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0. Abstract 

Past and current specification techniques use ti- 
ming diagrams and written text to describe the phenome- 
nology of an interface. 

This paper treats an interface as the architecture 
of a number of processes, which are dispersed over the 
related system parts and the message path. This approach 
yields a precise definition of an interface. With this 
definition as starting point, the inherent structure of 
an interface is developed. A horizontal and vertical par- 
titioning strategy,based on one functional entity per 
partition and described by a state description, is used 
to specify the structure. This method allows unambiguous 
specification, interpretation, and implementation, and 
allows a much easier judgement of the quality of an in- 
terface. The method has been applied to a number of wi- 
dely used interfaces. 

]. Introduction 

Many com~ittees, charged with standardizing an in ~ 
terrace struggle many years (8 to 10 years makes no ex- 
ception) to get the job done. What are their problems ? 
We can find at least three. First, an interface is always 
much more complex than a first estimate suggests. Quali- 
fication and quantification of the needs of the users is 
a difficult task, application dependent, and subject to 
different opinions. The definition of the functional con- 
tents of an interface that satisfies these needs introdu- 
ces an extra choice, and consequently makes agreement one 
level more difficult. Second, the disclosure of an inter- 
face allows the linkage of products of different compa- 
nies into one system, which requires the political will 
to make this happen. The third problem is the available 
methodology and language for the specification of an in- 
terface and its preliminary versions. Conventional metho- 
dology uses timing diagrams and written text, often illus- 
trated with tables and drawings. This methodology has a 
number of serious disadvantages. The most important of 
these are discussed in this paper. Bad specification me- 
thodology makes an interface difficult to master and do- 
cument, and enhances the risk of errors, incompleteness, 
inefficiency and vagueness. It also opens the door to 
obstruction of progress through vague reasoning. An in- 
terface with such characteristics contributes to non- 
uniform and unintended interpretations. And faithful to 
Murphy's law this has led to system malfunctioning, even 
though the interface was scrupulously interpreted. 

Therefore, the availability of an efficient tool 
that allows unambiguous and clear specification and in- 
terpretation of an interface would be of great profit to 
both its designers and users. For the designers it faci- 
litates a clear discussion and expedites a correct, com- 
plete, efficient and clear specification. For the users 
it will help to avoid system malfunctioning, caused by 
misinterpretation or unauthorized extension of a given 
interface. 

This paper presents a specification method that 
tries to incorporate the desired characteristics. It has 
been applied to a number of existing and proposed stan- 
dard interfaces [1,2,3] with satisfactory results. The 
state description technique, which is closely related 
with the method, is reflected in an interface which is 
now becoming an international standard. It proved to be 
of extreme value Loth in the development and use of this 
interface [4,5], The method is based on the definition 
of an interface, which will be discussed first. Next, 

technique and language for the specification of an inter- 
face are discussed. This is followed by the development 
of a structuring discipline for an interface, and a dis~ 
cussion of the character of a standard interface. Finally 
some conclusions are drawn. 

2. Definition 

Few attempts seem to have been undertaken to state a 
manageable definition for the concept of interface. It 
may be that the term interface itself, and its transla- 
tions to various languages(cutting place, tangent plane), 
pretends to be clear enough. But the term interface is 
currently used with many divergent interpretations.{The 
term 'connection' is used in [6] to indicate the same 
kind of relation definition as discussed in this paper I. 
Therefore, if we want to discuss a specification metho- 
dology for it, an adequate definition is demanded. 

What we clearly want, is to be able to bring sys- 
tem parts that can be considered and designed as sepa- 
rate functional entities, into relationship to form a 
system with a higher level of functional performance. 
The possibility that some system parts can be brought 
into relationship makes us say that these system parts can 
interface. Therefore an interface can intuitively, but 
still informally~ be called a 'relation definition'. In 
order to interface, the system parts must be given 
certain properties which are attuned to each other.(e.g. 
two system parts know the same variable, one as its 
producer, the other as its consumer). All properties of 
a system part are defined by the complete specification 
of its functional behaviour, its architecture. Therefore 
we are able to define an interface by specifying the 
architectures of the related system parts. Through the 
definition of the architecture of each part, the inter- 
faces of these parts are concurrently established. 
However, in some eases we may desire, or be forced, to 
define an interface first, and the complete architectures 
later (e.g. for the definition of a standard 
Channel-to-I/0 interface). In these cases it is 
undesirable, unfeasible, and unnecessary to define the 
complete architecture of the related system parts in 
order to be able to define their interface. 

