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Abstract. Several definitions of the U(R) grammars can be found in the literature. Since the 
left-corner grammars can be defined as a restricted class of LR( k) grammars, there are also several 
definitions of the LC( k) grammars. Two such definitions are compared. For the case k = 0, these 
definitions are not equivalent. A characterization of the K(O) languages is given in terms of the 
simple deterministic languages and these classes of languages are compared with other classes of 
languages, such as the U(1) languages and the U?(O) languages. 

1. Introduction 

Deterministic left-corner grammars or K(k) grammars were formally defined 
by Rosenkrantz and Lewis II [S]. These grammars are deterministically parsable by 
a left-corner parsing strategy. In this strategy the productions applied at a node in 
a derivation tree are recognized after the recognition of the left-corner of the 
production, that is the left-most symbol of the right-hand side of the production. 
The original definition of LC( k) grammars is given in terms of left-most derivations. 
This definition can also be found in Aho and Ullman [l]. 

Soisalon-Soininen and Ukkonen have defined K(k) grammars as a restricted 
class of LR( k) grammars [9,10,11]. Since there are several definitions of the LB(k) 
grammars, there are also several possible definitions of the LC( k) grammars. Geller 
and Harrison have given a survey of a number of different M(k) definitions [4]. 
Special attention is paid to the case k = 0. In this case the several variants of the 
LR( k) definition discussed by Geller and Harrison differ. We consider two versions 
of the LC( k) definition, one derived from the LR( k) definition proposed by Gelle - 

and Harrison [4] and one derived from the “augmented” LR(k) definition of Ahc 
and Ullman [ 11. We will give a characterization of the classes of LC(0) languages 
in terms of simple deterministic languages [7]. 

It can be shown [2] that a slight modification of the original definition of LC( k) 
grammars given in [8] is equivalent with the definition of LC(k) grammars from 
[9, 10, 111. 
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‘~‘his paper is organized as follows. The remainder of this section is devoted to 
some preliminary definitions used in the other sections. In Section 2 we give the 
definitions of the LR( k) grammars we consider in this paper and review the relevant 
results from [4]. In Section 3 we define the LC(k) grafhlmars derived from the 
LR( k) grammars and we study the relation between the two 6fFerent definitions of 
LC( k) grammars. In Section 4 we consider left-recursion in LR(G, c;rammars. Results 
obtained here will be used in Section 5, where we give our main result: a characteriz- 
ation of the LC(0) languages in terms of the simple deterministic languages of 
Korenjak and Hopcroft [7]. Furthermore we consider the relations between the 
class of LC(0) languages, the class of LL( 1) languages, and the class of LR (0) 
languages. 

The notation we use for concepts of formal language theory is-unless otherwise 
stated-like that in Harrison [SJ. Context-free grammars are denoted by a four-tuple 
(N, 2, P, S), where N and C are the set of nonterminal symbols and the set of 
terminal symbols respectively. V will denote the set N u C. 

The empty string is denoted by e. In derivations we use =J, (3,) to indicate that 
the derivation is right-most (left-most). Let p denote a production in P and cy, p E V*; 
then ar “7 p denotes the one-step left-most derivation in which production p is 
applied. If T = p1 p2 . . . p,,, where the pi (1 s i s n) indicate productions in P, then 
(Y “T p denotes the derivation 

~~*~Icz~~~~cY~+**~=$~P, where aiEV*. 

A production of the form A + E is called an ~-production. A production with 
left-hand side A is called an A-production. 

A context-free grammar (cfg) G is called e-free if either G has no e-productions 
or S+ E is the only e-production and S does not occur in the right-hand side of 
any production of G. A cfg G = (N, 2, P, S) is said to be in Greibach normal form 
if each rule is of one of the forms 

A+aB,...B,, A+a, S+E, 

where BI,..., B,E N-(S), aeC. 
The length of the string cu is denoted by ]a)). For any nonnegative integer k, if 

k<(Ly( then k* .Q! denotes the prejx of a! of length k. If k 2 Ial then k: a! equals Q. 
With respect to a cfg G = (N, C, P, S), if a! E V*, then L(a[) denotes the set 

(language) (w E C* 1 Q! ** w}. The language defined by G, denoted by L(G), is the 
set L(S)={wEX*IS** 147). 

We call a language L c C* degenerate if L = 0 or L = {E). A context-free grammar 
is unambiguous if for all x E L(G), there is exactly one left-most derivation in G. 

A nonterminal A E N is said to be left-recursive if there exists a! E V* such that 
A ++ Aac. A context-free grammar G is said to be left-recursive if there exists a 
left-recursive nonterminal in N 

A cfg is said to be reduced iff for all X in V there is at least one derivation 
S a* CWXP +* w for some LY, p in V* and w in C*. All context-free grammars we 
will consider are reduced. 
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We will refer to the LL( 1) grammars and to the simple deterministic grammars 
of Korenjak and Hopcroft [7]. For convenience we recall the definitions of these 
grammars. 

Definition 1.1. Let k 3 0 and G = (N, 2, P, S) be a cfg. G is LL( k)-grammar if, for 
each A E N, q&y E V*, w,x,y E Z*, if A+ p and A+ y are in P and 

(i) S+;” wAa! =$, w@ +f wx, 
(ii) S +F wAa! +I wya! *T wy, 

(iii) k:x = k:y, 
then p = y. 

Definition 1.2. A cfg G = (N, 2, P, S) is a simple deterministic grammar if it is in 
Greibach normal form and for each A E N, a E C and cy, p E V*, if A + aa! and 
A + afi are in P, then CY = @. Moreoyer, if S + E is a production of G then this is 
the only production of G. 

The simple deterministic grammars form a proper subclass of the LL( 1) grammars. 
The languages generated by simple deterministic grammars are the simple deter- 
ministic languages. Notice that according to Definition 1.2 the language {E} is a 
simple deterministic language, though it is not an s-language in the sense of [7]. 
Languages generated by LL( 1) grammars without E-productions are simple deter- 
ministic languages. 

