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Abstract 

Because of measurement errors, test limits instead of specification limits are used for inspection to 
realize a prescribed bound on the consumer loss. Test limits based on the assumption of normality lead 
to severe violation of the prescribed bound when normality fails. While relaxing the assumption of 
normality, it is important to estimate the density of the inspected characteristic at the specification limit 
correctly. It is investigated whether larger parametric models provide a useful improvement. Simulations 
are carried out for several such models. It turns out that for estimating a density at a fixed point, the 
parametric estimators give improvements compared to application of the normal density. However, for 
small or moderate sample sizes Rosenblatt’s estimator is, in general, more accurate than the parametric 
density estimators. @ 1998 Elsevier Science B.V. All rights reserved. 

Keywords: Specification limit; Normal test limit; Robust test limit; Box-Cox model; Johnson system; 
Pearson system; Exponential power distribution; Monte Carlo experiments 

1. Introduction 

A well-known adage in statistics reads as follows: “Give me four parameters and 
I shall describe an elephant; with five, it will wave its trunk”. It is the aim of this 
paper to show that for estimating a density at a fixed point, parametric models and 
the corresponding densities are not as powerful as suggested by the preceding dictum. 

We encountered the aforementioned problem of estimating the density at a fixed 
point when studying test limits. In order to ensure that a customer is not saddled 
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with a lot of bad products an inspection is carried out on several characteristics of 
the produced items. For each characteristic a specification limit is given, but because 
of measurement errors usually a slightly more stringent test limit is set to decide 
whether an item should be approved. If the test limit is too restrictive, too many 
items will be rejected which is at the cost of the yield, whereas a test limit that is 
set too liberally will possibly lead to complaining customers. 

Consider the situation where a product is called conforming if the value of the 
characteristic is below a given specification limit S. Let X denote the value of the 
characteristic and U the measurement error. The consumer loss is the probability 
that the product is non-conforming and still accepted. It is given by 

CL=P(X>s, x + U<t). (1) 
On the one hand, to avoid complaining customers, we require CL 5 y with y quite 
small. On the other hand, within this restriction, t is as large as possible to protect 
the yield. Therefore, we are looking for a test limit t such that CL = y. Let F 
be the distribution function of X and f its density. Assume that X and II are 
independent and that U is normally N(0, c*)-distributed. As a rule the standard 
deviation CJ of the measurement error is small compared to the standard deviation 
of X. Therefore we expand CL as a function of (T. Let a = (s - t)/o and Y = -U/o, 
implying Y - N(0, 1). Denote by @ the standard normal distribution function and 
by 4 its density. In view of ( 1) we write 

CL=P(X>s, X-oY<t)=P(Y>a, s<X<s+o(Y -a)) 

= 
s 

m{F(s + o(y - a)) - F(s)}&(y)dy = of( + . . . 
u 

with 

s&4 = 
s 

?Y - 44(y) dy = &a> - 4 - W>h 
a 

Hence as a first order approximation we get 

Y a=g,’ - ( > of(S) . 

(2) 

In most of the literature about statistical tolerancing, screening, inspection etc., 
X is assumed to be normal too (cf. Mee, 1990; Easterling et al., 1991, and further 
references in these papers). In that case f(s) = b( s IS inserted in (3) (assuming for ) . 
convenience that EX = 0 and varX = 1 ), leading to the test limit 

Y 
t,Pq=s-gyl’ - rT 

( > d(s) . 

It is inferred from (2) that the corresponding consumer loss satisfies 

cLN=y$g+... . 
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Simulation results and supporting theory show that under nonnormality of X test 
limits as (4), based on normality, violate the prescribed bound on the consumer loss 
drastically (cf. Albers et al., 1997). 

