Theoretical Computer Science 66 (1989) 65-85 65
North-Holland

ON LC(0) GRAMMARS AND LANGUAGES

Rieks op den AKKER

Department of Computer Science, Twente University, P.O. Box 217, 7500 AE Enschede,
The Netherlands

Communicated by M. Harrison
Received March 1987
Revised November 1987

Abstract. Several definitions of the LR(k) grammars can be found in the literature. Since the
left-corner grammars can be defined as a restricted class of LR(k) grammars, there are also several
definitions of the LC(k) grammars. Two such definitions are compared. For the case k =0, these
definitions are not equivalent. A characterization of the LC(0) languages is given in terms of the
simple deterministic languages and these classes of languages are compared with other classes of
languages, such as the LL(1) languages and the LR(0) languages.

1. Introduction

Deterministic left-corner grammars or LC(k) grammars were formally defined
by Rosenkrantz and Lewis II [8]. These grammars are deterministically parsable by
a left-corner parsing strategy. In this strategy the productions applied at a node in
a derivation tree are recognized after the recognition of the left-corner of the
production, that is the left-most symbol of the right-hand side¢ of the production.
The original definition of LC (k) grammars is given in terms of left-most derivations.
This definition can also be found in Aho and Ullman [1].

Soisalon-Soininen and Ukkonen have defined LC(k) grammars as a restricted
class of LR(k) grammars [9, 10, 11]. Since there are several definitions of the LR(k)
grammars, there are also several possible definitions of the LC (k) grammars. Geller
and Harrison have given a survey of a number of different LR(k) definitions [4].
Special attention is paid to the case k =0. In this case the several variants of the
LR(k) definition discussed by Geller and Harrison differ. We consider two versions
of the LC (k) definition, one derived from the LR(k) definition proposed by Gelle
and Harrison [4] and one derived from the “augmented” LR(k) definition of Ahc
and Ullman [1]. We will give a characterization of the classes of LC(0) languages
in terms of simple deterministic languages [7].

It can be shown [2] that a slight modification of the original definition of LC(k)
grammars given in [8] is equivalent with the definition of LC(k) grammars from
[9, 10, 11].

0304-3975/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

66 R. op den Akker

This paper is organized as follows. The remainder of this section is devoted to
some preliminary definitions used in the other sections. In Section 2 we give the
definitions of the LR (k) grammars we consider in this paper and review the reievant
results from [4]. In Section 3 we define the LC(k) graimmars derived from the
LR(k) grammars and we study the relation between the two Cifferent definitions of
LC(k) grammars. In Section 4 we consider left-recursion in LR(0, grammars. Results
obtained here will be used in Section 5, where we give our main resuit: a characteriz-
ation of the LC(0) languages in terms of the simple deterministic languages of
Korenjak and Hopcroft [7]. Furthermore we consider the relations between the
class of LC(0) languages, the class of LL(1) languages, and the class of LR(0)
languages.

The notation we use for concepts of formal language theory is—uniess otherwise
stated—Ilike that in Harrison [5]. Context-free grammars are denoted by a four-tupie
(N, 2, P, S), where N and 2 are the set of nonterminai symbols and the set of
terminai symbois respectively. V wiii denote the set Nu 2.

The empty string is denoted by €. In derivations we use =, (=) to indicate that
the derivation is right-most (left-most). Let p denote a productionin P and a, B € V¥,
then a =} B denotes the one-step left-most derivation in which production p is
applied. If #=p,p,... p,, where the p;, (1<i=<n) indicate productions in P, then
a =>; B denotes the derivation

a=>a; =P a,=>- =P B, where a;€ V¥,
A production of the form A-¢ is called an e-production. A production with
left-hand side A is called an A-production.
A context-free grammar (cfg) G is called e-free if either G has no e-productions
or S->¢ is the only e-production and S does not occur in the right-hand side of

any production of G. A cfg G=(N, 2, P, S) is said to be in Greibach normal form
if each rule is of one of the forms

A-aB,...B,, A-a, S-e,

where B,,...,B,e N—-{S}, ae 2.

The length of the string a is denoted by |a|. For any nonnegative integer k, if
k<|a| then k:a denotes the prefix of a of length k. If k=|a| then k:a equals a.

With respect to a cfg G=(N, X, P, S), if ae V*, then L(a) denotes the set
(language) {w € =*|a =* w}. The language defined by G, denoted by L(G), is the
set L(S)={we I*|S=>* wl.

We call a language L< 3* degenerate if L= or L={e}. A context-free grammar
is unambiguous if for all x € L(G), there is exactly one left-most derivation in G.

A nonterminal Ae N is said to be left-recursive if there exists a € V* such that
A=>" Aa. A context-free grammar G is said to be left-recursive if there exists a
left-recursive nonterminal in N.

A cfg is said to be reduced iff for all X in V there is at least one derivation
S =* aXB =* w for some a, B in V* and w in I*. All context-free grammars we
will consider are reduced.

LC(0) grammars and languages 67

We will refer to the LL(1) grammars and to the simple deterministic grammars
of Korenjak and Hopcroft [7]. For convenience we recall the definitions of these
grammars.

Definition 1.1. Let k=0 and G=(N, 2, P, S) be a cfg. G is LL(k)-grammar if, for
each Ae N, a,8,ye V¥, wx,ye3I* if A>B and A- y are in P and
(1) S=F wAa =, wBa =F wx,
(ii) S=F wAa = wya =>F wy,
(iii) k:x=k:y,
then B=1.

Definition 1.2. A cfg G=(N, 2, P, S) is a simple deterministic grammar fif it is in
Greibach normal form and for each Ae N, a€ X and a,Bc V*, if A>aa and
A-ap are in P, then a =p. Moreover, if S- ¢ is a production of G then this is
the only production of G.

The simple deterministic grammars form a proper subclass of the LL(1) grammars.
The languages generated by simple deterministic grammars are the simple deter-
ministic languages. Notice that according to Definition 1.2 the language {e} is a
simple deterministic language, though it is not an s-language in the sense of [7].
Languages generated by LL(1) grammars without e-productions are simple deter-
ministic languages.

2. LR(k) grammars

In [4], Geller and Harrison have given an overview of the many definitions of
LR(k) grammars that can be found in the literature. Their definition of LR(k)
grammars is compared with other definitions of these grammars. Especially for
k =0, the definitions of these grammars are not equivalent. In this section, we give
the LR(k)-definition of Geller and Harnson and the LR(k)-definition of Aho and
Ullman [1]. This last class of grammars we will call the augmented LR (k) or A-LR(k)
grammars. The term “ LR(k) grammars” will denote the LR(k) grammars according
to the definition of Geller and Harrison. In this section we recall the results from
[4] that are relevant for our study of the LC(k) grammars and languages. We start
with the definition of LR(k) grammars from Geller and Harrison [4].