2. U?(k) geammars 

In [4], Geller and Harrison have given an overview of the many definitions of 
LR(k) grammars that can be found in the literature. Their definition of LR( k) 
grammars is compared with other definitions of these grammars. Especially for 
k = 0, the definitions of these grammars are not equivalent. In this section, we give 
the LR(k)-definition of Geller and Harrison and the LR(k)-definition of Aho and 
Ullman [ 11. This last class of grammars we will call the augmented LR( k) or A-LR( k) 
grammars. The term “LR( k) grammars” will denote the LR( k) grammars according 
to the definition of Geller and Harrison. In this section we recall the results from 
[4] that are relevant for our study of the LC(k) grammars and languages. We start 
with the definition of LR( k) grammars from Geller and Harrison [4]. 

Definition 2.1. Let k 2 0 and G = (N, Z, P, S) be a context-free grammar such that 
S +F S is impossible in G. G is LR( k), if the conditions 

(i) S 3; cvAw =s~ ar/?w = yw, 
(ii) S a: CY’A’X + @‘x = yw’, 

(iii) k: w = k: w’, 
always imply that A+ p = A’+ p’ and laPI= Icx’J~‘~. 
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A production A + P of G satisfies the LR( k) condition if for that particular 
production the conditions (i), (ii) and (iii) always imply that A + p = A’+ p’ and 

laPI = I0’I* 

We now give the definition of LR(R) grammars from Aho and Ullman [I]. We 
call these grammars A-LR( k) grammars. 

Definition 2.2. Let k 3 0 and G = (N, 2, P, S) be a context-free grammar. The 
augmented grammar for G is G’= (N’, 2, P’, S’), where N’= N v S’ and P’= Pv 
{S’+ S}, and where S’, a symbol not in V = N u 2, is the new start symbol. 

Definition 2.3. G is said to be A-LR( k) (augmented LR( k)) if, in the augmented 
grammar G’ for G, the conditions 

(i) S’+! cvAw + Cwpw = yw, 
(ii) S’ *F CY’A’X + cy ‘fl’x = yw’, 

(iii) k: w = k: w’, 
always imply that cwA = &A’ and x = w’. 

A production A+ p of G satisfies the A-LR( k) condition if for that particular 
production the conditions (i), (ii) and (iii) always imply that cuA = CY’A’ and x = w’. 

Notice that the consequence of Definition 2.1 is equivalent with the consequence 
cwA = a’A’ and x = w’ of Definition 2.3. 

LR(k) grammars are unambiguous (k >O). For a proof we refer to [5, Chapter 
13). Pn Geller and Harrison 143 it is shown that the classes of LR(k) and A-LR(k) 
grammars are co-extensive for all k 2 1. However the definition of A-LR(0) grammars 
is more restrictive than the LR(0) definition. The following characterization of the 
A-LR (0) grammars is given in [4]. 

Theorem 2.4. Let G = (N, 2, P, S) be a context-free grammar. G is an A-LR(0) 
grammar if and only if G is an LR(0) grammar and S +,’ SW is impossible in G for 
any wEC+. 

The context-free grammar G1 given by the productions S + Sa and S + a, is an 
LR(0) grammar that is not A-LR(0). 

In [4] it is also shown that the A-LR(0) languages are the strict deterministic 
languages (i.e. the prefix-free deterministic context-free languages [ 5)). Since the 
grammar G1 above generates the language a+, which is not prefix-free, we know 
that the class of A-LR(0) languages is properly contained in the class of LR(O) 
languages. 

In [4,5] an LR(0) language characterization theorem is given. In this theorem, 
a string characterization, a machine characterization and a set-theoretic characteriz- 
ation of the class of LR(0) languages is given. Since we only use the string 
characterization and the set-theoretic characterization, we only give these in the 
following theorem. 
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Theorem 2.5. Let L E C*. The following three statements are equivalent. 
(a) L is an LR(0) language. 
(b) L is a deterministic context-free language and for all x E Z+, w,y E C*, if w E L, 

wxELandyEL, thenyxEL. 
(4) There exist stric: deterministic languages Lo and L,, such that L = L,LT. 

3. M(R) grammars 

Soisalon-Soininen and Ukkonen have defined LC(k) grammars in terms of 
right-most derivations as a restricted class of A-LR(k) grammars 19, lo]. In fact 
they define the class of predictive LR(k) grammars or l?LR(k) grammars. The 
LC( k) grammars are properly contained in the class of PLR( k) grammars. They 
give a transformation that transforms a PLR( k) grammar, k > 0, into an LL( k) 
grammar for the same language. They show that, for any integer k>O, the trans- 
formed grammar is LL( k) if and only if the original grammar is PLR(k). The 
equivalence of the LC(k) languages and the LL(k) languages is proved in 191. 
Soisalon-Soininen and Ukkonen augment the cfg with the start production S’+ IS, 
where I is a new terminal symbol, instead of the production S’+ S. This is however 
only relevant for the transformation they give, not for our discussion. We now give 
the definition of left-corner grammars derived from the A-LR( k) definition. 

Definition 3.1. Let G be a cfg, k a 0. G is an A-LC( k) grammar if each E-production 
satisfies the A-LR(k)-condition and if in the augmented grammar G’ for each 
production A + Xp, Xp # E, if 

(i) S’*F aAzl =j, CWXPZ, +F aXy*z, , 
(ii) S’+,” &Bzz+ cy’~y”Xyz~~~ a’a”Xy2z2, 
. . . 

( ) 111 afaN= a and k:yIzl = k:y2z2, 
then cuA = a’B and p = ‘y. 

To illustrate this definition suppose that a! +* w, X a* x and consider the 
terminal string wxyIzl (yl and z1 as in Definition 3.1). The production A + Xp can 
be recognized with certainty after scanning wx and k: ylzl if the grammar is A-LC( k). 

If we derive the left-corner grammars from the LR( k) definition, we obtain the 
following definition of the LC(k) grammars. 

Definition 3.2. Let G be a cfg, k 2 0. G is an LC(k) grammar if 
(1) S +r S is impossible; 
(2) each &-production satisfies the LR( k) condition; and 
(3) for each production A + Xp, Xp # E, the conditions 

(i) S *F aAzl + aXpz, +F cuXy, z, , 
(ii) S +F at’Bzt =$, a’anXyzq +! ~~‘a”Xy~z~, 
. . . 

( ) 111 ah”= a and k:y,z, = k:y2z2 
ir;ipfy that aA = cw’B and p = y. 