Therefore a new test limit is proposed in Albers et al. (1997), essentially replacing 
the unknown f(s) in (3) by an estimator f(s), using Rosenblatt’s kernel estimator. 
The test limit now reads as 

and, in view of (2), we get for the corresponding consumer loss 

&&2+... . 
’ f(s) 

The nonparametric approach, using Rosenblatt’s estimator, has the desired robust- 
ness property: a small loss under normality and a large gain in case of nonnormality 
in comparison to tN. 

It is clear that a nonparametric estimator of f(s) is only based on observations 
close to s, since there is no relation assumed between the density at s and the 
density elsewhere. Therefore, if f(s) is small and the number y1 of observations 
not too large, estimation is based on only a few observations and hence not very 
accurate. (Note that the specification limit s in general lies rather in the tail of the 
distribution.) 

To involve also the bulk of observations in such a case, it is needed to relate 
f(s) to the density elsewhere. This leads to a parametric model, which should be 
sufficiently rich to describe densities as they arise in practice rather well. 

So, writing { fti, 79 E 0) for the parametric family of densities, there should be 
fo(s) for some 8 E 0 close to the unknown f(s) and f8(~) should in turn be close 
to f@(s). Since parametric estimators as a rule converge faster than nonparametric 
estimators, it is hoped that j-~(s) is closer to f(s) than f(s). 

Another way of looking at this approach is that the parametric model is a com- 
promise between assuming perfect knowledge of the form of the density (normality) 
and no knowledge at all (nonparametric estimator). Instead of making a big step at 
once, an intermediate approach assuming moderate knowledge of the form of the 
density may give an improvement in particular in situations, where the nonparametric 
approach is less reliable, i.e. when f(s) is small and 12 not too large. 

As is seen before, the consumer loss is determined by the ratio of the true density 
at s and its estimator. Therefore from now on we consider the problem of estimating 
the density of X at a fixed point s by Rosenblatt’s estimator and by a parametric 
estimator. 

Starting from the normal family we discuss well-known parametric families, with 
a great variety of densities, as the exponential power distribution, the Pearson- and 
Johnson system and BOX-COX’S transformation model. Two things are of interest. 
How well is the true density estimated if the observations are from the model itself 
and how compare the estimators to each other for reasonably smooth distributions, 
not from the model. 
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It turns out that larger parametric models give improvements for a great variety 
of distributions compared to application of the normal density, but that they hardly 
can compete with Rosenblatt’s estimator. Surprisingly, even with observations from 
the parametric family itself, for sample sizes up to 400 there is no guarantee for 
improvement compared to the nonparametric Rosenblatt estimator. Therefore in the 
test limit problem we recommend to apply the one based on Rosenblatt’s estimator, 
as presented in Albers et al. (1997) when normality fails. 

2. Definitions and some theoretical results 

LetXr,... ,X, be i.i.d. r.v.‘s with unknown density f. Let s be a given point. It is 
aimed to estimate f(s). Rosenblatt’s estimator is defined by 

&) = (2nW i: &l,s+h](X)), 
i=l 

where 

4&b](X) = i 
A ifx z [a,b]. 

Since 

po=P(&=O)>O, 

the “mean squared error” E { (f/f) - 1 } 2 = co. However, as is shown in Albers et al. 
(1997) there exists a set B with P(B’) exponentially small (as y1-+ oo), such that 

f 2 E -; - 1 
( ) “& 

I, % C,h4 + c&zh)-‘, 

leading to the recommendation (cf. Albers et al., 1997) 

h,{;g(!$)+15, (5) 

where, if unknown, the expectation pX and variance o$ should be estimated. The 
convergence rate now equals nP4/‘. 

In the numerical examples of the following sections the exact mean and mean 
squared error of (f/fi)I,h,,, as well as p. are calculated numerically by using 
the binomial distribution. As we deal in the numerical examples with standardized 
densities only, in (5) ,B~ = 0 and cri = 1 is taken, yielding 

h = {n&s>}-‘? 