Definition 2.1. Let k=0 and G=(N, 3, P, S) be a context-free grammar such that
S=>! § is impossible in G. G is LR(k), if the conditions
(i) S=F aAw =, afw = yw,
(ii) S=2Fa'A'x=, a'B'x=yw',
(iii) k:w=k:w',
always imply that A» g =A'-> B’ and |aB|=]a’'B’l.

68 R. op den Akker

A production A- B of G satisfies the LR(k) condition if for that particular
production the conditions (i), (ii) and (iii) always imply that A~ 8 =A'> B’ and
laB|=|a'B.

We now give the definition of LR(k) grammars from Aho and Ullman [1). We
call these grammars A-LR(k) grammars.

Definition 2.2. Let k=0 and G=(N, X, P,S) be a context-free grammar. The
augmented grammar for G is G'=(N', 2, P', §'), where N'=Nu §’ and P'=Pu
{S'> S}, and where S’, a symbol not in V=N U Z, is the new start symbol.

Definition 2.3. G is said to be A-LR(k) (augmented LR(k)) if, in the augmented
grammar G’ for G, the conditions
(i) S'=F aAw=, aBw=yw,

(i) S'=*a’'A'x=>.a'B'x=yW',

(iii) k:w=k:w',
always imply that asA=a'A’ and x=w'.

A production A- B of G satisfies the A-LR(k) condition if for that particular
production the conditions (i), (ii) and (iii) always imply that aA=a'A’ and x = w".

Notice that the consequence of Definition 2.1 is equivalent with the consequence
aA=a'A' and x=w' of Definition 2.3.

LR(k) grammars are unambiguous (k =0). For a proof we refer to [5, Chapter
13]. In Geller and Harrison [4] it is shown that the classes of LR(k) and A-LR(k)
grammars are co-extensive for all k = 1. However the definition of A-LR(0) grammars
is more restrictive than the LR(0) definition. The following characterization of the
A-LR(0) grammars is given in [4].

Theorem 2.4. Let G=(N, 2, P,S) be a context-free grammar. G is an A-LR(0)

grammar if and only if G is an LR(0) grammar and S =, Sw is impossible in G for
any we 3™,

The context-free grammar G, given by the productions S- Sa and S a, is an
LR(0) grammar that is not A-LR(0).

In [4] it is also shown that the A-LR(0) languages are the strict deterministic
languages (i.e. the prefix-free deterministic context-free languages [5]). Since the
grammar G, above generates the language a*, which is not prefix-free, we know
that the class of A-LR(0) languages is properly contained in the class of LR(0)
languages.

In [4,5] an LR(0) language characterization theorem is given. In this theorem,
a string characterization, a machine characterization and a set-theoretic characteriz-
ation of the class of LR(0) languages is given. Since we only use the string
characterization and the set-theoretic characterization, we only give these in the
following theorem.

LC(0) grammars and languages 69

Theorem 2.5. Let L< 2*. The following three statements are equivalent.
(a) L is an LR(0) language.
(b) L is a deterministic context-free language and for all xe 3*, wye Z*, ifwe L,
wxe L and ye L, then yxe L.
(¢) There exist stric. deterministic languages L, and L,, such that L= L,L¥.

3. LC(k) grammars

Soisalon-Soininen and Ukkonen have defined LC(k) grammars in terms of
right-most derivations as a restricted class of A-LR(k) grammars [9, 10]. In fact
they define the class of predictive LR(k) grammars or PLR(k) grammars. The
LC(k) grammars are properly contained in the class of PLR(k) grammars. They
give a transformation that transforms a PLR(k) grammar, k>0, into an LL(k)
grammar for the same language. They show that, for any integer k>0, the trans-
formed grammar is LL(k) if and only if the original grammar is PLR(k). The
equivalence of the LC(k) languages and the LL(k) languages is proved in [9].
Soisalon-Soininen and Ukkonen augment the cfg with the start production S’ LS,
where L is a new terminal symbol, instead of the production S’ S. This is however
only relevant for the transformation they give, not for our discussion. We now give
the definition of left-corner grammars derived from the A-LR(k) definition.

Definition 3.1. Let G be a cfg, k=0. G is an A-LC (k) grammar if each e-production
satisfies the A-LR(k)-condition and if in the augmented grammar G’ for each
production A-> XB, XB #¢, if
(i) §'=F aAz, =, aXBz,=>F aXy,z,,
(ii) $'=F a'Bz,=>, a'a"Xyz,=>* a'a"Xy,z,,
(iii) a’'a"=a and k:y,z,=k:y,2,,
then kA=a’'B and B=1.

To illustrate this definition suppose that a =>* w, X =* x and consider the
terminal string wxy,z, (y, and z, as in Definition 3.1). The production A-> XB can
be recognized with certainty after scanning wx and k:y,z, if the grammar is A-LC (k).

If we derive the left-corner grammars from the LR(k) definition, we obtain the
following definition of the LC(k) grammars.

Definition 3.2. Let G be a cfg, k=0. G is an LC(k) gra~mmar if
(1) $=; S is impossible;
(2) each e-production satisfies the LR(k) condition; and
(3) for each production A-> XB, XB # ¢, the conditions
(i) S=F aAz, =, aXBz,=>F aXy,z,,
(ii) S=% a’Bz,=>, a'a"Xyz,=>F a'a"Xy,z,,
(iii) a'a”"=a and k:y,z,=k:y,2,
irmply that aA=a'B and B =1.

70 “R. op den Akker

For example the grammar given by the productions
(1) E-E+T (2) E-»T
(3) E->TXF 4 T->F
(5) F>FtP (6) F>P
(7) P>(E) (8) P»a

is both A-LC(1) and LC(1).

In [10] it is shown that an A-LC(k) grammar is an A-LR(k) grammar. In the
saine way it can be shown that an LC(k) grammar is an LR(k) grammar. Thus
LC(k) grammars and A-LC(k) grammars are unambiguous.

Theorem 3.3. For k>0, a context-free grammar G is an A-LC(k) grammar if and
only if G is an LC(k) grammar.

For a proof of this theorem see the Appendix.
Theorem 3.4. If G is an A-LC(0) grammar, then G is an LC(0) gram:mar.