70 R. op den Akker 

For example the grammar given by the productions 

(1) E+E+T (2) E+T 

(3) E+TxF (4) T+F 

(5) F-,FTP (6) F+P 

(7) P’(E) (8) P+a 

is both A-LC( 1) and LC(1). 
In [lo] it is shown that an A-LC(k) grammar is an A-LR( k) grammar. In the 

same way it can be shown that an LC(k) grammar is an LR( k) grammar. Thus 
LC(k) grammars and A-LC(k) grammars are unambiguous. 

Theorem 3.3. For k > 0, a context-free grammar G is an A-LC(k) grammar if and 

only if G is an LC( k) grammar. 

For a proof of this theorem see the Appendix. 

‘Theorem 3.4. If G is an A-LC(0) grammar, then G is an LC(0) grammar. 

Proof, Let G = (N, Z, P, S) be an A-LC(0) grammar. Suppose that G is not LC(0). 

First suppose that G is not LC(0) because S a,’ S is possible in 6, Then for some 
A E N and Q! E V*, there is a production A + Sar in P, such that 

*> 
S’+A+Sa!+S (3-l) 

is a derivation in the augmented grammar G’ of G. S’ * S is also a derivation in 
G’. It follows from this last derivation and derivation (3.1) that the productions 
S’+ S and A + Scu are the same. Since A E N and S’e N this is not possible. Thus 
S ?$ S is not possible in G. 

Suppose that G is not an LC(0) grammar because there is a production A + E in 
P which does not satisfy the LR(0) condition. Then this &-production does not 
satisfy the A-LR(0) condition for the augmented grammar G’. This contradicts the 
assumption that G is an A-LC(0) grammar. 

Suppose that for some production A + Xp (X,8 # E) in P, the conditions (i), (ii) 
and (iii) of Definition 3.2 are satisfied and either acA i;ii cu’B or j3 it ‘y. Then the 
conditions (i), (ii) and (iii) of Definition 3.1 are also satisfied. Since crA # cu’B or 
p # ‘y, it follows then that G is not an A-LC(0) grammar. This however contradicts 
the assumption. Thus clause (3) of Definition 3.2 is also satisfied if G is an A-LC(0) 

grammar. Mk 5nally conclude that G is an LC(0) grammar. Cl 

The inclusion of the class of A-LC(0) grammars in the class of LC(0) grammars 
is proper, since grammar G, in Section 2 is an LC(0) grammar that is not A=LC(O). 
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The following theorem characterizes the A-LC(0) grammars in terms of the K(0) 
grammars. The theorem is analogous with Theorem 2.4. 

Theorem 3.5. Let G = (N, 2, P, S) be a context-free grammar. G is an A-LC(0) 
grammar if and only if G is an LC(0) grammar and S *T SW is impossible in G for 
any w&Z+. 

Proof. For the proof of the “only-if” part of the statement, assume that G = 
(N, & P, S) is an A-LC(0) grammar. We already have by Theorem 3.4 that G is an 
LC(0) grammar. Since G is an A-LR(0) grammar, it follows from Theorem 2.4 that 
S a,’ SW is impossible in G for any w E C +. 

For the proof of the “if” part of the statement, assume that G is an E(O) 
grammar, such that S +r SW is impossible in G for any w E C+. 

Suppose that G is not an A-LC(0) grammar. It is easy to see that if G has an 
&-production, which does not satisfy the A-LR(0) condition, then this production 
does not satisfy the LR(0) condition either. 

Suppose that G is not an A-LC(0) grammar because there is a production A + Xf3 
in P, which is not an &-production, such that 

are derivations in the augmented grammar G’, where cuA # a ‘B or /3 # ‘y, although 
CY’CY” = cy. 

Suppose that X # S or a! # E. Since each derivation in G’ starts with production 
St+ S, it follows from derivations (3.2) and (3.3) that the following are derivations 
in G. 

Since cy ‘a!” = Q! and cuA # cw’B or /3 # ‘y, it follows from derivations (3.4) and (3.5) 
that G iq not an LC(0) grammar. This, however, contradicts the assumption that 
G is such a grammar. 

Suppose that X = S and a! = E. Then derivation (3.2) has the form 

Derivation (3.6) implies that S 3: Sylz, is a derivation in G. Since G is unam- 
biguous, we have that ylzI E C+. However such a derivation was supposed to be 

impo?ysible in G. 
We conclude that G is an A-LC(0) grammar. Cl 
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An immediate copsequence of Theorems 2.4 and 3.5 is the following. 

Corollary. A context-free grammar G is an A-LC(0) grammar if and only f kt is an 
LC(0) grammar and an A-LB(O) grammar. 

Consider the grammars G2 and G3 given by the productions below: 

G2: S+bA G3: S-, Sala 

S+bB S+ bA(bB 

A+a A+c 

B+b B+ b. 

G2 is an A-LR(0) grammar, which is not LC(0). G3 is an U(O) grammar, which 
is not LC(0) and not A-LIZ(O). Grammar G, , given by the productions S+ Sa and 
S + a is an K(O) grammar, which is not A-LC(0). 

4. Left-recursion 

Recall that a cfg G = (N, Z, P, S) is left-recursive if for some A E N and some 
a! E V*, A ++ Aac is a derivation in G. In general, the existence of such a derivation 
in G does not imply that for some w E Z*, A +r Aw is a derivation in G. 

In this section, we consider left-recursion in subclasses of the LR(0) grammars. 
LR (0) grammars may be left-recursive. Reduced strict deterministic grammars, 
which are A-LR(0) grammars [4], are not left-recursive [ 51. What can we say about 
left-recursion in A-LC(0) grammars and LC(0) grammars? 

Results obtained in this section will be used in the following section where we 
give a characterization of the LC(0) languages. 

The following concept is useful. (Recall that all our context-free grammars are 
reduced.) 

Definition 4.1. Let G = (N, Z, P, S) be a context-free grammar ( V = N w 2). Let n 
beaninteger(nal).LetA,,A, ,..., A,ENanda, ,..., cu,EV*.IfAEN,then 
an A-cycle is a derivation A 3; Acw in G, where T is a sequence pIp2 l . . pn of 
distinct productions pi, where for all 1 s i < n, pi indicates the production AimI + 
Aiai E P, such that A = A0 = A,,. We say that the nonterminals Ai are on the A-cycle. 