Also in the parametric case there exists under weak regularity conditions a set B* 
with P((B* >“) exponentially small (as n + co), such that 
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as IZ -+ 00. Note that if f =f+ then the convergence rate equals n-l and hence 
from a theoretical point of view faster convergence is obtained using the parametric 
estimator than when using the nonparametric one. For more details we refer to Albers 
et al. (1994). 

In the next sections the parametric estimators are compared with Rosenblatt’s 
estimator. Note that all simulated densities have expectation 0 and variance 1. The 
fixed point s corresponding to the specification limit is chosen as the 0.99 quantile 
of the distribution involved. 

3. Normal distribution 

Consider the family of normal distributions with parameter 8 = (p, o), p being the 
mean and G the standard deviation. The unknown parameter 6’ may be estimated by 
the maximum likelihood estimator 

n 

L!?=(fi,&) with ,Li=_J?=n-’ c Xi and o^= 
i=l 

{n-l k(& -,,?i;*. 
i=l 

We are interested in estimating the unknown density at s, which lies in the tail 
of the distribution. By introducing a parametric family we want to use apart from 
information in the tail also information in the middle of the distribution. Therefore 
anothe; way of estimating 8 is to use the sample median and sample 0.975-quantile. 
Then 8 = (,L, 2) is given by ( 1.96 is the 0.975-quantile of the N(O,l )-distribution) 

fi = sample median, fi + 1.96 o^ = sample 0.975-quantile. 

So, we compare three estimators of f(s): Rosenblatt’s estimator, the normal density 
with the maximum likelihood estimators of p and G, the normal density with the 
quantile estimators of p and c. 

Table 1 shows the difference between the three estimators, when sampling from the 
normal family itself, i.e. when f(s) = 4(s). (Note that in the simulations we always 
take “standardized” densities with EX = 0 and varX = 1.) 

As is seen the parametric estimator based on the maximum likelihood estimators is 
the best one. In terms of MSE, Rosenblatt’s estimator is for n 5 400 almost as good. 
It performs for n 5 400 better than the parametric estimator based on quantiles. 
For very large IZ all three estimators behave very well, the convergence rate of 
Rosenblatt’s estimator being slightly slower. 

Next we consider some densities not from the normal family, in particular stan- 
dardized p- and r-densities 

P(p,q): (a2 - a&P-q+‘B(p,q)-‘(x - Lz,)P--l(a2 -Q-l, al <X<U& 

r(P): & (yr’exp{ -(y)}, x>a, 

where B denotes the beta-function and r the gamma-function and where a,, a2 and 
a, b, respectively, are chosen in such a way that EX = 0 and varX = 1. Analogous to 
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Table 1 
4(s) estimated in three ways with s the 0.99-quantile; mean-squared error (MS) de- 
notes E($/f - 1)2 with f = f’, or $4, respectively; mean and MSE of 4/f’, calculated 
numerically; mean and MSE of 4/& estimated by simulation with 10 000 replications 

Rosenblatt Maximum likelihood 
estimators of p, u 

100 0.001 0.809 0.522 1.160 0.599 
400 0.000 0.828 0.285 1.033 0.214 

1600 0.000 0.878 0.180 1.007 0.098 
6400 0.000 0.921 0.113 1.002 0.049 

Quantile 
estimators of p, 0 

1.155 1.074 
1.047 0.354 
1.010 0.157 
1.002 0.076 

the value of p. for Rosenblatt’s estimator, with the simulation results the number of 
replications is provided for which the parametric estimate of the density is less than 
a certain quantity (as a rule 10e5) or cannot be determined by numerical problems. 
Under f the maximum likelihood estimators (derived in the normal family) converge 
to (0,l) as IZ + co, since EX = 0 and vs = 1 under f. Therefore the limiting 
value f(s)/4(s) is also presented in Table 2. 

Under f the sample median and sample 0.975-quantile converge to the median 
and 0.975-quantile of X with density f as n + co. Let 8 = (p, 0) be the parameter 
value for which the normal distribution with mean p and standard deviation 0 has 
the same median and 0.975-quantile as the distribution of X with density f. Now 
the limiting value of f(s)/+i(s) equals f(s)/&(s) and therefore this quantity is also 
presented in Table 2. For some theoretical results on the behaviour of f(s)/&(s) 
we refer to Albers et al. ( 1994). 