System parts have a relation if they can affect each 
other's functional behaviour. Without mutual effect they 
ignore each other and the system parts are independent 
and unrelated. The mutual effect is through variables 
(messages) with a defined behaviour and exchanged via a 
message path. Suppose we want to define the effect of 
system part A on system part B through wlriable V. The 
behaviour of V can be defined through the definition of 
the generative mechanism of V, which belongs to A and 
forms a portion of A's architecture (the influence of A). 
The effect on B through V can be defined through the 
definition of that portion of BVs functional behaviour 
expressing that effect (the effect on B). Conversely we 
can define the effect of B on A through W. This yields, 
another portion of AVs and BVs architecture. The two 
portions of A's architecture can be specified either as 
separate portions if there is no correlation between them, 
or integrated if there is. A similar statement can be made 
for B. 

An interface of two or more systems parts defines for 
each system part that portion of its architecture that al- 
lows a relation between those system parts to form a sys- 
tem providing a desired function. 
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The previous reasoning assumed a functional passive 
message path for the exchange of the variables V and W. 
Though this is often the case, an interface may contain a 
message path that performs logic operations on the vari- 
ables it exchanges as explained in section 4.3: Central 
message path. Consequently the definition of an inter- 
face has to be extended to contain the architecture of 
the message path~ as.shown in figure |. As with the 
definition of an architecture, the definition of an 
interface is a specification problem. This specification 
problem concerns not one archlte~'---~ure° but a portion of 
each of the related architectures and the message path 
in between. In this sense the concepts of architecture 
and interface are equivalent. The term relational func- 
tion is given to that portion of an architecture tha--a~-Ts 
part of the considered interface. The remaining portion 
of the architecture is called local function. It forms 
the complement of the relational f~n~in the 
architecture's total relation with its environment. IILocal  

function A l 
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F i g u r e  l a :  T h r e e  r e l a t e d  a r c h i -  F i g u r e  l b :  The  A-B-C  i n t e r f a c e .  
t e c t u r e s  A, B, a n d  C. 

This definition provides the basis for a sound 
specification method: the interface is specified by the 
separate specification of each relational function and 
of the message path. Since these items are portions of 
an architecture, their description may use the same 
techniques and languages as applied to architectures in 
general. 

3. Description techniques and languages 

Three basically different description techniques 
are conceivable and used to specify an architecture: 
the phenomenological, the assertive, and the generative 
description. 

3.] Phenomenolo~ical description. 

The phenomenologieal description gives an observa- 
tion of the behaviour of the input and output variables. 
As known from automata theory, that bases its definition 
of an automaton on it, this is a valid specification 
method. But in order to be complete, the observation 
must include all input and output variables, and all 
possible sequences of their values. Though this 
requirement is not important for the development of 
(automata)theory, it is impractical for any architecture 
of some complexity, because of the sheer monotony and 
inordinate length of the sequences. It is not surpri- 
sing that this method is not used in practice for the 
specification of architectures. Therefore it is a real 
surprise to observe that the conventional specification 
method for interfaces is still based on the phenomeno- 
logical description, since the timing diagrams are 
literally an observation of the signal lines that 
exchange the messages among the system parts. Those 
diagrams are furthermore by definition incomplete, 
as long as they do not contain all input and output 
variables of the relation functions. This incompleteness 
however, is normal in conventional specification 
methodology, since the variables exchanged across the 
local function/relational function boarder, are nor- 
mally missing in the timing diagrams. (In 4.1 Sources 
and sinks we come back to this point). To make things 

even worse, most specifications only contain the most 
significant sequences. Although this cuts down on the 
monotony and length of the sequences, it makes the 
specification even more incomplete. Hence, the written 
text, which usually goes together with the diagrams, 
becomes essential to fill up the gaps in the specifica- 
tion with timing diagrams. The text, however introduces 
several new problems. The use of another language will 
inevitably tempt the writer of the specification to 
'explain' the diagrams. And so the reader must carefully 
distinguish between text that contains additional 
specification and text that contains redundant written 
specification of the diagrams. Furthermore it is in most 
cases not clear whether the text is meant to be asser- 
tive, generative, or phenomenological. The observation 
of the message path as basis for the description, 
results in an intermixed description of the contributing 
relational functions and the message path itself. This 
burdens the implementer of an architecture to untangle 
the relational function, that is part of this architec- 
ture, from the total specification. The phenomenological 
description is maximally unstructured, opposite to the 
nature of human thinking. Therefore the implementer has 
to bridge the 'maximum distance' from the phenomeno- 
logical specification to his product, a realizable 
generative specification. 

The previous observations suggest a specification 
method for an interface in which each relational func- 
tion and the message path is specified individually. 
Each individual specification uses one description 
technique, preferably not the phenomenological, and 
one description language. 