We call a context-free grammar G = (N, 2, P, S) strict left-recursive if G is left- 
recursive and for all left-recursive A E N if A e;’ Aa (cy E V*) is a derivation in G, 
then this derivation has the form 

where A+’ Aa’ is an A-cycle. 
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A strict left-recursive grammar G = (A!, Z P, S) has one or more A-cycles (for 
some A E IV). For some nonterminal symbol A, a context-free grammar may have 
more than one A-cycle. A nonterminal B may be more than once on the same 
A-cycle. For example A is at least twice on any A-cycle. 

By definition a strict left-recursive grammar is left-recursive. On the other hand, 
there are left-recursive grammars, which are not strict left-recursive. For example 
the grammar H given by the productions S + B&z, S + b and B + E, is left-recursive 
(since S *+ Sa is possible in H), although it is not strict left-recursive. 

Theorem 4.2. If a context-free grammar G = (N, 2, P, S) is LR(O), then G is left- 
recursive if and only if G is strict left-recursive. 

Proof. It is by definition that a strict left-recursive grammar is left-recursive. 
Let G = (AC, 2, P, S) be a reduced M(O) grammar. Suppose that G is not strict 

left-recursive, although G is left-recursive. Then for some left-recursive nonterminal 
AEN and some integer pal, there are Ao,Al,...,A,&V, with Ao=A,,=A, 
yi E V”, Si E N”, not all equal E, such that for all i (1 S i 6 p) Si a* E and productions 
A i-1 + S,Aiyi. Let ni be the number of steps in the (unique) derivation Si 3: E 

(l<isp).Let n=n,+n2+... + np. Notice that n > 0, although some of the ni may 
be zero. 

Since G is unambiguous there exists u E Z+, such that rP. . . y1 *F u and 

(*I 

is a derivation in G. From this derivation we will derive a contradiction in the 
following way. Since G is reduced, for some x E 2*, A af x is a derivation in G. 
Suppose that this derivation has the following m steps. 

A=w,,,~~,,,_,‘q,,-~~= ..‘-r’w,=x, (**) 

where oje V* (lsjsm). Now, for some CUE V* and WEC’, 

S + cvAw +’ axw (4.1) 

is a derivation in G, of which the last m steps are those of (**). Let I > 1 be an 
integer such that I x n - > m. Let t = 2 x n. t is the number of steps in the (unique) 
derivation of E from the sequence (&& . . . S,)! Let this derivation have the form 

where 01 E V* (1 <Jo f). The sequence (6, . . . S,)’ is generated in the following 
derivation, in which derivation (*) is repeated I times. 

S a; arAw -iF cd, . . . a: &Auw + a(& . . . S,)2A~2~ 

=s; ’ . l *; a(S* . . . s,)‘Au’w =+F a@, . . . s,)‘xu’w a: axu’w. (4.2) 

The last t steps in this derivation are those of (***). 

Claim. If 1~ i s m, then wi = 0:. 
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proof. First, we show that if 1 s is m, then oi = oixi, for some Xi E C*. Then we 
will show that for all i, Xi = E. 

Assume, for the sake of contradiction, that for some i (1 G i s m) there is no 
Xi E Z”, such that Oi = o:Xi. Let j be the smallest integer such that there is no Xj E C* 

such that Oj = UjXj. Notice thatj> I, since o1 =x = EX = @ix. From derivation (***) 
we may conclude that for all 2 s i s t, O: E N+. Let Oj = $Bz, @j-l= #Pz, ~j = #B’, 

I 
Wj_1=$‘p‘ for some ZEC *, B,B’e N, #‘,@‘E N* and q?,@ E V*. The production 
used in the right-most derivation of q_ 1 i&j-1, (~8’ 1 from q’ (0;) is B-, 3 (B’+ p’). 

Derivations 

and 
S 3; (~wjxu’w = &B’xu’w =j, @Y/~‘xu’w = (~o:j_,xu’w 

are derivations in G. Since aj-1~ wj-I+-1 for some Xj-1 E Z*, a@zw = a#‘fl’Xj-lwm 

Since O:+, w = 0:xu’w and since G is an U(O) grammar, we know that p = p’, 
B=B’ and #=rl/‘. Thus mj=t/PBZ=#‘B ‘z = ojz. This, however, contradicts our 
assumption that there is no Xj E C” such that Oj = wJ!Xje Especially A = o, = WAX,. 

This implies A = o’, and x, = E. 
In order to show that for all i (1 s i G m) Xi = E, suppose that, for some i, Xi # E. 

Let j be the integer (1 sj < m) such that 3 # E and if i >j, then Xi = E. Consider the 
derivations 

and 
s *F CYAXU’W *; (YoJ!+,xuIw =$, cuw,!xu’w 

in G. Since oj+l= oJ!+ 1 and o;+~ E N+ in the last step of these derivations 
right-most symbol of aj+l is rewritten. Since aj = Oj’Xj and OXU’W =O:X~W, 
conclude from these derivations that aoi = “WjXj and thus Xj = E. 

We conclude that, for all i, Xi = E. Especially x = E. Cl 

the 
we 

Proof of Theorem 4.2 (conclusion). Since A is derivable from S1 . . . Sp and since 
A +* E, it follows that G is ambiguous. We have derived a contradiction since G 
is an U(O) grammar and M(O) grammars are unambiguous. Cl 

Theorem 4.2 can be generalized: for all integers k 2 0, if a cfg G is LR( k), then 
G is left-recursive if and only if G is strict left-recursive. This generalization can 
be proved in essentially the same way. Notice that this result holds for U(k) 
grammars, LC( k) grammars and all other subclasses of the LR( k) grammars. 

LC(0) grammars and A-LR(0) grammars may be left-recursive. The grammar G4 
given by the productions 

S+Aa, A+ Bb, B+Ab, A+8 

is ALR(0) and not U(O). The grammar G5 given by the productions 

S+Aa, A+Bb, B+S, A-,E 

is K(O) sod not A-LR(0). 
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Theorem 4.3. Let G be an EC(O)-grammar. 
(a) If G has an A-cycle for some A E N, then S is on this A-cycle. 
(b) G has at most one S-cycle. 

Proof. (a): Let n be a positive integer. Let AO, AI,. . . , A, E N and at,. . . , a,, E V’! 