Proof. Let G=(N, 3, P, S) be an A-LC(0) grammar. Suppose that G is not LC(0).
First suppose that G is not LC(0) because S =>; S is possible in G. Then for some
A€ N aad a € V¥, there is a production A- Sa in P, such that

b

S=FAD, Sa=FS (3.1)

is a derivation in the augmented grammar G’ of G. $'= S is also a derivation in
G'. 1t follows from this last derivation and derivation (3.1) that the productions
S’->S and A- Sa are the same. Since A€ N and S’'€ N this is not possible. Thus
S=>; § is not possible in G.

Suppose that G is not an LC(0) grammar because there is a production A->¢€ in
P which does not satisfy the LR(0) condition. Then this e-production does not
satisfy the A-LR(0) condition for the augmented grammar G'. This contradicts the
assumption that G is an A-LC(0) grammar.

Suppose that for some production A—> XB (XB # ¢) in P, the conditions (i), (ii)
and (iii) of Definition 3.2 are satisfied and either «A5 a’B or B # v. Then the
conditions (i), (ii) and (iii) of Definition 3.1 are also satisfied. Since aA # a’'B or
B # v, it follows then that G is not an A-LC(0) grammar. This however contradicts
the assumption. Thus clause (3) of Definition 3.2 is also satisfied if G is an A-LC(0)
grammar. We finally conclude that G is an LC(0) grammar. [

The inclusion of the class of A-LC(0) grammars in the class of LC(0) grammars
is proper, since grammar G, in Section 2 is an LC(0) grammar that is not A-LC(0).

LC(0) grammars and languages 71

The following theorem characterizes the A-LC(0) grammars in terms of the LC(0)
grammars. The theorem is analogous with Theorem 2.4.

Theorem 3.5. Let G=(N, X, P, S) be a context-free grammar. G is an A-LC(0)
grammar if and only if G is an LC(0) grammar and S =>; Sw is impossible in G for
any we 3™,

Proof. For the proof of the “only-if” part of the statement, assume that G=
(N, 2, P, S) is an A-LC(0) grammar. We already have by Theorem 3.4 that G is an
LC(0) grammar. Since G is an A-LR(0) grammar, it follows from Theorem 2.4 that
S=>! Sw is impossible in G for any we 3™,

For the proof of the “if” part of the statement, assume that G is an LC(0)
grammar, such that S =>; Sw is impossible in G for any we 3.

Suppose that G is not an A-LC(0) grammar. It is easy to see that if G has an
e-production, which does not satisfy the A-LR(0) condition, then this production
does not satisfy the LR(0) condition either.

Suppose that G is not an A-LC(0) grammai because there is a production A > X
in P, which is not an e-production, such that

S' =% aAz, =, aXBz, =>F aXy,z, 3.2)
and
S’ ﬁ:k a'322 = a'a”X‘YZz @:F a'a"Xy222 (3.3)

are derivations in the augmented grammar G', where aA # a’B or B # v, although
a'a"=a.

Suppose that X # S or a # &. Since each derivation in G’ starts with production
S’ S, it follows from derivations (3.2) and (3.3) that the following are derivations

in G

S ::-k aAZ, :r aXBZl ::k aXy, Z (3-4)
and
S :;k a’BZZ = a'a ”X‘YZZ @:k a’a"Xyzzz . (3-5)

Since a'a”"=a and aA# a’'B or B # v, it follows from derivations (3.4) and (3.5)
that G is not an LC(0) grammar. This, however, contradicts the assumption that
G is such a grammar.

Suppose that X =S and a =e¢. Then derivation (3.2) has the form

S' =% Az, =>, SBz, =7 Sy z,. (3.6)

Derivation (3.6) implies that S=>; Sy,z, is a derivation in G. Since G is unam-
biguous, we have that y,z,€ X*. However such a derivation was supposed to be
impessible in G.

We conclude that G is an A-LC(0) grammar. [J

72 R. op den Akker

An immediate consequence of Theorems 2.4 and 3.5 is the following.

Corollary. A context-free grammar G is an A-LC(0) grammar if and only if it is an
LC(0) grammar and an A-LR(0) grammar.

Consider the grammars G, and G; given by the productions below:

G,: S»bA G;: S~ Sala

S-bB S- bA|bB
A=>a A-c¢
B-b B-b.

G, is an A-LR(0) grammar, which is not LC(0). G; is an LR(0) grammar, which
is not LC(0) and not A-LR{(0). Grammar G,, given by the productions S - Sa and
S-a is an LC(0) grammar, which is not A-LC(0).

4. Left-recursion

Recall that a cfg G=(N, 2, P, S) is left-recursive if for some Ae N and some
a€ V*, A" Aa is a derivation in G. In general, the existence of such a derivation
in G does not imply that for some we £*, A=>] Aw is a derivation in G.

In this section, we consider left-recursion in subclasses of the LR(0) grammars.
LR(0) grammars may be left-recursive. Reduced strict deterministic grammars,
which are A-LR(0) grammars [4], are not left-recursive [5]). What can we say about
left-recursion in A-LC(0) grammars and LC(0) grammars?

Results obtained in this section will be used in the following section where we
give a characterization of the LC(0) languages.

The following concept is useful. (Recall that all our context-free grammars are
reduced.)

Definition 4.1. Let G=(N, 2, P, S) be a context-free grammar (V=NwuwJX). Let n
be an integer (n=1). Let A, A,,...,A, €N and a,,...,a,€ V*. If Ae N, then
an A-cycle is a derivation A=>7 Aa in G, where 7 is a sequence p,p,...p, of
distinct productions p;, where for all 1<i=<n, p, indicates the production A,_,->
Aia; € P, such that A= A;,= A,. We say that the nonterminals A; are on the A-cycle.

We call a context-free grammar G =(N, 3, P, S) strict left-recursive if G is left-
recursive and for all left-recursive Ae N if A= Aa (a € V¥*) is a derivation in G,
then this derivation has the form

AT Aa'=F Aa (a'e V#),

where A=>]" Aa’ is an A-cycle.

LC(0) grammars and languages 73

A strict left-recursive grammar G=(N, 3 P, S) has one or more A-cycles (for
some A€ N). For some nonterminal symbol A, a context-free grammar may have
more than one A-cycle. A nonterminal B may be more than once on the same
A-cycle. For example A is at least twice on any A-cycle.

By definition a strict left-recursive grammar is left-recursive. On the other hand,
there are left-recursive grammars, which are not strict left-recursive. For example
the grammar H given by the productions S BSa, S - b and B - ¢, is left-recursive
(since S =>" Sa is possible in H), although it is not strict left-recursive.

Theorem 4.2. If a context-free grammar G = (N, 2, P, S) is LR(0), then G is left-
recursive if and only if G is strict left-recursive.