3.2 Assertive description. 
The assertive description metho,~, originally 

introduced to prove program correctness [7,6], speci- 
fies an architecture by specifying assertions on the 
behaviour of the input and output variables. In so 
doing, the assertions form in fact a shorthand notation 
for the phenomenological description of the input and 
output variables, and allow the latter's drawbacks to 
be avoided . The assertive specification can not be 
simulated, since this requires a model of the generative 
mechanism between inputs and outputs. Simulation can be 
highly desirable if we want to check the assertions 
against samples of the phenomenological descrlotion. 
The specification of the assertions themselves is the 
biggest problem in using this technique, in pal~icular 
when the architecture is complex. This often requires 
that the architecture is specified as a collection of 
related partitions, and each partition is specified 
assertively. Through this partitioned specification, 
internal variables are defined, and the assertive 
approach comes close to the generative approach which 
is followed in this paper. 

3.3 Generative description. 

Associated with the phenomenological specifica- 
tion of a finite automaton, the type of system to which 
we are restricted when we start an implementation, is 
a (minimL=n) state machine. This state machine can be 
considered as the generative mechanism that maps the 
input onto the output. A description of it can replace 
the phenomenological description. For complex systems, 
as frequently encountered for interfaces, it will 
generally be difficult to establish this minimum state 
description. Since the generative description is used 
to replace a desired input/output behaviour (phenomeno- 
logy) the latter is not available to deduce a minim~m~ 
state description from it. Associated with the minimum 
state machine are many equivalent machines with the same 
phenomenology which do not contain the minimum set of 
internal states. Therefore, although the minimum state 
description often appears to be the most attractive 
one [2], we often have to be satisfied with a reasonably 
good equivalent description, Most of our experience is 
based on the use of this type of description for inter- 
faces, though an assertive description might equally 
well have been chosen. 
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3.4 Language. 

The most primitive language in which the generative 
mechanism for a finite automaton can be expressed is the 
state transition diagram or table, as used in sequential 
circuit theory. Though this language has succesful been 
used in a number of applications [1,3,4], and remains 
quite suitable for specific ('logic') functions, it 
appears to work inefficiently for more complex interfa- 
ces. In these cases an algorithmic language, that con- 
tains primitives for many (numerical and logical) opera- 
tions is much more powerful [2]. Some examples of this 
are shown in figures8 and 9. It remains essential though, 
that the algorithmic description is interpreted as a 
state machine description. The representation of the 
states is free, since they are internal to the automaton. 
The optimum choice is a representation that provides 
maximum clarity of specification. This can often be 
achieved by adapting state representation and formula- 
tion of transition conditions to each other [2]. The 
algorithmic language allows also many different 
representations for the state transition diagrams or 
tables. So these descriptions can be mixed with 
algorithmic statements, and simulated on a computer [9]. 
The possibility of simulating the interface is an 
important advantage of the generative description. 

4. Structure. 

Human nature does not favour the specification of a 
complex system by one single homogeneous function, such 
as a large diagram, table or algorithmic expression. We 
no longer have confidence that it represents what we 
want. Instead we start with smaller individual parts of 
specification. For each part we have confidence that its 
specification is, or can made to be~ what we want. And 
we link up (interface) those parts, often by extension 
of their specification, into a larger part of specifica- 
tion. Such a partioned specification method raises pro- 
blems of its own: where to start, and how to link up the 
parts. A general structuring discipline, providing a 
structure in which partitions of specification can be 
embedded, can greatly help in reducing these problems. 
Such a structuring discipline for the specification of 
an interface is discussed in the following sections. 

4.1 Sources and sinks. 
The first class of partitions is called the source 

and sink functions layer. To operate as one functional 
entity -e.g. a Channel- information is exchanged 
between the local and relational function of the channel. 
Conventional methodology often hides the variables 
carrying this information in vague statements~ such as 

' if the Channel is able to communicate with a 
device, it places an address on the bus. . .' 

Such a statement gives rise to numerous questions: 
- Where and how is the ability to communicate 

generated ? 
- When the channel is able, will it actually 

communicate ? 
- What happens when the channel is able, but other 

activities require the channel's attention ? 
- When, where and how are addresses generated, how 

and where are they coded ? Etc. 
It is therefore necessary to make a clear distinction 
between the variables generated by the local function 
and by the relational function, and to decide which 
of these cross the boundary between local and relational. 
The interface is only interested in those locally 
generated variables that are inputs to the relational 
function. Since their generation is a part of the local 
function, which is per definition unknown, we cannot 
define their behaviour; But we can define their required 
behaviour via a finite automaton, called a source 
function: 

A source function defines the existence, set of 
values, a~e~ehaviour of a local variable, 
which is made available as input to the relational 
function [3]. 