Let G = (N, 2, P, S) have the A-cycle A +T Acu. Let 7~ be the sequence plp2.. . pn 

where, for all 1 s i s n, pi indicates the production Ai- + Aiai E P such that A = A0 = 
A,. Suppose that S is not on this A-cycle. Since G is reduced, there is an integer 
j (1 <j s n) such that Aj occurs in the right-hand side of a production not equal to 
production pj. Let this production be B + 71 Ajy2, where M E N and yl, 72 E V*. 
Then the derivations 

and 
s *F PBwl *r PY*AjY2w1 *F PYl Ajvl w* (4.3) 

are derivations in G. The first right sentential form of derivation (4.4) results from 
the derivation 

s*T PY*AjV*wI *T PYIAj-lw2- 

Since 0: v1 w1 = 0: v2w2, it follows from derivations (4.3) and (4.4) and clause (3) of 
Definition 3.2 that the productions B + 71 Ajyz and Ai-*+ Ajaj are the same. This 
contradicts the assumption that they were not the same. We conclude that S is on 
the A-cycle. 

In order to prove (b), suppose that G has two distinct S-cycles. It is easy to show 
that G does not satisfy clause (3) of Definition 3.2. q 

Theorem 4.3 implies that each nonterminal (except for S) is at most once on the 
S-cycle of an E(O) grammar. Grammar G4 above has an A-cycle and S is not on 
this A-cycle. Therefore G4 is not an LC(0) grammar. G5 satisfies propositions (a) 
and (b) in Theorem 4.3. 

Theorem 4.4. An A-K(O) grammar is not left-recursive. 

Proof. Let G = (N, X, P, S) be an A-E(O) grammar. From Theorem 3.5 it follov* s 
that G has no S-cycle. Since G is an K(0) grammar, we know from Theorem 4.3 
that G is not strict left-recursive. From Theorem 4.2 it follows that G is not 
left-recursive. 0 

Theorem 4.3 and 4.4 cannot be generalized to LC( k) grammars or A-LC(k) 
grammars with arbitrary look-ahead. The grammar given after Definition 3.2 illus- 
trates this. 
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5. M(o) languages 

For positive S we know that the LC(k) languages and the A-LC(k) languages 
are the LL(k) languages. In this section we first show that the A-LC(0) languages 
are the simple deterministic languages of Korenjak and Hopcroft [7]. Then we give 
a characterization of the X(O) languages in terms of simple deterministic languages 
and show that the K(O) languages are properly contained in the LL( 1) languages 
and properly contain the class of simple deterministic languages. 

Theorem 5.1. If G is a simple deterministic grammar, then G is an A-LC(0) grammar. 

Proof. This is an immediate consequence of the definitions of simple deterministic 
grammars and A-LC(0) grammars. Cl 

Corollary. The class of simple deterministic languages is contained in the class of 
A-LC(0) languages. 

We now show that A-LC(0) languages are simple deterministic languages. A- 
LC(0) grammars may have e-productions. For example, the grammar G6 given by 
the productions 

S+A(aB, A*b, B+E 

is an A-LC(0) grammar. We will show that if an A-LC(0) grammar has an A- 
production which is an &-production, then this is the only A-production in the 
grammar. Therefore we first give the following more general result. 

Theorem 5.2. Let G = (N, 2, P, S) be an LR(0) grammar. Let A E N and &, f12 E V”. 
If A + p1 and A + && are distinct productions in P, then (i) p, = E and (ii) for some 
BENand&V*,&= BS and (iii) G has an A-cycle. 

Proof. Let A-+ /3, and A+ /3,p2 be productions in P, where Bz # E. For some 
a, y E V* and some w E Z*, 

S~:‘:aAw~~a~,w= yw (W 

is a derivation in G. The string & is either an element of C+ or it contains at least 
one nonterminal symbol. 

In the former case let p2 = u for some u E C’. Then the following derivation 
exists in G. 

Since in derivations (5.1) and (5.2) 0: w = 0: w’, it follows from Definition 2.1 that 
the productions A + p1 and A + /?,& are the same. This contradicts the assumption 
that p2 is not the empty string. 
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We now consider the case that p2 =zB&forsomezEP,BENandSEV*.Since 
G is a reduced grammar, for some u, v, X, y E C* and some production D + y in P, 

S + aAw =j, a&zBSw + ap,zBxw 

+! @,zvDuxw =j, aj3,zvyuxw = yw” (5.3) 

is a derivation in G. Hence the production D + y is the last production used in the 
right-most derivation of the terminal string vyu from B. Since in derivations (5.1) 
and (5.3) 0: w = 0: w”, we must conclude from Definition 2.1 that the productions 
A+ PI and D+ y are the same and that ar = arp,zv. This implies that y = & = z = v = 
E. Hence, our two productions A + fil and A+ pLp2 are of the form A- E and 
A + B& Moreover, it follows from derivation (5.3) that there is an A-cycle in G. Cl 

Since an A-LC(0) grammar is U(O) (see Theorem 3.4) and not left-recursive 
(see Theorem 4.4), it follows from Theorem 5.2 that if A + E is a productiun in the 
grammar then this is the only A-production. This implies that if S + E is a production 
of an A-LC(0) grammar then this is the only production of the grammar and thus 
S does not occur in the right-hand side of a production. It can be shown that if 
G = (N, Z, P, S) is an A-LC(0) grammar, then for all AE N, if E E L(A), and 
L(A) = {E). 

Theorebn 5.3. Each A-LC(0) grammar is equivalent to an E-free A-LC(0) grammar. 

Proof. Let G = (N, 2, P, S) be an A-LC(0) grammar. Then G has no A-cycle for 
any A E N (Theorem 4.4). Let A + E (A # S) be a production in l? Then there is no 
other A-production in P (see our conclusion after the proof of Theorem 5.2). We 
now transform G into a new grammar in the following way. 

Remove the A-production from P. Remove all occurrences of the symbol A in 
the right-hand side of the productions in P (i.e. substitute E for A whenever A 
occurs in the right-hand side of a production). The resulting grammar G’= 
(N’, 2, P’, S) obviously generates the same language as G does. 

Notice that by this transformation new e-productions can be introduced. For 
instance, if B + A is a production in the original grammar, then the resulting grammar 
has the production B -) E. It is easy to verify that the resulting grammar is an A-LC(0) 
grammar. Thus we can repeat the transformation until we have an A-LC(0) grammar 
without E-productions. El 

Theorem 5.4. (a) If G is an E-free A-LC(0) grammar, then G is an LL( 1) grammar. 
(b) If G is an E-free LL(l) grammar, which does not have the production S+ E, 

then G is an A-LC(0) grammar. 