Proof. It is by definition that a strict left-recursive gitammar is left-recursive.

Let G=(N, 2, P, S) be a reduced LR(0) grammar. Suppose that G is not strict
left-recursive, although G is left-recursive. Then for some left-recursive nonterminal
Ae N and some integer p=1, there are Ay, A;,...,A,€N, with Ap=A,=A,
v: € V¥, 8;€ N* notall equal €, such that for all i (1 <i< p) §, = e and productions
A;_;-> 8;A;y;. Let n; be the number of steps in the (unique) derivation §, =7 ¢
(1=isp).Let n=n,+n,+- - -+n,. Notice that n > 0, although some of the #; may
be zero.

Since G is unambiguous there exists u€ X7, such that y,... v, = u and

AF5,...5,Au (*)

is a derivation in G. From this derivation we will derive a contradiction in the
following way. Since G is reduced, for some xe 3*, A=¥ x is a derivation in G.
Suppose that this derivation has the following m steps.

A=wm=>wm-l=>wm-2=>' D =X, (**)
where w; € V* (1=<j=<m). Now, for some a € V* and we 3%,
S=F aAw =T axw (4.1)

is a derivation in G, of which the last m steps are those of (**). Let /=1 be an
integer such that IXn=m. Let t=1Ixn. t is the number of steps in the (unique)
derivation of € from the sequence (§,5,... 8,,)'. Let this derivation have the form

(8,...6,,)'=w;=>,m:_l =, D W =E, ()

where w!e V* (1<j=<t). The sequence (3, ...3,)" is generated in the following
derivation, in which derivation (*) is repeated / times.

S =F aAw =¥ ab, - - - =¥ 5,Auw =>F a (5, ... 8,)’ Au’w
=¥ .. % a(5,...5,) Au'w=>F a(8, ... 5,) xu'w=> axu'w. (4.2)
The last ¢ steps in this derivation are those of ().

Claim. If 1<is<m, then w; = 0.

74 R. op den Akker

Proof. First, we show that if 1<i<m, then w;=w}x;, for some x;€ 2*. Then we
will show that for all i, x; =e¢.

Assume, for the sake of contradiction, that for some i (1<i=<m) there is no
x, € 3*, such that o; = w!x;. Let j be the smallest integer such that there is no x;€ 3*
such that w; = @}x;. Notice that j > 1, since @, = x = ex = w}x. From derivation (*+*)
we may conclude that for all 2<i<1, w}e N™. Lei w;=yBz, 0;_, =Pz, 0;=y'B’,
w)_y,=y'B’ for some zeZ*, B,B'eN, y',p'e N* and ¢,8€ V*. The production
used in the right-most derivation of w;_, {«}_;) from w, (0}) is B> 3 (B'~>p’).
Derivations

S=>F aw;w = ayBzw =, alfzw = aw;_ W
and

S=>¥ awlxu'w = ay'B'xu'w =, ap'B'xu'w = aw)_,xu'w
are derivations in G. Since w,_, = w}_,X;_, for some x;_, € ¥, ayBzw = ay'B'x;_,w.
Since 0:x;_,w= 0:xu'w and since G is an LR(0) grammar, we know that 8 =g’,
B=B' and ¢y =¢'. Thus w;=¢Bz=y'B'z=w;z. This, however, contradicts our
assumption that there is no x;€ 2* such that w; = wjx;. Especially A= wmn = 0nXn.
This implies A= w,, and x,, =¢.

In order to show that for all i (1<i=<m) x; =¢, suppose that, for some i, x; # €.
Let j be the integer (1<j < m) such that x; # ¢ and if i > j, then x; = €. Consider the
derivations

S =} aAw =] aw; W=, aow
and '
S =¥ aAxu'w =} aw!, xu'w =, aw)xu'w

in G. Since w;;;=wj+ and wj, € N* in the last step of these derivations the
right-most symbol of w;,, is rewritten. Since w;=w)x; and O:xu'w=0:x;w, we
conclude from these derivations that aw;= aw;x; and thus x; =¢.

We conclude that, for all i, x; =¢. Especially x=¢. [

Proof of Theorem 4.2 (conclusion). Since A is derivable from &, ... 8, and since
A=>*g, it follows that G is ambiguous. We have derived a contradiction since G
is an LR(0) grammar and LR(0) grammars are unambiguous. [

Theorem 4.2 can be generalized: for all integers k=0, if a cfg G is LR(k), then
G is left-recursive if and only if G is strict left-recursive. This generalization can
be proved in essentially the same way. Notice that this result holds for LL(k)
grammars, LC(k) grammars and all other subclasses of the LR(k) grammars.

LC(0) grammars and A-LR(0) grammars may be left-recursive. The grammar G,
given by the productions

S - Aa, A~ Bb, B - Ab, A-¢

is A-LR(0) and not LC(0). The grammar G given by the productions
S- Aa, A- Bb, B-S, A->¢g

is LC(0) aind not A-LR(0).

LC(0) grammars and languages 75

Theorem 4.3. Let G be an LC(0)-grammar.
(a) If G has an A-cycle for some A€ N, then S is on this A-cycle.
(b) G has at most one S-cycle.

Proof. (a): Let n be a positive integer. Let Ay, A,,...,A,e Nand a,,..., a,€ V*.
Let G=(N, 2, P, S) have the A-cycle A=>[Aa. Let 7 be the sequence p,p,...p,
where, for all 1 < i< n, p, indicates the production A;_, > Aja; € Psuchthat A= A,=
A,. Suppose that S is not on this A-cycle. Since G is reduced, there is an integer
Jj (1=<j=n) such that A; occurs in the right-hand side of a production not equal to
production p;. Let this production be B->vy,A;y,, where Be N and y,, y,€ V*.
Then the derivations

S =¥ BBw, =, By Ajy.w =7 BriAmw, (4.3)
and
S =F BriAio W =, BiAjgw, = By, Ajvaw, (4.4)

are derivations in G. The first right sentential form of derivation (4.4) results from
the derivation

S =>:k B'YlAjvl Wy =>:-k ﬁ‘)’lAj—lwz-

Since 0:0,w,; = 0:v,w,, it follows from derivations (4.3) and (4.4) and clause (3) of
Definition 3.2 that the productions B - y,A;y, and A;_; > Aa; are the same. This
contradicts the assumption that they were not the same. We conclude that S is on
the A-cycle.

In order to prove (b), suppose that G has two distinct S-cycles. It is easy to show
that G does not satisfy clause (3) of Definition 3.2. [

Theorem 4.3 implies that each nonterminal (except for S) is at most once on the
S-cycle of an LC(0) grammar. Grammar G, above has an A-cycle and S is not on
this A-cycle. Therefore G, is not an LC(0) grammar. Gs satisfies propositions (a)
and (b) in Theorem 4.3.

