function. The code of CS remains valid, as
long as CSV=l.

When all sources and sinks for each relational
function are identified, they form a layer that shields
the local functions from the remaining part of the inter-
face. This remaining part is called in figure 4a basic
interface function. The source and sink layer defines
the behaviour of all inputs and outputs of the interface
and is therefore a suitable place to start the definition
It shows that an interface can be considered as an
architecture that is dispersed over several other
architectures and the message path.

100

/ L o c a l f'n A" / Local f'n

I as} I\\

' \ x ' / , ~ L . ~ / / , /
I I I I /

~ ~_i._l I . ~ K ~ J L /

Figure 4a: Source and Sink layer
and Basic interface function.

Figure 4b: Partitioning of the
Basic interface function into
the Basic protocol functions
and the Basic message path.

When an interface is considered as a dispersed
architecture, one can view a system either as a
collection of related architectures (figure 5a), or as
a collection of interfaces (figure 5b), The latter
viewpoint is used when a system makes use of one or more
predefined interfaces.

Figure 5a: System, specified by
a collection of architectures.

: Envl ronmen t I

Figure 5b: System, specified by
a collection of interfaces.

4.2 Basic protocol , .

When the source and sink layer is defined, the
remaining part of the interface represents its basic
function. This basic interface function contains the
flow of the data from sources to sinks and the
operations performed on the data. If the basic interface
function is defined as one automaton and subsequently
partitioned into the basic protocol functions (the parts
that are accomodated in the related architectures), and
the basic message path (figure 4b), it will usually
result in a voluminous, inflexible and costly basic
message path. Most interfaces require a reduction of
this cost through a reduction in the space and time
allowed for the exchanged variables. At the same time
increased flexibility is desired and obtained through
a general purpose message path. Consequently the basic
protocol functions have to be adapted to this reduced
and generalized message path to form part of a definite
specification. Starting with the basic protocol, however,
is very useful in formulating the interface~s basic task
and in deciding how the elements of this task are alloca-
ted to the related architectures.

4.3 Central message path.

The next step is the definition of the central
message path. The basic message path indicates what
variables are to be exchanged. As a first step it can be
decided how much spac e and time will be assigned to these
variables. Three most important and competing parameters
influence this choice. The first one is the possibility
of physical separation of the architectures, in particu-

Figure 6: Basic protocol function.

A simplified basic protocol function of a complex Channel-to-i/o
interface [i]. The function is located in the Channel. The diagram
shows how a data transfer sequence can be build up. The elementary
steps in the sequence are represented by the states in the diagram.
The transitions in the diagram indicate how these steps may be
sequenced. It follows that data transfers from different devices
may be mixed. This allows the multiplexing of the message path.

lar their maximum physical distance. The second is the
desired time performance of the interface, and the third
is the desired reliability of the interface. Another
important parameter is the level of independence of the
message path from the related architectures. The weight
of those parameters is highly dependent on the applica-
tion of the interface (e.g. industrial plant control
versus laboratory experiments), which makes a universal
central message path for all applications unlikely.

As a second step, the function of the central
message path is defined. In some message path configura-
tions, such as in string or loop configurations, this
function is trivial: just one or more connections. A
less trivial function is represented by the so called
bus or party line configuration that can be found in
most Channel-to-I/0 interfaces. Such a bus structure
gives the 'or' of the coded variables presented to it
by the relational functions. This 'or' is a simple,
but essential function that allows multiplexing of
data from various destinations. The implementation

of the 'or' function is generally distributed over
the relational functions.

v CMP
[I] L:SRL÷PSL
[2] SRLV÷PSLV
/3] PRL÷V/SSL
[4] PRLV+v/SSLV
[5] ÷L

V

F i g u r e 7: C e n t r a l message pa th f u n c t i o n o f SDLC i l l .

The c e n t r a l message pa th f u n c t i o n connec ts one p r i m a r y s t a t i o n to
m u l t l p l e s e c o n d a r y s t a t i o n s . The S (e c o n d a r y) R (e c e i v l n g) L (i n e) is
connec ted to the P (r i m a r y) S (e n d i n g) L (i n e) . Idem f o r the S (e c o n -
d a r y) R (e c e l v i n g) L (i n e) V (a l l d) , wh ich c a r r i e s the c l o c k .
The v a l u e o f the P (r i m a r y) R (e e e l v i n g) L (i n e) is the ' o r ' f u n c t i o n
o f the s e n d i n g i n p u t s to the l l n e , r e p r e s e n t e d by t i le v e c t o r
S (e c o n d a r y) S { e n d i n g) L (i n e) . Idem f o r P (r l m a r y) R (e c e i v i n g) L (i n e)
V (a l i d) . PSL and PSLV a re g e n e r a t e d in the f u n c t i o n FRAVET~A~ISHIT -
TER o f f i g u r e 8. PRL and PRLV a r e used in the f u n c t i o n FRAVE~ECEI-
VER of figure 8.