Proof. (a): Let G = (N, 2, P, S) be an E-free A-LCJ,O) grammar. Suppose that G is 
not an LL( 1) grammar. Then there exist distinct productions A + aI and A + cy2 in 
P such that, for some a E 2 and some yl , y2 E V*, 

A*a+Fayl and A _ cy2 *T ay2 
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are derivations in G. These left-most derivations are supposed to be the shortest 
derivations that derive a string with a as the first symbol. Since cyl # cy2 these 
derivations differ in at least one step. Let the distinct productions B, + X& and 
B2 + Xf12 in P, where X E N u {a} and PI, p2 E V”, be the productions used in the 
last of the different steps of these derivations. Then 

are derivations in G. The B-productions may be equal to the distinguished A- 

productions. Since 0: z, u1 w = O:z2u2w, it follows from derivations (5.4) and (5.5) Land 
Definition 3.1 that G is not an A-K(O) grammar, contradicting our assumption. 
We conclude that G is an U(1) grammar. 

(b): First, notice that the e-free LL( 1) grammar with the productions S + E and 
S-, a is not an A-E(O) grammar. Thus the condition that G does not have 
production S + E is necessary. Assume that G is an e-free LL( 1) grammar and that 
S-, E is not a production of G. Let G’ be the augmented grammar of G. Suppose 
that G is not an A-E(O) grammar. Since G has no e-productions, this means that 
for some A,Be N, Q,Q’,(Y”,& YE V*; XE V and w,w’E~*, 

and 
S’+ arAw q aXpw (5.6) 

S’ --LII: dBw’=$, dd’Xyw’ (5.7) 

are derivations in G’, such that aA Z dB or /3 f y, although (Y = (~‘a”. 
Now, let Q! +* u, X +* x, p ** v and y a* y. Since G has no &-productions, 

x E C+ (if X E C then X = x). Because of the existence of derivations (5.6) and (5.7) 
in G’, we know that uxvw, ux$3lr’~ L( G;. In the leftmost derivation of uxvw the 
production 2q + Xp is used. Let this derivation have the form 

S’=+r” UAO =s~ uX@o + uxvw, (5.8) 

in which rr denotes a sequence of productions of G’. Since G is U(1) grammar, 
the left-most derivation of uxyw’ has the form 

S’ar UAW =S, UXPW 3: uxyw’. (5.9) 

It follows from derivation (5.7) that the product& B + d’Xy is used in the 
left-most derivation of uxyw’. Moreover, in this left-most derivation, CY’ derives a 
string u2 E Z*, such that u = ulu2 for some u1 E 2*. Siylce we have assumed that this 
production is not the production A + Xp, there are two possibilities: either B + a”Xy 
is used before or after the use of production A + Xp in (5.9). In the latter case LY” 
derives the empty string because u is already derived before this particular applica- 
tion of production A + Xa in the left-most devivation. Since G is e-free this implies 
that cy” = E and we must conclude that X is a left-recursive nonterminal. This, 
however, contradicts the assumption that G is an LL( 1) grammar. If the production 



LC(0) grammars and languages 79 

B + ar”Xr is used before the use of A + X@ in (5.9) then it follows in the same way 
that X is left-recursive and again we have a contradiction. We conclude that G ir; 
an A-LC(0) grammar. Cl 

Theorem 5.5. If L is an A-LC(0) language, then L is a simple deterministic language. 

Proof. Let L be an A-LC(0) language. It follows from Theorem 5.3 that L has an 
E-free A-LC(0) grammar G. Either L= {E} or me L. In the first case L is simple 
deterministic. In the second case it follows from Theorem 5.4(a) that G is an LL( 1) 
grammar without &-productions and thus L is a simple deterministic language. Cl 

It follows from this last theorem and the Corollary of Theorem 5.1 that the class 
of simple deterministic languages and the class of A-LC(0) languages are the same 
class of languages. 

We proceed with the characterization of the LC(0) languages. Recall that a 
language L c C* is degenerate if L = 8 or L = {E}. 

Lemma 5.6. If L, and L2 are simple deterministic languages, then L = L1 L$ is an 
LC (0) language. 

Proof. We first consider the special cise in which L, , L2 or both are degenerate 
languages. Suppose L1 = #. Then L = (b ‘rnd L is an LC(0) language. Suppose L2 = 0 
or {E}. Then L = L1 and since L1 is a simple deterministic language, L, is an A-LC(0) 
language and thus an LC(0) language. 

We now treat the nondegenerate case. Since L1 and L2 are simple deterministic 
languages, there exist simple deterministic grammars G, = ( N1, 2,) PI, S,) and 
G2 = ( N2, .X2, P2, S,), such that L, = L( G,) and L2 = L(G,), with N, n N2 = 0. 

Define G=(N,u N2,&u.&, P+ B,u{S, + S,S,}, S,). Clearly L(G) = LILz. In 
order to prove that G is an LC(0) grammar, suppose that it is not. Since G, is 
simple deterministic and since S, does not derive the empty string in G2, S, a,’ S, 
is not possible in G. Furthermore, there are no &-productions in G, since these 
productions do not occur in G1 and G2. This means that-since G is supposed to 
be not an LC(0) grammar-there is a production A + Xfi (Xp # E) of G and 

and 
S, -4; LY’BQ q c&“Xyz2 3: a’d’Xy2z2 (5.11) 

are derivations in G, such that cuA # cu’B or p # ‘y, although &A? = a~ and (trivially) 
O:ylzl = O:y2z2. Since the production S, + S,S, is the only production of G in which 
S1 occurs in the right-hand side (recall that G, and G2 are grammars in Greibach 
normal form), we know that A + Xp is not the production S1 + S,S,. Since G, and 
G2 are simple deterministic grammars, we know that X E C and that cy” = E. Thus 
cy=a! ‘. It follows from the construction of grammar G from Gr and GZ, that if 
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A E N2, then l:a! = S1 (recall that 1:cr denotes the first symbol of LY). The same holds 
for B in derivation (5.1 l), i.e. B E N2 if and only if 1~’ = S1. Since a! = my’, either 
A and B both in N2 or both in N*. Suppose that A, BE A&. I.,& ar = a’ = &a, for 
some S E (2 u N2)*. It follows from the existence of the derivations (5.10) and (5.11) 

in G that the following two derivations exist in G2: 

S2 + SAW, =$, Sxpw, + 6Xy, wl, (5.12) 

s, *: 6Bw* =$, sxyw, *: isxy2w*, (5.13) 

where w1 = ulzl and w2 = u2z2 for some ul, u2 e 2”. Since p # ‘y, it follows from 
derivations (5.12) and (5.13) that G2 is not an K(0) grammar. It follows however 
by Theorem 3.4 and Theorem 5.1 and the assumption that G2 is a simple deterministic 
grammar, that G2 is an K(0) grammar. Thus we have a contradiction. 