V DECSOURCE 
(D_~:X)̂ {Ta; } [i] W~:+(D_~=O)/WI 

~ [ 2 ] DS+D~ 
[3] DELAY T2 

. . .  [4] W2:+(p.S_~O)IW2 
[ 5 ] DS÷p.~. 
[6] DELAY T1 
[ 7 ] -~WI 

(_D~:0I^IT2; } v 

Ca) (b) 

Figure 2: Decoded source. 

Graphic (a) and algorithmlc (b) description of a decoded source. 
The 1oca| variable 12_$_, whose behaviour is free, is used to deter- 
mine the behavJour of the relational variable DS. The behaviour of 
DS is as fo]1ows: DS=0 remains at least T1 seconds valid, DS#0 re- 
mains at least T2 seconds valid. Each value of DS#0 is enc]osed by 
the 'separation message' DS=0. The varlable DS is used in the rela- 
tional function. I f  DS behaves as DS ( i .e.  as required), the imple- 
mentation of the source is t r i v i a l :  a short-circuit ing from ~ to 
DS. 

The local function represents the complement of the 
relational function in the architecturels total relation 
with its environment. This leads to the introduction of 
the sink function, the counterpart of the source function: 

A sink function defines the existence, set of values, 
and beha-'~ou~relational variable, which is made 
available as input to the local function [3]. 

A sink function has the same appearance as a source, 
therefore no examples are shown. Practical applications 
often require the combination of a source and sink func- 
tion into one function. Such a function is called a 
conversational source or sink function, dependent upon 
its main task. The conversational character is required 
when the validity time (the time that the value of the 
variable remains unchanged) of a relational variable is 
defined in a logical way (figure 3) instead of by the 
use of time (figure 2). 

(a) 

(C~._V=I)Ap=3 

(C_SZ=O)̂ P=5 

(_Cs[x]=i)^CSV=O 

(C~[X]=O)ACSV=0 

V CODEDSOURCE 
[i] WAIT:÷(CSV+(((~Z=I)^P=3)vGSV)A~(C~V=O)AP=S)/WAIT 

(b) [2] CS~£~ 
[3] +WAIT 

V 

F i g u r e  3: Coded c o n v e r a t i o n a l  source. 

Graphic (a) and algorithmic (b) description of a coded conversa- 
tional source. The local variables CSV and CS are used, together 
with the relational variable P, to determine the behaviour of the 
relational variables CSV and CS. As long as CSV=O, the code of CS 
may change. Analogous to figure 2, CSV=0 may be interpreted as 
the separation message. CSV is used both in the relational func- 
tion and in the local function. The code of CS remains valid, as 
long as CSV=l. 

When all sources and sinks for each relational 
function are identified, they form a layer that shields 
the local functions from the remaining part of the inter- 
face. This remaining part is called in figure 4a basic 
interface function. The source and sink layer defines 
the behaviour of all inputs and outputs of the interface 
and is therefore a suitable place to start the definition 
It shows that an interface can be considered as an 
architecture that is dispersed over several other 
architectures and the message path. 
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Figure 4a: Source and Sink layer 
and Basic interface function. 

Figure 4b: Partitioning of the 
Basic interface function into 
the Basic protocol functions 
and the Basic message path. 

When an interface is considered as a dispersed 
architecture, one can view a system either as a 
collection of related architectures (figure 5a), or as 
a collection of interfaces (figure 5b), The latter 
viewpoint is used when a system makes use of one or more 
predefined interfaces. 

Figure 5a: System, specified by 
a collection of architectures. 

: Envl ronmen t I 

Figure 5b: System, specified by 
a collection of interfaces. 

4.2 Basic protocol , . 

When the source and sink layer is defined, the 
remaining part of the interface represents its basic 
function. This basic interface function contains the 
flow of the data from sources to sinks and the 
operations performed on the data. If the basic interface 
function is defined as one automaton and subsequently 
partitioned into the basic protocol functions (the parts 
that are accomodated in the related architectures), and 
the basic message path (figure 4b), it will usually 
result in a voluminous, inflexible and costly basic 
message path. Most interfaces require a reduction of 
this cost through a reduction in the space and time 
allowed for the exchanged variables. At the same time 
increased flexibility is desired and obtained through 
a general purpose message path. Consequently the basic 
protocol functions have to be adapted to this reduced 
and generalized message path to form part of a definite 
specification. Starting with the basic protocol, however, 
is very useful in formulating the interface~s basic task 
and in deciding how the elements of this task are alloca- 
ted to the related architectures. 

4.3 Central message path. 

The next step is the definition of the central 
message path. The basic message path indicates what 
variables are to be exchanged. As a first step it can be 
decided how much spac e and time will be assigned to these 
variables. Three most important and competing parameters 
influence this choice. The first one is the possibility 
of physical separation of the architectures, in particu- 

Figure 6: Basic protocol function. 