More sophisticated message path functioning can be
found in many CPU-Channel interfaces. Here the message
path contains store operations~ priority assigments to
regulate concurrent acces to the same storage locations,
and the like. These functions are performed by main
storage.

The CPU-Channel interface is a prominent example of
the use of memory in the message path. Exchange of
variables via memory (indirect transfer) allows either
parallel or sequential operation of the relational func-
tions. A freedom of choice which is left to the implemen-
ter. When no memory is used, the transfer is direct,
which requires parallel operation of the relational

1 0 1

functions. The determination of the space, configuration
and function of the message path of the interface plays
a definite role in the total performance and applicabi-
lity of the interface. The message path is therefore
central to the relational functions as illustrated in
figure]0. It is not surprising that some names of inter-
faces are based on it (e.g. the unibus). But this does
not justify the identification of the message path, or
its momentary condition (e.g. the state of main storage
as the interface between the program modules), as the
entire interface. The message path should be derived from
the basic protocol functions and not vice versa.

4.4 Transfer.

The introduction of the central message path
requires an adaption of the basic protocol to the space,
time, and function of the central message path. This
requires a number of functions to adapt the format
(multiplex, serialize) of the variables supplied by the
basic protocol to the message pat~ and vice versa. The
sequencing of different variables over the same trans-
mission path requires a mechanism to indicate the type
and (in)validity of these variables. The introduction of
the coded representation of the variables on the message
path, discussed in the next paragraph, also makes these
mechanisms necessary. Dependent on the choices made for
the message path, such a mechanism can make use of hand-
shaking, strobing, or enveloping techniques. The chance
of message mutilation caused by the message path, often
requires the introduction of message protection mechanisms
These mechanisms can range from a simple parity check to
complex methods such as cyclic redundancy check, buffe-
ring, numbering and retransmission.

The functions charged with these types of tasks form
a layer, shielding the basic protocol from the message
path. This layer is called Transfer in figure]0.

v FRAMETRANSMITTER;SPTR;SFLAG
[I] WI:÷(~TRANS)/WI
[2] SPTR+FLAGPTR,(CHECKBITS SFRAME),SFRAME,FLAGPTR
[3] W2:+PSLV/W2
[4] SFLAG÷((oSPTR)>24+pSRFAME)V(pSPTR)S8
[5] PSL÷(O,-I÷SPTR)[SFLAGvSCNT~5]
[61 SPTR÷(-SFLAGvSCNT~5)+SPTR
[7] FRSEND÷O=pSPTR
[8] SCNT÷PSL×SCNT+I
[9] W3:+(FRSEND,PSLV,~PSLV)/WI.W2.W3

?
V X÷CHECKBITS Y;N

[i] N÷pY
[2] X÷16OI

? FRAMERECEIVER;FINB;SUPR [3] L:N÷N-I
[i] WI:+(~PRLV)/WI [4] X+I+(X,O)~POL^X[O]~y[N]
[23 FINB÷RFLAG [5] +(N=O)/L
[3] SUPR+(~PRL)^RCNT=5 [6] X÷~~X
[4] RFLAG÷(~PRL)ARCNT=6 V
[5] RCNT÷PRL×RCNT+I
[6] RFRAME÷(SxRFLAG)+SUPR+PRL,(~FINB)/RFRAME ~
[7] FRDY÷RFLAG^pRFRAME~32
[8] W2:+(FRDY,PRLV,~PRLV)/L,W2,WI
[9] L:RFOKE÷^/(16÷RFRAME)=CHECKBITS 16÷RFRAME
[101 W3:+(PRLV,~PRLV)/W3,WI

V

Figure 8: Transfer functions of $DLC [2].