First of all it is seen in Table 2 that estimating f(s) with a normal density, 
where p and c are estimated by the maximum likelihood estimators, may produce 
large errors. They are (mainly) due to the large ratios f(s)/+(s). This confirms 
the results of Albers et al. (1997). Secondly, the ratio f(s)/&(s) turns out to be 
very close to 1 and hence a substantial improvement is obtained by using quantile 
estimators. However, the normal density supplied with the quantile estimators can 
not be considered as a competitor of Rosenblatt’s estimator, especially in the case 
we are mainly interested in, i.e., n < 400. 

4. Exponential power distribution 

To get a more rich parametric family, the normal family is extended to the ex- __ 
ponential power distribution (EPD) with an extra parameter affecting the tail of the 
distribution. Thus, apart from location- and scale parameters, a kurtosis parameter 
comes in. Its density is given by 

1 
f(x)= 2oqp + 1) 

exp { -~x+~““}, -cc<x<co. 



W. Albers et al. I Computational Statistics & Data Analysis 27 (1998) 4760 53 

Table 2 
Standardized b- and r-densities at s (0.99-quantile), estimated in three ways; bias denotes E( f’/& - 
f/$,,); mean squared error (MSE) denotes E( f /f - 1)’ with f? = fR or 48, respectively; mean and 
MSE of f /fR calculated numerically; mean and MSE of f/q54 es rmated by simulation with 1000 t’ 
replications; between brackets the number of times that the estimated density was less than 1O-5 or 
the parameters could not be determined 

Rosenblatt Maximum likelihood Quantile 
estimators of p, c estimators of p, 0 

n PO Ef/f', d%%? f/4 bias v’%%? fl& bias &t?%? 

8(2,2) (s = 1.973) 

100 0.000 0.948 0.328 1.305 0.102 0.579 1.671 0.031 0.882 
400 0.000 0.972 0.173 1.305 0.022 0.369 1.671 0.012 0.726 

1600 0.000 1.008 0.102 1.305 0.005 0.321 1.671 0.002 0.683 
6400 0.000 1.026 0.065 1.305 0.001 0.309 1.671 0.001 0.674 

8(8,32) (s = 2.633) 
100 0.003 0.851 0.567 1.664 0.681 2.554 0.980 0.259 1.710 
400 0.000 0.853 0.296 1.664 0.133 0.982 0.980 0.062 0.416 

1600 0.000 0.893 0.179 1.664 0.030 0.737 0.980 0.016 0.178 
6400 0.000 0.930 0.111 1.664 0.006 0.681 0.980 0.004 0.087 

/?(2,8) (s = 2.853) 
100 0.002 0.869 0.567 2.837 2.294 10.60 1.003 0.314 2.360 
400 0.000 0.865 0.287 2.837 0.343 2.570 1.003 0.064 0.423 

1600 0.000 0.901 0.173 2.837 0.090 2.009 1.003 0.013 0.178 
6400 0.000 0.935 0.106 2.837 0.021 1.879 1.003 0.003 0.087 

r(2) (s = 3.280) 
100 0.005 0.834 0.579 6.676 25.44 95.27(5) 0.977 1.022 9.999 
400 0.000 0.848 0.321 6.676 2.741 12.27 0.977 0.146 0.753 

1600 0.000 0.889 0.190 6.676 0.560 6.725 0.977 0.028 0.264 
6400 0.000 0.927 0.117 6.676 0.148 5.935 0.977 0.009 0.125 

r(6) (s = 2.902) 
100 0.005 0.859 0.588 2.707 2.762 13.31 0.962 0.484 3.586 
400 0.000 0.860 0.315 2.707 0.406 2.554 0.962 0.096 0.526 