A simplified basic protocol function of a complex Channel-to-i/o 
interface [i]. The function is located in the Channel. The diagram 
shows how a data transfer sequence can be build up. The elementary 
steps in the sequence are represented by the states in the diagram. 
The transitions in the diagram indicate how these steps may be 
sequenced. It follows that data transfers from different devices 
may be mixed. This allows the multiplexing of the message path. 

lar their maximum physical distance. The second is the 
desired time performance of the interface, and the third 
is the desired reliability of the interface. Another 
important parameter is the level of independence of the 
message path from the related architectures. The weight 
of those parameters is highly dependent on the applica- 
tion of the interface (e.g. industrial plant control 
versus laboratory experiments), which makes a universal 
central message path for all applications unlikely. 

As a second step, the function of the central 
message path is defined. In some message path configura- 
tions, such as in string or loop configurations, this 
function is trivial: just one or more connections. A 
less trivial function is represented by the so called 
bus or party line configuration that can be found in 
most Channel-to-I/0 interfaces. Such a bus structure 
gives the 'or' of the coded variables presented to it 
by the relational functions. This 'or' is a simple, 
but essential function that allows multiplexing of 
data from various destinations. The implementation 

of the 'or' function is generally distributed over 
the relational functions. 

v CMP 
[I] L:SRL÷PSL 
[2] SRLV÷PSLV 
/3] PRL÷V/SSL 
[ 4 ]  PRLV+v/SSLV 
[ 5 ]  ÷L 

V 

F i g u r e  7: C e n t r a l  message pa th  f u n c t i o n  o f  SDLC i l l .  

The c e n t r a l  message pa th  f u n c t i o n  connec ts  one p r i m a r y  s t a t i o n  to  
m u l t l p l e  s e c o n d a r y  s t a t i o n s .  The S ( e c o n d a r y )  R ( e c e i v l n g )  L ( i n e )  is  
connec ted  to  the  P ( r i m a r y )  S ( e n d i n g )  L ( i n e ) .  Idem f o r  the  S ( e c o n -  
d a r y )  R ( e c e l v i n g )  L ( i n e )  V ( a l l d ) ,  wh ich  c a r r i e s  the  c l o c k .  
The v a l u e  o f  the  P ( r i m a r y )  R ( e e e l v i n g )  L ( i n e )  is  the  ' o r '  f u n c t i o n  
o f  the  s e n d i n g  i n p u t s  to  the  l l n e ,  r e p r e s e n t e d  by t i le  v e c t o r  
S ( e c o n d a r y )  S { e n d i n g )  L ( i n e ) .  Idem f o r  P ( r l m a r y )  R ( e c e i v i n g )  L ( i n e )  
V ( a l i d ) .  PSL and PSLV a re  g e n e r a t e d  in  the  f u n c t i o n  FRAVET~A~ISHIT - 
TER o f  f i g u r e  8. PRL and PRLV a r e  used in the  f u n c t i o n  FRAVE~ECEI- 
VER of figure 8. 

More sophisticated message path functioning can be 
found in many CPU-Channel interfaces. Here the message 
path contains store operations~ priority assigments to 
regulate concurrent acces to the same storage locations, 
and the like. These functions are performed by main 
storage. 

The CPU-Channel interface is a prominent example of 
the use of memory in the message path. Exchange of 
variables via memory (indirect transfer) allows either 
parallel or sequential operation of the relational func- 
tions. A freedom of choice which is left to the implemen- 
ter. When no memory is used, the transfer is direct, 
which requires parallel operation of the relational 
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functions. The determination of the space, configuration 
and function of the message path of the interface plays 
a definite role in the total performance and applicabi- 
lity of the interface. The message path is therefore 
central to the relational functions as illustrated in 
figure ]0. It is not surprising that some names of inter- 
faces are based on it (e.g. the unibus). But this does 
not justify the identification of the message path, or 
its momentary condition (e.g. the state of main storage 
as the interface between the program modules), as the 
entire interface. The message path should be derived from 
the basic protocol functions and not vice versa. 

4.4 Transfer. 

The introduction of the central message path 
requires an adaption of the basic protocol to the space, 
time, and function of the central message path. This 
requires a number of functions to adapt the format 
(multiplex, serialize) of the variables supplied by the 
basic protocol to the message pat~ and vice versa. The 
sequencing of different variables over the same trans- 
mission path requires a mechanism to indicate the type 
and (in)validity of these variables. The introduction of 
the coded representation of the variables on the message 
path, discussed in the next paragraph, also makes these 
mechanisms necessary. Dependent on the choices made for 
the message path, such a mechanism can make use of hand- 
shaking, strobing, or enveloping techniques. The chance 
of message mutilation caused by the message path, often 
requires the introduction of message protection mechanisms 
These mechanisms can range from a simple parity check to 
complex methods such as cyclic redundancy check, buffe- 
ring, numbering and retransmission. 