The FRAMETRANSMITTER generates PSL and PSLV (see figure 7) from
the varlabie S(ending)FRAME, that it receives from the £NCODER
functTon, shown in figure 9. It indicates when the frame
is transmitted (by FRSEND) etc. The FRAMERECEIVER assembles a
variable R(ecelved)FRAME from PRL and PRLV (see figure 7), and
presents this to the DECODER function of figure 9. The subfunction
CHECKBIYS generates the cycilc redundancy checkbits, and is part
of both the transmitter and receiver function. It is not an in-
dividual automaton.

4.5 Coding and decodin $.

As mentioned under 3.4 ~ , the representation
of the state of the automaton is free as long as we are
in the architectural phase, and can be chosen to provide
maximum clarity of specification. When the automaton is
implemented, the implementer is free to represent the
state of the variable by any suitable set of code ele-
ments according to his criteria. Source and sink
variables are internal to the individual architectureWs

as are most of the variables contained in the basic pro-
tocol and transfer functions. Their final representation
is the implementer's decision. The situation is different
however, for the variables that are exchanged via the
message path. Usually an interface is designed to allow
the implementation of each architecture by an independent
group without requiring them to communicate with all
other groups. When this is the case, the representation
of the variables crossing the message path is public and
must be settled by the interface designer. The variables
are principally provided or accepted by or via the basic
protocol, and are subjected to the transfer operations.
Hence the functions performing the coding and decoding
form a layer in between the (basic) protocol and the
transfer, as shown in figure 10. The message path
provides the code elements for the representation of the
exchanged variables.

V ENCODER;SAF;SCF;SIF
[I] WI:+(~TRANS)/WI
[2] SAF÷(So2)TIADD
[3] SCF÷(8pg)T(16xFB)+(SNSI,SRQI,SROL,SNSA,SCMDR,SRR,SRNR,SREJ,SI)/

3 7 ~5 99 135 ,(I 5 9 ,2xSNS)+32xSNR
[4] SIF÷(SCMDR/HELPFIELD),(SNSI/OUTNSI),SI/OUTI
[5] SFRAME÷SIF,SCF,SAF
[6] W2:÷((ENCODERDY÷TRANS),~TRANS)/W2,WI

V

V DECODER;RAF;RCF
[i] WI:÷(~FRDYARFOKE)/WI
[2] RAF÷-8÷RFRAME
[3] RCF÷-8+-I6÷RFRAME
[4] RIF÷-I6+RFRAME
[51 MA÷(2~RAF)E(IADD,CADD)
[6] PB+RCF[3]
[7] INR÷2~RCF[O I 2]
[8] INS÷21RCF[4 5 6]
[9] RVIF÷~RCF[7]
[I01 ~S~÷3=2~RCFEo I 214 s 6 7]
[I~] RSIM÷7=21RCF[O i 214 5 6 7]
[12] RORP+I9=2iRCF[O I 214 5 6 7]
[13] RDISC÷35=2±RCF[O 1 2 4 5 6 7]
[14] RSNRM÷67=2±RCF[O I 2 4 5 6 7]
[15] RRR÷I=2±RCF[4 5 6 7]
[16] RRNR÷5=2~RCF[4 5 6 7]
[17] RREJ÷9:2±RCF[4 5 6 7]
[18] W2:÷((DECODERDY÷FRDY).~PRDY)/W2.W1

V

F~gure 9: Encoding and Decoding f u n c t i o n s o f SDLC [2] .

The £NCODER f u n c t i o n genera tes the v a r i a b l e SFRAME from the
v a r i a b l e s p rov ided by the p ro toco l f u n c t i o n s o f SDLC. The DECODER
f u n c t i o n per forms the oppos i t e o p e r a t i o n . Both f u n c t i o n s are l i n -
ked to the t r a n s f e r f u n c t i o n s o f f i g u r e 8.

4.6 Protocol.

The introduction of the central message path, the
transfer layer, and the coding layer may affect the
basic protocol functions. If so, these functions must be
adapted to the communication facilities provided by this
central part of the interface. This adaption predomi-
nantly involves the introduction of sequencing functions,
due to the time limitations of the message path. The
adapted basic protocolfunctions thus form a layer, in
figure 10 called Protocol, in between the source and
sink layer and the coding and decoding layer. The
protocol layer which is defined through this procedure
contains the highest level of functions representing the
substance of the relation of the architectures. In a
standard Channel-to-I/0 interface, the interface is
primarily concerned with the exchange of different
classes of messages, such as commands, data, and status.
The protocol layer in this type of interface controls
such things as the setting up, maintenance and closing
down of message transfers, as well as the interleaving
of message transfers from different origins and their
priorities in case of concurrency. In general few
arithmetic and other data manipulation
functions, are found in this type of interface. Other
interfaces such as the Channel-Main Storage interface,
or CPU-Main Storage interface, may contain in high
degree of data manipulation and buffering functions.
The CPU-Main Storage interface can be considered as
including the definition of almost the entire CPU
instruction set.