Theorem 4.4. An A-LC(0) grammar is not left-recursive.

Proof. Let G=(N, 3, P, S) be an A-LC(0) grammar. From Theorem 3.5 it follov.s
that G has no S-cycle. Since G is an LC(0) grammar, we know from Theorem 4.3
that G is not strict left-recursive. From Theorem 4.2 it follows that G is not
left-recursive. [

Theorem 4.3 and 4.4 cannot be generalized to LC(k) grammars or A-LC(k)
grammars with arbitrary look-ahead. The grammar given after Definition 3.2 illus-
trates this.

76 R. op den Akker
5. LC(0) languages

For positive k, we know that the LC(k) languages and the A-LC(k) languages
are the LL(k) languages. In this section we first show that the A-LC(0) languages
are the simple deterministic languages of Korenjak and Hopcroft [7]. Then we give
a characterization of the LC(0) languages in terms of simple deterministic languages
and show that the LC(0) languages are properly contained in the LL(1) languages
and properly contain the class of simple deterministic languages.

Theorem 5.1. If G is a simple deterministic grammar, then G is an A-LC(0) grammar.

Proof. This is an immediate consequence of the definitions of simple deterministic
grammars and A-LC(C) grammars. [

Corollary. The class of simple deterministic languages is contained in the class of
A-LC(0) languages.

We now show that A-LC(0) languages are simple deterministic languages. A-
LC(0) grammars may have e-productions. For example, the grammar G, given by
the productions

S->AlaB, A-b, B-cs

is an A-LC(0) grammar. We will show that if an A-LC(0) grammar has an A-
production which is an e-production, tken this is the only A-production in the
grammar. Therefore we first give the following more general resuit.

Theorem 5.2. Let G=(N, 2, P, S) be an LR(0) grammar. Let Ac N and B,, B,€ V*.
If A- B, and A~ B,B, are distinct productions in P, then (i) B, =¢ and (ii) for some
Be N and 6 € V¥, B,= BS and (iii) G has an A-cycle.

Proof. Let A~> B, and A- B,B, be productions in P, where B,#¢. For scme
a, ye V* and some we 3%,

S=>F aAw =, afyw=yw _ (5.1)

is a derivation in G. The string B, is either an element of 2" or it contains at least
one ronterminal symbol.

In the former case let B8,=u for some ueX*. Then the following derivation
exists in G.

S =¥ aAw =, afuw = yw'. (5.2)

Since in derivations (5.1) and (5.2) 0:w =0:w', it follows from Definition 2.1 that
the productions A- 3, and A > 3,8, are the same. This contradicts the assumption
that B, is not the empty string.

LC(0) grammars and languages 77

We now consider the case that 8, = zB$, for some ze 3*, Be N and 8 € V*. Since
G is a reduced grammar, for some u, v, x, y € 2* and some production D~y in P,

S =% aAw =, af,zBéw =¥ ap,zBxw
=¥ aB,zoDuxw =, af, zvyuxw = yw" (5.3)

is a derivation in G. Hence the production D - y is the last production used in the
right-most derivation of the terminal string vyu from B. Since in derivations (5.1)
and (5.3) 0:w=0:w", we must conclude from Definition 2.1 that the productions
A- B, and D- y are the same and that @ = af,zv. This impliesthat y=8,=z=0v=
e. Hence, our two productions A- B, and A~ B,8, are of the form A->¢ and
A- Bé. Moreover, it follows from derivation (5.3) that there is an A-cyclein G. O

Since an A-LC(0) grammar is LR(0) (see Theorem 3.4) and not left-recursive
(see Theorem 4.4), it follows from Theorem 5.2 that if A- ¢ is a production in the
grammar then this is the only A-production. This implies that if S -> € is a production
of an A-LC(0) grammar then this is the only production of the grammar and thus
S does not occur in the right-hand side of a production. It can be shown that if
G=(N,Z,P,S) is an A-LC(0) grammar, then for all A€ N, if e L(A), and
L(A)={e}.

Theorem 5.3. Each A-LC(0) grammar is equivalent to an e-free A-LC(0) grammar.

Proof. Let G=(N, 3, P, S) be an A-LC(0) grammar. Then G has no A-cycle for
any A€ N (Theorem 4.4). Let A->¢ (A# S) be a production in P. Then there is no
other A-production in P (see our conclusion after the proof of Theorem 5.2). We
now transform G into a new grammar in the following way.

Remove the A-production from P. Remove all occurrences of the symbol A in
the right-hand side of the productions in P (i.e. substitute € for A whenever A
occurs in the right-hand side of a production). The resulting grammar G'=
(N', 2, P', S) obviously generates the same language as G does.

Notice that by this transformation new e-productions can be introduced. For
instance, if B~ A is a production in the original grammar, then the resulting grammar
has the production B - e. It is easy to verify that the resulting grammar is an A-LC(0)
grammar. Thus we can repeat the transformation until we have an A-LC (0) grammar
without e-productions. [1

Theorem 5.4. (a) If G is an e-free A-LC(0) grammar, then G is an LL(1) grammar.
(b) If G is an e-free LL(1) grammar, which does not have the production S-e,
then G is an A-LC(0) grammar.

Proof. (a): Let G=(N, 3, P, S) be an e-free A-1.C(0) grammar. Suppose that G is
not an LL(1) grammar. Then there exist distinct productions A~ «, and A > a; in
P such that, for some a< 3 and some y;, y,€ V¥,

A= o, 3? ay, and A=> s =>7k ay,

78 R. op den Akker

are derivations in G. These left-most derivations are supposed to be the shortest
derivations that derive a string with a as the first symbol. Since a,# a, these
derivations differ in at least one step. Let the distinct productions B,-> X, and
B, XB, in P, where X € N u{a} and B,, B.€ V*, be the productions used in the
last of the different steps of these derivations. Then

S:;k aAw =>:F aB,u,w =, aXB,u.w :?‘ aXZlu]w (5.4)
and
S =% aAw =¥ aByu,w =, aXBu,w =F aXzu,w (5.5)

are derivations in G. The B-productions may be equal to the distinguished A-
productions. Since 0:z,u,w = 0:2,u,w, it follows from derivations (5.4) and (5.5) and
Definition 3.1 that G is not an A-LC(0) grammar, contradicting our assumption.
We conclude that G is an LL(1) grammar.