The functions charged with these types of tasks form 
a layer, shielding the basic protocol from the message 
path. This layer is called Transfer in figure ]0. 

v FRAMETRANSMITTER;SPTR;SFLAG 
[I] WI:÷(~TRANS)/WI 
[2] SPTR+FLAGPTR,(CHECKBITS SFRAME),SFRAME,FLAGPTR 
[3] W2:+PSLV/W2 
[4] SFLAG÷((oSPTR)>24+pSRFAME)V(pSPTR)S8 
[5] PSL÷(O,-I÷SPTR)[SFLAGvSCNT~5] 
[61 SPTR÷(-SFLAGvSCNT~5)+SPTR 
[7] FRSEND÷O=pSPTR 
[8] SCNT÷PSL×SCNT+I 
[9] W3:+(FRSEND,PSLV,~PSLV)/WI.W2.W3 

? 
V X÷CHECKBITS Y;N 

[i] N÷pY 
[2] X÷16OI 

? FRAMERECEIVER;FINB;SUPR [3] L:N÷N-I 
[i] WI:+(~PRLV)/WI [4] X+I+(X,O)~POL^X[O]~y[N] 
[23 FINB÷RFLAG [5] +(N=O)/L 
[3] SUPR+(~PRL)^RCNT=5 [6] X÷~~X 
[4] RFLAG÷(~PRL)ARCNT=6 V 
[5] RCNT÷PRL×RCNT+I 
[6] RFRAME÷(SxRFLAG)+SUPR+PRL,(~FINB)/RFRAME ~ 
[7] FRDY÷RFLAG^pRFRAME~32 
[8] W2:+(FRDY,PRLV,~PRLV)/L,W2,WI 
[9] L:RFOKE÷^/(16÷RFRAME)=CHECKBITS 16÷RFRAME 
[101 W3:+(PRLV,~PRLV)/W3,WI 

V 

Figure 8: Transfer functions of $DLC [2]. 

The FRAMETRANSMITTER generates PSL and PSLV (see figure 7) from 
the varlabie S(ending)FRAME, that it receives from the £NCODER 
functTon, shown in figure 9. It indicates when the frame 
is transmitted (by FRSEND) etc. The FRAMERECEIVER assembles a 
variable R(ecelved)FRAME from PRL and PRLV (see figure 7), and 
presents this to the DECODER function of figure 9. The subfunction 
CHECKBIYS generates the cycilc redundancy checkbits, and is part 
of both the transmitter and receiver function. It is not an in- 
dividual automaton. 

4.5 Coding and decodin $. 

As mentioned under 3.4 ~ ,  the representation 
of the state of the automaton is free as long as we are 
in the architectural phase, and can be chosen to provide 
maximum clarity of specification. When the automaton is 
implemented, the implementer is free to represent the 
state of the variable by any suitable set of code ele- 
ments according to his criteria. Source and sink 
variables are internal to the individual architectureWs 

as are most of the variables contained in the basic pro- 
tocol and transfer functions. Their final representation 
is the implementer's decision. The situation is different 
however, for the variables that are exchanged via the 
message path. Usually an interface is designed to allow 
the implementation of each architecture by an independent 
group without requiring them to communicate with all 
other groups. When this is the case, the representation 
of the variables crossing the message path is public and 
must be settled by the interface designer. The variables 
are principally provided or accepted by or via the basic 
protocol, and are subjected to the transfer operations. 
Hence the functions performing the coding and decoding 
form a layer in between the (basic) protocol and the 
transfer, as shown in figure 10. The message path 
provides the code elements for the representation of the 
exchanged variables. 

V ENCODER;SAF;SCF;SIF 
[I] WI:+(~TRANS)/WI 
[2] SAF÷(So2)TIADD 
[3] SCF÷(8pg)T(16xFB)+(SNSI,SRQI,SROL,SNSA,SCMDR,SRR,SRNR,SREJ,SI)/ 

3 7 ~5 99 135 ,(I 5 9 ,2xSNS)+32xSNR 
[4] SIF÷(SCMDR/HELPFIELD),(SNSI/OUTNSI),SI/OUTI 
[5] SFRAME÷SIF,SCF,SAF 
[6] W2:÷((ENCODERDY÷TRANS),~TRANS)/W2,WI 