102

/ L o c a l funct Ion~" /

/'-.L"

\ /

/
i I /

Figure i0: Layered structure for an interface

4.7 Further development.

The previous discussion of the structure of an
interface suggests a sequence in the development of
the layers, according to the sequence of the sections
4.| through 4.6. This development is based on a
strategy of successive definition. First the architec-
ture of the total interface is determined~ and its
partitioning and dispersion over the related architec-
tures. Next the architecture of the central message path
is determined, and finally the architectures of the
individual relational functions. Though this procedure
is a useful guideline, a practical application often
requires a substantial number of iterations through
this sequence, due to the high dependency among the
layers.

A further substructuring per layer may result in
either the development of sublayers per layer (extended
horizontal partitioning) or a partitioning of a layer
into functions which are not or only slightly related
(vertical partioning). The previous discussions have
already used the vertical partitioning by interpreting
each layer as a class of functions, and showing
examples of such functions. Much is dependent on the
possibility of defining a function first as an indepen-
dent entity, and next of establishing the linkages to
and from other functions. As is true for the vertical
partitioning, the extended horizontal partitioning may
also provide more clarity in the specification of the
interface. The protocol function of figure 6 shows what
type of operations may be sequenced. The way these
operations are organized in detail can be specified in
a lower protocol layer. Complex data transmission inter-
faces may build up their transfer layer as a stack of

</ C e n t r a] message p a t h

Figure 11: The Interface from the perspective of architecture A.

sublayers. Such a sublayer, and all that it encloses,
may be interpreted as the central message path of the
transfer layer that is just one level higher. An
opposite development also occurs frequently: variables
pass a layer unchanged,

The structure so far developed for the interface
is shown in figure |] from the perspective of an
individual architecture. Each box in the figure repre-
sents a function, that exists in parallel with the other
functions and is related with them via the exchange of
variables. This horizontal and vertical structuring is
different from the structuring in which functions on a
lower layer are used to implement an abstract machine
on a higher laver [i0].

5. ~nat is a standard interface ?

As stated~ a system can be understood as a collec"
tion of interfaces (figure 5b) as well as a collection
of architectures (figure 5a). This viewpoint is signifi-
cant when an interface is defined first, and the asso-
ciated architectures later. This happens with a so called
standard interface. A standard interface, such as a
Channel-to-I/0 interface, is always defined to meet many
different architectures, e.g. printers, tape units, disc
units, display devices, architectures that still have to
be invented, etc. in different quantities and configura-
tions. At the time of the definition of the standard, the
current application area is known, and there is a rough
estimate of the characteristics of future applications.
Definition of a standard to include all current and
future applications is not only impossible, it is also
highly inappropriate since it loads anyparticular applica-
tion with the overhead of a multiplicity of unused applica-
tion functions. Instead the standard is defined to suit
all requirements of current and future applications with-
out containing the specific functions of individual
applications. The standard is by definition incomplete.
Consequently, when the standard is used in a particular
application, each relational function has to be extended
with application dependent functions. Those application
dependent functions form yet another layer around the
source and sink layer of the standard interface, and
are designated 'Application' in figure 12a.

~"." % . / " X ~ ' . . ' \ L ~ ~" ~

', \ t,, J / ,' --'t4,
" " t 'n<e'aoe /

Figure 12a: Application of a
Standard Interface

Figure 12ha Part i t ioning of the
Application l a y e r .

The consequence of this structure is that the
variables exchanged among the application functions are
unknown, i.e. transparent to the standard interface, and
yet pass all layers and the message path. Since we want
the function of the standard te remain invariant with
each application, it implies that the standard has to
provide for the space and time for the exchange of those
variables. If on the level of the central message path
the available space is to be defined in terms of avail-
able code elements, the definition of the available space
at the level of the source and sink functions has to be
in terms of the same number of code elements, since the

103

coding of the variables is transparent with respect to
the standard. The coded source in figure 3 is an example.
Therefore, in using a standard interface in a particular
application, the application dependent interface can be
defined according to the procedure explained above. The
standard interface is now embedded as a central message
path with a high level of complexity. (See figure 12b).