Suppose that A, BE N,. In the same way, we can construct derivations in G1 
from derivations (5.10) and (5.11) and show that G1 is not an K(O) grammai-, 
contradicting the assumption that G1 is a simple deterministic grammar and an 
K(0) grammar. We finally conclude that G is an LC(0) grammar. IJ 

Lemma 5.7. If L is an LC(0) language then L can be written as L,L$, where L1 and 
L2 are simple deterministic languages. 

Proof. Let G = (N, 2, P, S) be a reduced LC(0) grammar for L. Suppose that G 
has not an s-cycle. Then, by Theorem 3.5, C is an A-LC(0) grammar and by 
Theorem 5.5, L is a simple deterministic language. Then L = LILz, with L, = L and 
L2 = {E}. 

Suppose that G has an S-cycle. By Theorem 4.3, G has only one S-cycle. Let 
this S-cycle be S +J Sq where rro = pI pi. . . pi,, with pi E P for all i, 1 s i c n, 
denotes the production Ai- + AiQi, a = ~ITY~ . . . a, and A, = S = A,. 

Consider the left-most derivations of sentences of L. They have the form S*,” z, 
where v = &T’, for some integer t 20 and some 7r’ such that rr, is not a prefix of 
rr’. Let L’ be the set {u 1 S +r’ u, for some ?T’ such that rro is not a prefix of rr’}. 
Clearly L = L’( L(a))*. We will now show that L’ and L(a) are both simple deter- 
ministic languages. 

Let Pr be the set of productions P - {A,+ + Ana,}. Let Gs = (N, 2, PI, S). Clearly 
Gs is an LC(0) grammar. Since S +Q Sar is not a derivation in Gs and since this 
is the only S-cycle in G, S =+F SW is impossible in Gs, for any w E C+. It follows 
from Theorem 3.5 that Gs is an A-LC (0) grammar. Thus t( Gs) is a simple 
deterministic language. 

L’ = L( Gs). To show this, we need the following claim 

Claim A. Let P denote the set of productions P - { pr , p2, . . . , p,)}. For all i (1 s i s n), 
Ai does not occur in Q! and not in rhe right-hand side of any production in F. 

proof, Suppose that there are i, j (1 s i, j s n), such that Ai occurs in aj. Then 



LC(0) grammars and languages 

cyi = SAiy for some 6, y E V*. Furthermore, 
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(5.14) 

+f AjSAi-1 UZW =$r AjaAiaiUZW *T AjSAiVuzw (5.15) 

are derivations in G. Since G is an K(0) grammar, it follows from derivations 
(5.14) and (5.15) that Aja = E. This is impossible. We. conclude that there is no 
occurrence of Ai in cy. 

We now prove the second part of Claim A. Suppose that, for some B E N, S,y E V* 
and 1 gj s n, B + 6Ajy is a production in E Then 

are derivations in G, Since G is an K(O) grammar, we conclude from derivations 
(5.16) and (5.17) that Aj-l+Ajaj= B + s_4,y. This is impossible, since the first one 
is in P and the second one is not in E We conclude that the Ai do not occur in 
the right-hand side of a production in E 0 

We now show that L’ = t( Gs). Let u E L’. From Claim A, it follows that production 
A n_l + Anan is not used in the derivation of u. Thus u E L( Gs). On the other hand, 
let u E L( Gs). Then there is a derivation S # u in G, and no is not a prefix of +. 
Thus u E L’. Since L’ = L( Gs) and L( Gs) is a simple deterministic language, L’ is 
a simple deterministic language. 

Claim B. For all A E N, ifA occurs in (Y, then L&A) is a simple deterministic language. 

Proof. Let fi denote the same set as in Claim A. Let A E N occur in cy. Consider 
the context-free grammar GA = (N, 2, p, A). In the same way as is done for Gs 
above, it can be shown that GA is an A-LC(0) grammar. Thus L(G,J is a simple 
deterministic language. 

We now prove that L&A) = L(GJ. Let u E L,(A). Suppose that for some j 
(1 <j s n) the production A j-1 + Ajei is used in the derivation of u from A in G. 
This contradicts Claim A. Thus u E L( GA). 

On the other hand, since P c P, it follows that L( GA) c L&A). 
We conclude that L,(A) is a simple deterministic language. •1 

Since the simple deterministic languages are closed under product [7], it follows 
from Claim B, that L(a) is a simple deterministic language. With LI == L’ and 
L*=L(a), L=L*LZ. Cl 
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From Lemmas 5.6 and 5.7, the following characterization theorem for LC(0) 
languages is obtained. 

Theorem 5.8. A context-free language L is an LC(0) language if and only if there 
are simple deterministic languages L, and L2, such that L = L1 Lfj. 

Let 1, = L1 Lz be a nonempty LR(0) language, where L1 and L2 are strict deter- 
ministic languages. The Unique Factorization Theorem for LR(0) languages (cf. 
[4] or 15, p. 5241) says: If there are two strict deterministic languages L: and Li such 
that L = Li( L$)“, then L, = L’, and either 

(i) L2 = L$, or 
(ii) L2, Li are degenerate. 
Now let L= L,L$ be a nonempty LC(0) language, where L1 and L2 are simple 

deterministic languages. Simple deterministic languages are strict deterministic [ 51. 
Since LC(0) languages are LR(0) languages, the factorization of L is unique. If we 
read “simple” instead of “strict” in the Unique Factorization Theorem for LR(0) 
languages, we obtain the Unique Factorization Theorem for LC(0) languages. 