1600 0.000 0.896 0.185 2.707 0.085 1.888 0.962 0.022 0.218 
6400 0.000 0.931 0.114 2.707 0.022 1.752 0.962 0.005 0.106 

r(32) (s = 2.582) 
100 0.003 0.845 0.568 1.464 0.493 1.856 0.972 0.258 1.755 
400 0.000 0.850 0.300 1.464 0.102 0.727 0.972 0.061 0.413 

1600 0.000 0.890 0.182 1.464 0.022 0.528 0.972 0.017 0.179 
6400 0.000 0.928 0.112 1.464 0.006 0.480 0.972 0.002 0.090 

For p = i we get the family of normal distributions. The larger p, the more heavy the 
tails. Note that the distribution is symmetric around p, but that the scale parameter G 
is not equal to the standard deviation. In the simulations, for a given p the parameters 
,u and 0 are chosen such that EX = 0, varX = 1 (implying p = 0, cr2 = r(j)/r(3/?)). 
This density is denoted by EPD(p). 
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Estimation of the EPD density at s (0.99 quantile) in four ways; mean squared error (MSE) denotes 
E( fo/fl - 1 )* with ,? = fR or fg; mean and MSE of j;l/fR calculated numerically; mean and MSE of 
fo/fl estimated by simulation with 1000 replications; between brackets the number of times that the 
estimated density was less than lop5 or the parameters could not be determined 

Rosenblatt Parametric estimators based on: 

1st and 3rd Variance and 3rd Variance and 
absolute central absolute central kurtosis 
moment moment 

n PO Efol& d%% Eftdf,i v-= Efolf# v-i%? Efolfi d'%%? 

EPD(a) 

(s= 1.913) 100 0.000 0.709 0.396 2.501 13.89 (63) 1.383 3.460 (8) 4.253 50.05 (130) 
400 0.000 0.764 

1600 0.000 0.831 
6400 0.000 0.889 

EPD( ; ) 

(s=2.326) 100 0.001 0.809 
400 0.000 0.828 

1600 0.000 0.878 
6400 0.000 0.921 

EPD( 1) 

(s=2.766) 100 0.016 0.925 
400 0.000 0.918 

1600 0.000 0.924 
6400 0.000 0.947 

EPD(2) 

(s=3.107) 100 0.068 0.894 
400 0.001 1.023 

1600 0.000 0.964 
6400 0.000 0.966 

0.279 1.064 0.279 1.057 0.252 1.551 14.99 (12) 
0.193 1.012 0.114 1.012 0.112 1.011 0.098 
0.126 1.004 0.055 1.005 0.054 1.004 0.049 

0.522 1.603 4.724 (2) 1.594 8.462 3.817 42.04 (5) 
0.285 1.066 0.250 1.065 0.242 1.060 0.215 
0.180 1.013 0.107 1.014 0.106 1.013 0.094 
0.113 1.005 0.050 1.005 0.050 1.004 0.045 

0.625 1.562 2.807 1.545 2.563 1.864 9.312 
0.385 1.055 0.220 1.059 0.221 1.065 0.226 
0.196 1.014 0.098 1.015 0.095 1.017 0.097 
0.116 1.003 0.047 1.003 0.046 1.004 0.046 

0.549 1.587 2.895 1.638 3.768 1.788 5.241 
0.600 1.094 0.275 1.057 0.263 1.044 0.286 
0.243 1.027 0.110 1.012 0.103 0.997 0.109 
0.134 1.006 0.048 0.999 0.049 0.990 0.059 

The parameter ,u is estimated by the sample mean. As absolute central moments 
are easily expressed in the parameters 0 and fi, estimators of c and fi can be based 
on it, using the corresponding sample versions. Applying three different combinations 
of absolute central moments, we obtain as many parametric estimators, which are 
compared to Rosenblatt’s estimator. Table 3 shows the results, when f belongs itself 
to the EDP family. 