V 

V DECODER;RAF;RCF 
[i] WI:÷(~FRDYARFOKE)/WI 
[2] RAF÷-8÷RFRAME 
[3] RCF÷-8+-I6÷RFRAME 
[4] RIF÷-I6+RFRAME 
[51 MA÷(2~RAF)E(IADD,CADD) 
[6] PB+RCF[3] 
[7] INR÷2~RCF[O I 2] 
[ 8 ]  INS÷21RCF[4 5 6] 
[9] RVIF÷~RCF[7] 
[I01 ~S~÷3=2~RCFEo I 214 s 6 7] 
[I~] RSIM÷7=21RCF[O i 214 5 6 7] 
[12] RORP+I9=2iRCF[O I 214 5 6 7] 
[13] RDISC÷35=2±RCF[O 1 2 4 5 6 7] 
[14] RSNRM÷67=2±RCF[O I 2 4 5 6 7] 
[15] RRR÷I=2±RCF[4 5 6 7] 
[16] RRNR÷5=2~RCF[4 5 6 7] 
[17] RREJ÷9:2±RCF[4 5 6 7] 
[ 18 ]  W2:÷((DECODERDY÷FRDY).~PRDY)/W2.W1 

V 

F~gure 9: Encoding and Decoding f u n c t i o n s  o f  SDLC [ 2 ] .  

The £NCODER f u n c t i o n  genera tes  the v a r i a b l e  SFRAME from the 
v a r i a b l e s  p rov ided  by the p ro toco l  f u n c t i o n s  o f  SDLC. The DECODER 
f u n c t i o n  per forms the oppos i t e  o p e r a t i o n .  Both f u n c t i o n s  are l i n -  
ked to the t r a n s f e r  f u n c t i o n s  o f  f i g u r e  8. 

4.6 Protocol. 

The introduction of the central message path, the 
transfer layer, and the coding layer may affect the 
basic protocol functions. If so, these functions must be 
adapted to the communication facilities provided by this 
central part of the interface. This adaption predomi- 
nantly involves the introduction of sequencing functions, 
due to the time limitations of the message path. The 
adapted basic protocolfunctions thus form a layer, in 
figure 10 called Protocol, in between the source and 
sink layer and the coding and decoding layer. The 
protocol layer which is defined through this procedure 
contains the highest level of functions representing the 
substance of the relation of the architectures. In a 
standard Channel-to-I/0 interface, the interface is 
primarily concerned with the exchange of different 
classes of messages, such as commands, data, and status. 
The protocol layer in this type of interface controls 
such things as the setting up, maintenance and closing 
down of message transfers, as well as the interleaving 
of message transfers from different origins and their 
priorities in case of concurrency. In general few 
arithmetic and other data manipulation 
functions, are found in this type of interface. Other 
interfaces such as the Channel-Main Storage interface, 
or CPU-Main Storage interface, may contain in high 
degree of data manipulation and buffering functions. 
The CPU-Main Storage interface can be considered as 
including the definition of almost the entire CPU 
instruction set. 

102 



/ L o c a l  funct Ion~" / 

/'-.L" 

\ / 

/ 
i I / 

Figure i0: Layered structure for an interface 

4.7 Further development. 

The previous discussion of the structure of an 
interface suggests a sequence in the development of 
the layers, according to the sequence of the sections 
4.| through 4.6. This development is based on a 
strategy of successive definition. First the architec- 
ture of the total interface is determined~ and its 
partitioning and dispersion over the related architec- 
tures. Next the architecture of the central message path 
is determined, and finally the architectures of the 
individual relational functions. Though this procedure 
is a useful guideline, a practical application often 
requires a substantial number of iterations through 
this sequence, due to the high dependency among the 
layers. 

A further substructuring per layer may result in 
either the development of sublayers per layer (extended 
horizontal partitioning) or a partitioning of a layer 
into functions which are not or only slightly related 
(vertical partioning). The previous discussions have 
already used the vertical partitioning by interpreting 
each layer as a class of functions, and showing 
examples of such functions. Much is dependent on the 
possibility of defining a function first as an indepen- 
dent entity, and next of establishing the linkages to 
and from other functions. As is true for the vertical 
partitioning, the extended horizontal partitioning may 
also provide more clarity in the specification of the 
interface. The protocol function of figure 6 shows what 
type of operations may be sequenced. The way these 
operations are organized in detail can be specified in 
a lower protocol layer. Complex data transmission inter- 
faces may build up their transfer layer as a stack of 

</ C e n t r a ]  message p a t h  

Figure 11: The Interface from the perspective of architecture A. 

sublayers. Such a sublayer, and all that it encloses, 
may be interpreted as the central message path of the 
transfer layer that is just one level higher. An 
opposite development also occurs frequently: variables 
pass a layer unchanged, 

The structure so far developed for the interface 
is shown in figure |] from the perspective of an 
individual architecture. Each box in the figure repre- 
sents a function, that exists in parallel with the other 
functions and is related with them via the exchange of 
variables. This horizontal and vertical structuring is 
different from the structuring in which functions on a 
lower layer are used to implement an abstract machine 
on a higher laver [i0]. 