(b): First, notice that the e-free LL(1) grammar with the productions S - ¢ and
S->a is not an A-LC(0) grammar. Thus the condition that G does not have
production S - ¢ is necessary. Assume that G is an e-free LL(1) grammar and that
S - ¢ is not a production of G. Let G’ be the augmented grammar of G. Suppose
that G is not an A-LC(0) grammar. Since G has no e-productions, this means that
for some A,Be N, a,a’,a”",B, ye V¥; Xe V and w,w'e I*,

S' =¥ aAw =, a Xpw (5.6)
and
S' =¥ a’'Bw' =, a'a"Xyw' 5.7)

are derivations in G’, such that oA # a'B or B # ¥, although a =a’'a”.

Now, let a =* u, X =% x, B=>% v and y=*y. Since G has no e-productions,
xe X" (if X € X then X = x). Because of ihe existence of derivations (5.6) and (5.7)
in G', we know that uxvw, ux;w’e L(Gj. In the leftmost derivation of uxvw the
production A- XB is used. Let this derivation have the form

S' =7 uAw = uXBw =7 uxvw, (5.8)

in which 7 denotes a sequence of productions of G'. Since G is LL(1) grammar,
the left-most derivation of uxyw’ has the form

S'=7 uAw =, uXPw =F uxyw'. (5.9)

It follows from derivation (5.7} that the producticn B- a"Xy is used in the
left-most derivation of uxyw’. Moreover, in this left-rnost derivation, " derives a
string u, € 3* such that u = u,u, for some u, € 2*. Since we have assumed that this
production is not the production A > X, there are two possibilities: either B> a" Xy
is used before or after the use of production A- X in (5.9). In the latter case a”
derives the empty string because u is already derived before this particular applica-
tion of production A > X in the left-most derivation. Since G is e-free this implies
that a”"=¢ and we must conclude that X is a lefi-recursive nonterminal. This,
however, contradicts the assumption that G is an LL(1) grammar. If the production

LC(0) grammars and languages 79

B-> a"XYy is used before the use of A~ X3 in (5.9) then it follows in the same way
that X is left-recursive and again we have a contradiction. We conclude tha: G is
an A-LC(0) grammar. O

Theorem 5.5. If L is an A-LC(0) language, then L is a simple deterministic language.

Proof. Let L be an A-LC(0) language. It follows from Theorem 5.3 that L has an
e-free A-LC(0) grammar G. Either L={e} or €€ L. In the first case L is simple
deterministic. In the second case it follows from Theorem 5.4(a) that G is an LL(1)
grammar without e-productions and thus L is a simple deterministic language. O

It follows from this last theorem and the Corollary of Theorem 5.1 that the class
of simple deterministic languages and the class of A-LC(0) languages are the same
class of languages.

We proceed with the characterization of the LC(0) languages. Recall that a
language L< 3* is degenerate if L=0 or L={e}.

Lemma 5.6. If L, and L, are simple deterministic languages, then L= L,L¥ is an
LC(0) language.

Proof. We first consider the special cise in which L,, L, or both are degenerate
languages. Suppose L, ={. Then L =0 and L is an LC(0) language. Suppose L,=0
or {e}. Then L= L, and since L, is a simrle deterministic language, L, is an A-LC(0)
language and thus an LC(0) ianguage.

We now treat the nondegenerate case. Since L, and L, are simple deterministic
languages, there exist simple deterministic grammars G,=(N,, £,, P,, S;) and
G,=(N,, 2,, P», S,), such that L,=L(G,) and L,= L(G,), with N;n N,=0.

Define G=(N,UN,, 3,Uu%,, PuP,u{S,~8S,S,}, S1).Clearly L(G)=L,L%.In
order to prove that G is an LC(0) grammar, suppose that it is not. Since G, is
simple deterministic and since S, does not derive the empty string in G,, §;=; S,
is not possible in G. Furthermore, there are no e-productions in G, since these
productions do not occur in G, and G,. This means that—since G is supposed to
be not an LC(0) grammar—there is a production A-> XB (XB #¢) of G and

S, =} aAz, =, a Xz, =¥ aXy,z, (5.10)
and
S, =>Fa'Bz,=. a'a"Xyz, =} a'a" Xy, 2, (5.11)

are derivations in G, such that A # a’B or B # v, although a’a” = a and (trivially)
0:y,z, =0:y,2,. Since the production S, - S, S, is the only production of G in which
S, occurs in the right-hand side (recall that G, and G, are grammars in Greibach
normal form), we know that A- X is not the production S, - S,S,. Since G, and
G, are simple deterministic grammars, we know that X € ¥ and that a”=¢. Thus
a =a’. It follows from the construction of grammar G from G, and G,, that if

80 R. op den Akker

A€ N,, then 1:a = S, (recall that 1:a denotes the first symbol of a). The same holds
for B in derivation (5.11), i.e. B€ N, if and only if 1:a’'=S,. Since a = a', either
A and B both in N, or both in N,. Suppose that A, BE N,. Let a =a’'=S§,8, for
some & € (2 u N,)*. It follows from the existence of the derivations (5.10) and (5.11)
in G that the following two derivations exist in G;:

S, =>F 8Aw, =, 5XBw, =7 6Xy,w;, (5.12)
S2 =>:.F 8BW2 =>r SX'YWZ :? 8Xy2w2 . (5.13)

where w,=u,z, and w,=u,z, for some u,, u,€ Z*. Since B # y, it follows from
derivations (5.12) and (5.13) that G, is not an LC(0) grammar. It follows however
by Theorem 3.4 and Theorem 5.1 and the assumption that G, is a simple deterministic
grammar, that G, is an LC(0) grammar. Thus we have a contradiction.

Suppose that A, Be N;. In the same way, we can construct derivations in G,
from derivations (5.10) and (5.11) and show that G, is not an LC(0) grammax,
contradicting the assumption that G, is a simple deterministic grammar and an
LC(0) grammar. We finally conclude that G is an LC(0) grammar. []

Lemma 5.7. If L is an LC(0) language then L can be written as L,L¥, where L, and
L, are simple deterministic languages.

Proof. Let G=(N, 2, P, S) be a reduced LC(0) grammar for L. Suppose that G
has not an S-cycle. Then, by Theorem 3.5, G is an A-LC(0) grammar and by
Theorem 5.5, L is a simple deterministic language. Then L =L, L%}, with L,=L and
L,={e}.

Suppose that G has an S-cycle. By Theorem 4.3, G has only one S-cycle. Let
this S-cycle be S=/° Sa, where wo=p,p:...p,, With p,e P for all i, 1<is<n,
denotes the production A;_,»> A¢;, a =t ... a, and Ag=S = A,.