6. Application

The structuring and description discipline has been
succesful applied to a number of existing and proposed
standard interfaces. Among these are a complex data trans-
mission interface [2], two I/0 interfaces, one complex
Channel-to-I/0 interface [I], and an instrumentation
interface [4]. The relational function of the secondary
station of SDLC [2] was for example described by 25 func-
tions, each of an average complexity as shown in the
figures 8 and 9. It contains 4 sources, 2 sinks,
8 protocol, 2 decoding, 3 encoding, and 6 transfer func-
tions. A formal specification was developed as far as
the intentions of the interface architects were stated
unambiguously. This specification was generally a frac-
tion of the length of the original document. As part of
the description process ambiguities and omissions in
the original documents were systematically uncovered.

The state description technique was introduced in
an IEC (TC 66/WG 3) standardization activity in june
1973 [4], and eventually accepted as the method to
define the considered interface. In the opinion of the
committee it has contributed much to the fact that the
definition work was practically completed within 9
months, that is May 1974 [5]. A structured and complete
description of this interface can be found in [3].

7. Conclusion.

The proposed design discipline facilities fast,
correct, efficient and clear specification, inter-
pretation, and judgement of an interface through the
definition and its evaluation into a structured
specification methodology. As such it can be profit for
both interface designers and users:
- The definition provides a better understanding, of

what an interface substantially is: a specification
of a portion of each of the related architectures
(relational functions) and the architecture of the
message path, defined to provide cooperation of the
related architectures. It is not the story of the
reporter, who is sitting on a grandstand, viewing the
communication between the related architectures,
observing, interpreting and logging what happens. It
is the rules of the game according to which the teams
play.

- The architecture of each relational function and the
message path is specified individually. For all these
architectures one specification methodology and
language should be used. Poor interface specification
mixes relational functions and message path, as well
as specification methodologies and languages.

- The horizontal and vertical partitioning strategy for
the specification of the relational functions facili-
tates the recognition of the nature of functions of a
particular application and their embedding in such a
structure. It facilitates easier specification and
recognition of quality and correctnes of the indivi-
dual and compound functions.
A standard interface is by definition incomplete. It
can be interpreted as a complex central message path,
that can be extended to a complete interface in a par-
ticular application.

- The method has proven to be applicable to a number of
widely used interfaces.

8. Acknowledgement.

The project Interface was suggested by G.A. Blaauw.
It is one of the projects of the digital techniques
group at Twente University of Technology that focusses
on the control of the design process of digital systems.
The author would like to thank G.A.Blaauw~ B.v.d.Dolder,
and R.Davey for their constructive criticism during the
preparation of this paper.

9. References.

I. M.J. Heg - Formal description and evaluation of a
proposal for an international standard for an input/
output interface for electronic data processing
systems (ISO TC97/SC13) - M. Sc. Thesis (Dutch/
English). June 1975 - Twente Univ. of Techn.

2. B.v.d. Dolder - Algorithmic description of a data
transmission interface - M. Sc. Thesis (Dutch) -
June 1975 - Twente Univ. of Techn.

3. C.A. Vissers - Digital Techniques IV: Interface-
Lecture notes - Spring 1975 - Twente Univ. of Techn.

4. Byte-serial bit-parallel standard interface for
programmable measuring apparatus - Drafts of July
1973 and June 1974 - IEC TC66/WG3.

5. D.E. Knoblock, D.C. Loughry, C.A. Vissers - Insight
into Interfacing - IEEE Spectrum - May 1975 - pp.
50-57.

6. D.L. Parnas - Information distribution aspects of
design methodology - Proc. IFIP, 1971 - North-Holland
Publishing Company (1972).

7. R.W. Floyd - Assigning meanings to programs - Procee-
dings of symposia in Applied mathematics, Vol. 19,
Mathematical aspects of computer science, pp. 19-32,
American Mathematical Society, 1967.

8. C.A.R. Hoare - An axiomatic basis for computer pro-
gramming - Comm. ACM. 12, 576-580, 583 (1969).

9. F. Wijnstra - A conversational system for representa-
tion and verification in APL of interfaces - M. Sc.
Thesis (Dutch) - sept. 1975 - Twente Univ. of Techn.

}0. E.W. Dijkstra - The structure of the THE multipro-
gramming system - CACM, Vol. |I, No.5, May 1968.
pp. 341-346.

104