Since LC(0) grammars are LC(l), and since LC(l) languages are exactly the 
LL(1) languages [9], we know that the LC(0) languages are contained in the class 
of LL(1) languages. This inclusion is proper. To see this, consider the language 
La = a%*. L, = L(G,), where G, is given by the productions 

S-, as, S-, bA, S+E, A-, bA, A-,&. 

Since G, is an LL(l) grammar, L, is an LL(l) language. 
We show that L, is not an LR(O)-language. Therefore we use the following string 

characterization of LIZ(O) languages from [4] (see also Theorem 2.5). If L c C* is 
an LR(O)-language, then for ail x E S+, w,yd*, if WE L, WE L and YE L, then 
YX E L. Suppose that L, is an LR(O)-language. Since a “, a na * and bk are elements 
of L,, it follows from the string characterization of LR(0) languages that b“a* is 
an element of La. Thk is however not the case. Thus L, is not an LR(O)-language. 

The intersection of the class of LC(O)-languages and the class of strict determinis- 
tic languages (or prefix-free deterministic languages) is the class of simple determinis- 
tic languages, To see this, let L be a strict deterministic language, which is not 
simple. Suppose that L is an LC(O)-language. Then there exist nondegenerate simple 
deterministic languages Lo and L,, such that L = LOLf. This however implies that 
L is not a prefix-free language. (This result follows also immediately from the 
Corollary in Section 3.) 

The relations between the classes of languages considered here are depicted in 
Fig. 1. Lb={an(bd+b+c)“$( n 2 1). This language is a prefix-free LL( 1) language, 
which is not simple deterministic (cf. [6]). L, = {a”b”, ancn 1 n 3 1). This language is 
a strict deterministic language which is not LL. (cf. [3] for a proof that t, is not 
an LL-language) LI-d = Lb(a)*. Since Lb is a strict but not simple deterministic 
language, Ld is an LR(0) language, which is not LC(0). It is easy to verify that Ld 
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Fig. 1. Comparison of classes of languages. 

is an U(l)-language. L, = L,(a)*. This language is LR(O), not strict deterministic 
and not an LL-language. 

Appendix 

Proof of Theorem 3.3. We first prove the “only-if” part of the statement. Let 
G = (IV, X, P, S) be an A-LC( k) grammar for some k > 0. Let G’ be the augmented 
grammar of G. Suppose that G is not an LC(k) grammar. We first assume that G 
is not an LC(k) grammar, because S +z S is a derivation in G. Then for some 
A E N and a! E V*, A + Sa is a production in G, such that 

is a derivation in G’. Since S’ + S is also a derivation in G’, it follows from the 
definition of A-LC(k) grammars that the productions A + Sa and S’+ S are the 
same. This is impossible and thus S 3: S is not a derivation in G. 

Assume that G is not an LC( k) grammar, because there is an &-production A + E, 

which does not satisfy the LR(k) condition. Then 

and 
S=+Aw3,aw=yw (A.0 

S =+ a’A’x + a’plx = yw’ (A.2) 

are derivations in G such that aA # dA’ or x # w’, although k: w = k: w’. It follows 

from the construction of G’ that 

and 
S’+ cvAw + LYW = yw 64.3) 

S’ +!’ ar’A’x =$, (Y’/~‘x = yw’ (A4 

are derivations in G’ such that k:w = k: w’. Since aA # &A’ or x Z w’, it follows 
kom derivations (A.3) and (A.4) that the production A-, E does not satisfy the 
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A-LR( k) condition. Thus G is not an A-LC( k) grammar. This, however, contradicts 
our assumption. We conclude that each e-production of G satisfies the LR(k)- 
condition. 

Finally, suppose that there is a production A + Xp, with Xfl f E in P, such that 
clause (3) of Definition 3.2 is not satisfied. Then there are derivations 

and 
S + cdBz2 =j, a’d’Xyz2 ‘f a’d’Xy2z2 (A.6) 

in G such that aA # a’B or p # ‘y, although CY’CY” = cu and k:y,z, = k:y2z2. This 
implies that there are derivations 

and 
S’+ a’Bzz=rSr da”Xyz2~~ dd’Xy2z2 (f-w 

in G’ such that aA # a’B or @ f ‘y, although &r” = a! and k:y,z, = k:y2z2. This 
implies that G is not an A-LC(k) grammar, contradicting the assumption that G 
is such a grammar. We conclude that G is an LC(k) grammar. 

We now prove the “if” part of the statement. Let G be an LC( k) grammar. First, 
suppose that G is not an A-LC( k) grammar because there is an a-production, which 
does lot satisfy the A-LR( k)-condition. Then (A-3) and (A-4) are derivations in 
G’ such that aA # a’A’ and x f w’, although k: w = k: w’. Since every derivation in 
G’ starts with the production S’-, S, this implies that (A-1) and (A-2) are derivations 
in G such that k: w = k: w’. Since aA # a’A’ or x # w’, it follows from derivations 
(A-1) and (A-2) that the production A + E does not satisfy the LR( k) condition. 
Thus G is not an LC(k) grammar. This contradicts the assumption that G is such 
a grammar. We conclude that all &-productions of G satisfy the A-LR( k)-condition. 

Finally, suppose that G is not an A-LC( k) grammar, because there is a production 
A + Xp, and (A-7) and (A-8) are derivations in G’ such that aA # dB or p # y, 

though ~!‘a”= cy and k:y,z, = k: y2z2. Assume both A, B ir: S’. Then (AS) and (A-6) 
are derivations in G, &I?‘= Q! and k:y,z, = k:y2z2. Since aA # a’B or j? # “y, this 
implies that G is not an LC(k) grammar. This contradicts the assumption that G 
is an LC( k) grammar. Assume that A = S’. Then the production A + Xp equals the 
production S’+ S and derivation (A-7) has the form 

S’ =3, s. (A-9) 

Since in this case cy = (Y’CY“ - - E, derivation (A-8) has the form 

Since ylzl from derivation (A-7) equals E in derivation (A-9), it follows from 
k:y,q = k:y2zZ that in derivation (AM) y2z2 = E (notice that the condition k # 0 is 
essential here). Since the production B + SJ’ is not the production S’+ S, it follows 
from derivation (A-10) that S +f B =$, Sy +! S is a derivation in G. This implies 
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that G is ambiguous, contradicting the assumption that G is an LC(k) grammar. 
In the same way, the assumption that B = S’ leads to a contradiction. We conclude 
that G is an A-LC(k) grammar. Cl 
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