Consider the left-most derivations of sentences of L. They have the form § =] z,
where @ = moa’, for some integer =0 and some 7’ such that m, is not a prefix of
w'. Let L’ be the set {u|S=]" u, for some 7' such that = is not a prefix of #'}.
Clearly L= L'(L(a))*. We will now show that L' and L(a) are both simple deter-
ministic languages.

Let P, be the set of productions P—{A,_, > A,a,}. Let Gs =(N, 3, P,, S). Clearly
Gs is an LC(0) grammar. Since S =>]° Sa is not a derivation in Gs and since this
is the only S-cycle in G, S =>* Sw is impossible in Gg, for any we 3*. It follows
from Theorem 3.5 that Gs is an A-LC(0) grammar. Thus L(Gs) is a simple
deterministic language.

L’= L(Gs). To show this, we need the following claim.

Claim A. Let P denote the set of productions P —{ PisP2s..-spn} Foralli(1<i<n),
A, does not occur in a and not in the right-hand side of any production in P.

Proof. Suppose that there are i,j (1<i,j<n), such that A; occurs in a;. Then

LC(0) grammars and languages 81

a; = 6A;y for some &, ye V*. Furthermore,

S=>F AL w =, AiBAyw =} ABAizw (5.14)
and
S=F AL ,w=, AiBAyw =F AdA;zw

=¥ ABA;_ uzw =, ApAauzw =F A5Avuzw (5.15)

are derivations in G. Since G is an LC(0) grammar, it follows from derivations
(5.14) and (5.15) that A;d =e. This is impossible. We.conclude that there is no
occurrence of A; in a.

We now prove the second part of Claim A. Suppose that, for some Be N, 8,y V*
and 1<j<n, B> 8A;y is a production in P. Then

S =} aBw =, abAjyw =>F adA;zw (5.16)
and
S =} aBw =, abAjyw =} adA;zw

=7 adA;_uzw =, adAjauzw =} adApuzw (5.17)

are derivations in G. Since G is an LC(0) grammar, we conclude from derivations
(5.16) and (5.17) that A;_,-> A;a; = B-> §A;y. This is impossible, since the first one
is in P and the second one is not in P. We conclude that the A; do not occur in
the right-hand side of a production in . [

We now show that L' = L(Gs). Let u € L'. From Claim A, it follows that production
A,_,~> A,a, is not used in the derivation of u. Thus u € L(Gs). On the other hand,
let ue L(Gs). Then there is a derivation S =7 u in G, and , is not a prefix of 7.
Thus ue L'. Since L'= L(Gs) and L(Gs) is a simple deterministic language, L' is
a simple deterministic language.

Claim B. Forall Ae N, if A occurs in a, then L;(A) is a simple deterministic language.

Proof. Let P denote the same set as in Claim A. Let Ae N occur in a. Consider
the context-free grammar G, =(N, 3, P, A). In the same way as is done for Gs
above, it can be shown that G, is an A-LC(0) grammar. Thus L(G,) is a simple
deterministic language.

We now prove that L5(A)= L(G,). Let ue L;(A). Suppose that for some j
(1=<j=n) the production A;_,- A;; is used in the derivation of u from A in G.
This contradicts Claim A. Thus ue€ L(G,).

On the other hand, since P < P, it follows that L(G,) < Lg(A).

We conclude that L;(A) is a simple deterministic language. [

Since the simple deterministic languages are closed under product [7], it follows
from Claim B, that L(a) is a simple deterministic language. With L,== L' and
L,=L(a), L=L,L¥. O

82 R. op den Akker

From Lemmas 5.6 and 5.7, the following characterization theorem for LC(0)
languages is obtained.

Theorem 5.8. A context-free language L is an LC(0) language if and only if there
are simple deterministic languages L, and L,, such that L= L,L5.

Let £.=L,L} be a nonempty LR(0) language, where L, and L, are strict deter-
ministic languages. The Unique Factorization Theorem for LR(0) languages (cf.
[4] or [5, p. 524)) says: If there are two strict deterministic languages L} and L; such
that L= L\(L})*, then L,= L} and either

(i) Ly=L3, or

(ii) L,, L) are degenerate.

Now let L= L,L¥ be a nonempty LC(0) language, where L, and L, are simple
deterministic languages. Simple deterministic languages are strict deterministic [5].
Since LC(0) languages are LR(0) languages, the factorization of L is unique. If we
read “simple” instead of “strict” in the Unique Factorization Theorem for LR(0)
languages, we obtain the Unique Factorization Theorem for LC(0) languages.

Since LC(0) grammars are LC(1), and since LC(1) languages are exactly the
LL(1) languages [9], we know that the LC(0) languages are contained in the class
of LL(1) languages. This inclusion is proper. To see this, consider the language
L, =a*b*. L, = L(G,), where G, is given by the productions

S - as, S bA, S, A- bA, A-eg.

Since G, is an LL(1) grammar, L, is an LL(1) language.

We show that L, is not an LR(0)-language. Therefore we use the following string
characterization of LR(0) languages from [4] (see also Theorem 2.5). If Lc 3¥* is
an LR(0)-language, then for all xe I*, w,ye 3* if we L, wxe L and ye L, then
yx € L. Suppose that L, is an LR(0)-language. Since a", a"a™ and b* are elements
of L,, it follows from the string characterization of LR(0) languages that b*a™ is
an element of L,. This is however not the case. Thus L, is not an LR(0)-language.

The intersection of the class of LC(0)-languages and the class of strict determinis-
tic languages (or prefix-free deterministic languages) is the class of simple determinis-
tic languages. To see this, let L be a strict deterministic language, which is not
simple. Suppose that L is an LC(0)-language. Then there exist nondegenerate simple
deterministic languages L, and L,, such that L= L,L¥. This however implies that
L is not a prefix-free language. (This result follows also immediately from the
Corollary in Section 3.)

The relations between the classes of languages considered here are depicted in
Fiz. 1. L, ={a"(bd + b+ c)"$|n=1}. This language is a prefix-free LL(1) language,
which is not simple deterministic (cf. [6]). L. ={a"b", a"c"|n = 1}. This language is
a strict deterministic language which is not LL. (cf. [3] for a proof that L. is not
an LL-language) L, = L,{a}*. Since L, is a strict but not simple deterministic
language, L, is an LR(0) language, which is not LC(0). It is easy to verify that L,

LC(0) grammars and languages 83

LL(1)

LR(0)

LC©O) Ly
A-LC(0) A-LR(0)

Fig. 1. Comparison of classes of languages.

is an LL(1)-language. L, = L.{a}*. This language is LR(0), not strict deterministic
and not an LL-language.