5. ~nat is a standard interface ? 

As stated~ a system can be understood as a collec" 
tion of interfaces (figure 5b) as well as a collection 
of architectures (figure 5a). This viewpoint is signifi- 
cant when an interface is defined first, and the asso- 
ciated architectures later. This happens with a so called 
standard interface. A standard interface, such as a 
Channel-to-I/0 interface, is always defined to meet many 
different architectures, e.g. printers, tape units, disc 
units, display devices, architectures that still have to 
be invented, etc. in different quantities and configura- 
tions. At the time of the definition of the standard, the 
current application area is known, and there is a rough 
estimate of the characteristics of future applications. 
Definition of a standard to include all current and 
future applications is not only impossible, it is also 
highly inappropriate since it loads anyparticular applica- 
tion with the overhead of a multiplicity of unused applica- 
tion functions. Instead the standard is defined to suit 
all requirements of current and future applications with- 
out containing the specific functions of individual 
applications. The standard is by definition incomplete. 
Consequently, when the standard is used in a particular 
application, each relational function has to be extended 
with application dependent functions. Those application 
dependent functions form yet another layer around the 
source and sink layer of the standard interface, and 
are designated 'Application' in figure 12a. 

~"." % . /  " X ~ ' . . ' \  L ~  ~" . . . . . . . .  ~ 

', \ t,, J / ,' --'t4, 
" " t 'n<e'aoe / 

Figure 12a: Application of a 
Standard Interface 

Figure 12ha Part i t ioning of the 
Application l a y e r .  

The consequence of this structure is that the 
variables exchanged among the application functions are 
unknown, i.e. transparent to the standard interface, and 
yet pass all layers and the message path. Since we want 
the function of the standard te remain invariant with 
each application, it implies that the standard has to 
provide for the space and time for the exchange of those 
variables. If on the level of the central message path 
the available space is to be defined in terms of avail- 
able code elements, the definition of the available space 
at the level of the source and sink functions has to be 
in terms of the same number of code elements, since the 
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coding of the variables is transparent with respect to 
the standard. The coded source in figure 3 is an example. 
Therefore, in using a standard interface in a particular 
application, the application dependent interface can be 
defined according to the procedure explained above. The 
standard interface is now embedded as a central message 
path with a high level of complexity. (See figure 12b). 

6. Application 

The structuring and description discipline has been 
succesful applied to a number of existing and proposed 
standard interfaces. Among these are a complex data trans- 
mission interface [2], two I/0 interfaces, one complex 
Channel-to-I/0 interface [I], and an instrumentation 
interface [4]. The relational function of the secondary 
station of SDLC [2] was for example described by 25 func- 
tions, each of an average complexity as shown in the 
figures 8 and 9. It contains 4 sources, 2 sinks, 
8 protocol, 2 decoding, 3 encoding, and 6 transfer func- 
tions. A formal specification was developed as far as 
the intentions of the interface architects were stated 
unambiguously. This specification was generally a frac- 
tion of the length of the original document. As part of 
the description process ambiguities and omissions in 
the original documents were systematically uncovered. 

The state description technique was introduced in 
an IEC (TC 66/WG 3) standardization activity in june 
1973 [4], and eventually accepted as the method to 
define the considered interface. In the opinion of the 
committee it has contributed much to the fact that the 
definition work was practically completed within 9 
months, that is May 1974 [5]. A structured and complete 
description of this interface can be found in [3]. 

7. Conclusion. 

The proposed design discipline facilities fast, 
correct, efficient and clear specification, inter- 
pretation, and judgement of an interface through the 
definition and its evaluation into a structured 
specification methodology. As such it can be profit for 
both interface designers and users: 
- The definition provides a better understanding, of 

what an interface substantially is: a specification 
of a portion of each of the related architectures 
(relational functions) and the architecture of the 
message path, defined to provide cooperation of the 
related architectures. It is not the story of the 
reporter, who is sitting on a grandstand, viewing the 
communication between the related architectures, 
observing, interpreting and logging what happens. It 
is the rules of the game according to which the teams 
play. 

- The architecture of each relational function and the 
message path is specified individually. For all these 
architectures one specification methodology and 
language should be used. Poor interface specification 
mixes relational functions and message path, as well 
as specification methodologies and languages. 

- The horizontal and vertical partitioning strategy for 
the specification of the relational functions facili- 
tates the recognition of the nature of functions of a 
particular application and their embedding in such a 
structure. It facilitates easier specification and 
recognition of quality and correctnes of the indivi- 
dual and compound functions. 
A standard interface is by definition incomplete. It 
can be interpreted as a complex central message path, 
that can be extended to a complete interface in a par- 
ticular application. 

- The method has proven to be applicable to a number of 
widely used interfaces. 
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