Appendix

Proof of Theorem 3.3. We first prove the “only-if” part of the statement. Let
G=(N, 2, P, S) be an A-LC(k) grammar for some k> 0. Let G’ be the augmented
grammar of G. Suppose that G is not an LC(k) grammar. We first assume that G
is not an LC(k) grammar, because $=>; S is a derivation in G. Then for some
Ae N and ae V*, A- Sa is a production in G, such that

S'=TA, Sa=>FS

is a derivation in G'. Since $'=>, S is also a derivation in G’, it follows from the
definition of A-LC(k) grammars that the productions A-> Sa and S’ S are the
same. This is iripossible and thus S=>; S is not a derivation in G.

Assume that G is not an LC(k) grammar, because there is an e-production A ¢,
which does not satisfy the LR(k) condition. Then

S aAw =, aw=yw (A1)
and

S=¥a'A'x=>,a'B'x=yw' (A.2)
are derivations in G such that A # a’A’ or x # w', although k:w=k:w'. It follows

from the construction of G’ that

S' =¥ aAw =, aw=yw (A.3)
and
S'=Fa'Ax=,a'B'x=yw (A4)

are derivations in G’ such that k:w=k:w'. Since aA# a'A’ or x # w', it follows
from derivations (A.3) and (A.4) that the production A-¢ does not satisfy the

84 R. op den Akker

A-LR(k) condition. Thus G is not an A-LC (k) grammar. This, however, contradicts
our assumption. We conclude that each e-production of G satisfies the LR(k)-
condition.

Finally, suppose that there is a production A - X, with XB # ¢ in P, such that
clause (3) of Definition 3.2 is not satisfied. Then there are derivations

S ﬁ:-k aAZ| = aXﬁzl =>:F aXy,z, (A.S)
and
S=>¥a'Bz,=>. a'a"Xyz, =¥ a'a"Xy,z, (A.6)

in G such that aA# a'B or B # v, although a’'a”"=a and k:y,z,=k:y,2z,. This
implies that there are derivations

S'=F aAz, =, aXpz, =>F aXy,z, (A.7)
and
S'=¥ a'Bz; =, a'a"Xyz,=>F a'a"Xy,z, (A.8)

in G' such that aA# a’'B or B # v, although a'a"=a and k:y,z,=k:y,z,. This
implies that G is not an A-LC(k) grammar, contradicting the assumption that G
is such a grammar. We conclude that G is an LC(k) grammar.

We now prove the “if”’ part of the statement. Let G be an LC(k) grammar. First,
suppose that G is not an A-LC(k) grammar because there is an s-production, which
does not satisfy the A-LR(k)-condition. Then (A.3) and (A.4) are derivations in
G’ such that aA# a'A’ and x # w', although k:w = k:w'. Since every derivation in
G’ starts with the production S’ §, this implies that (A.1) and (A.2) are derivations
in G such that k:w=k:w'. Since aA# a’A’ or x # w’, it follows from derivations
(A.1) and (A.2) that the production A- ¢ does not satisfy the LR(k) condition.
Thus G is not an LC(k) grammar. This contradicts the assumption that G is such
a grammar. We conclude that all e-productions of G satisfy the A-LR(k)-condition.

Finally, suppose that G is not an A-LC(k) grammar, because there is a production
A- XB, and (A.7) and (A.8) are derivations in G' such that aA#a’'B or B# y,
although a’a”"=a and k:y,z, = k:y,z,. Assume both A, B# S’. Then (A.5) and (A.6)
are derivations in G, a’'a"=a and k:y,z,=k:y,z,. Since aA# a'B or B # v, this
implies that G is not an LC(k) grammar. This contradicts the assumption that G
is an LC(k) grammar. Assume that A= S’. Then the production A-> X equals the
production S'-> S and derivation (A.7) has the form

S'=. 8. (A9)
Since ir this case @ = a’a”=¢, derivation (A.8) has the form
S’ ::-k JBZZ =, S‘)’Zz ::—k Syzzz. (A.IO)

Since y,z, from derivation (A.7) equals ¢ in derivation (A.9), it follows from
k:y1zy=k:y,z, that in derivation (A.10) y,z,=¢ (notice that the condition k # 0 is
essential here). Since the production B- Sy is not the production S’ S, it follows
from derivation (A.10) that S =} B=>, Sy =>* § is a derivation in G. This implies

LC(0) grammars and languages 85

that G is ambigueug, contradicting the assumption that G is an LC (k) grammar.
In the same way, the assumption that B = S’ leads to a contradiction. We conclude
that G is an A-LC(k) grammar. [

Acknowledgment

The author wishes to thank Anton Nijholt (Vrije Universiteit, Brussels) for useful
suggestions and both referees for pointing out some mistakes and obscure parts in
the manuscript.

References

[1] A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation and Compiling, Vol. 1: Parsing
(Prentice-Hall, Englewood Cliffs, NJ, 1972).

[2] H.J.A. op den Akker, A left-corner property for context-free grammars, Memorandum INF-86-8,
Dept. of Computer Science, Twente University, Enschede, The Netherlands, 1986.

[3] J.C. Beatty, Two iteration theorems for the LL(k) languages, Theoret. Comput. Sci. 12 (1980) 193-228.

[4] M.M. Geller and M.A. Harrison, On LR(k) grammars and languages, Theoret. Comput. Sci.4 (1977)
245-276.

[5]1 M.A. Harrison, Introduction to Formal Language Theory (Addison-Wesley, Reading, MA, 1978).

[6] K.N. King, Iteration theorems for families of strict deterministic languages, Theoret. Comput. Sci.
10 (1980) 317-333.

[7] A.J. Korenjak and J.E. Hopcroft, Simple deterministic grammars, in: Conf. Record 7th Ann. Symp.
on Switching and Automata Theory (1966) 36-46.

[81 D.J. Rosenkrantz and P.M. Lewis II, Deterministic left corner parsing, in: IEEE Conf. Record 11th
Ann. Symp. on Switching and Automata Theory (1970) 139-152.

[9] E. Soisalon-Soininen, Characterization of LL(k) languages by restricted LR(k} grammars, Dept.
of Computer Science, University of Helsinki, Helsinki, Report A-1977-3, 1977.

[10] E. Soisalon-Soininen and E. Ukkonen, A characterization of LL(k) languages, in: S. Michaelson
and R. Milner, eds., Automata, Languages and Programming (Edinburgh University Press, Edin-
burgh, 1976) 20-30.

[11] E. Soisalon-Soininen and E. Ukkonen, A n:~:hod for transforming grammars inte LL(k) form, Acta
Inform. 12 (1979) 339-369.