The main conclusion of this table is that improvement of Rosenblatt’s estimator 
only occurs for large n. But as a rule in that case Rosenblatt’s estimator is already 
sufficiently accurate. Since EPD( i) gives the normal density 4(s), this case may be 
compared with Table 1. It is seen that for large n the behaviour of the parametric 
estimators of the EDP family is similar to that of the parametric estimators in the 
normal family. Finally we conclude that the bias and MSE do not vary much with 
the parameter p for the parametric estimators (again for large n). 
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Table 4 
Standardized /?- and r-densities at s (0.99-quantile), estimated in two ways; bias denotes E(f/fi - 
f if”); mean squared error (MSE) denotes E( f /f - 1)’ with f = II, or fs, respectively; mean and MSE 
of f /fR calculated numerically; mean and MSE of f /fs estimated by simulation with 1000 replications; 
between brackets the number of times that the estimated density was less than 10m5 or the parameters 
could not be determined 

Rosenblatt EPD 

n PO Efll? v%% f/h Bias AiEE 

j(2,2) (s = 1.973) 

/I@, 32) (s = 2.633) 

p(2,8) (S = 2.853) 

I(2) (S = 3.280) 

I-(6) (S = 2.902) 

I-(32) (S = 2.582) 

100 
400 

1600 
6400 

100 
400 

1600 
6400 

100 
400 

1600 
6400 

100 
400 

1600 
6400 

100 
400 

1600 
6400 

100 
400 

1600 
6400 

0.000 
0.000 
0.000 
0.000 

0.003 
0.000 
0.000 
0.000 

0.002 
0.000 
0.000 
0.000 

0.005 
0.000 
0.000 
0.000 

0.005 
0.000 
0.000 
0.000 

0.003 
0.000 
0.000 
0.000 

0.948 
0.972 
1.008 
1.026 

0.851 
0.853 
0.893 
0.930 

0.869 
0.865 
0.901 
0.935 

0.834 
0.848 
0.889 
0.927 

0.859 
0.860 
0.896 
0.93 1 

0.845 
0.850 
0.890 
0.928 

0.328 
0.173 
0.102 
0.065 

0.567 
0.296 
0.179 
0.111 

0.567 
0.287 
0.173 
0.106 

0.579 
0.321 
0.190 
0.117 

0.588 
0.315 
0.185 
0.114 

0.568 
0.300 
0.182 
0.112 

1.341 3.775 93.59 (11) 
1.341 0.087 0.580 
1.341 0.019 0.397 
1.341 0.005 0.356 

1.527 7.046 60.94 (3) 
1.527 0.305 1.231 
1.527 0.063 0.651 
1.527 0.016 0.557 

2.068 13.427 88.21 (11) 
2.068 0.484 2.241 
2.068 0.090 1.226 
2.068 0.022 1.105 

1.797 11.861 65.49 (16) 
1.797 0.537 2.106 
1.797 0.108 0.968 
1.797 0.029 0.841 

1.625 12.148 77.94 (11) 
1.625 0.493 1.781 
1.625 0.094 0.795 
1.625 0.024 0.665 

1.349 4.605 55.84 (2) 
1.349 0.213 0.845 
1.349 0.044 0.448 
1.349 0.013 0.375 

To investigate whether the unsatisfactory behaviour of the parametric estimators 
is due to the type of estimators, we have also considered maximum likelihood esti- 
mators. Although there was some improvement, the results were still not satisfying. 
For more details we refer to Albers et al. (1994). 

Next the analogue of Table 2 is presented. Since the three parametric estimators do 
not vary much, we restrict attention to the estimator based on variance and kurtosis. 
Hence the present results extend those of Table 2 in the sense that now in addition 
the kurtosis is involved in the estimation. Let 6’ = (p, C, /?) be the parameter value for 
which the EPD has the same mean, variance and kurtosis as the distribution of X 
with density f. The limiting value of f(s)/fl(s) equals f(s)/f~(s) and therefore this 
quantity is also presented in Table 4. For some theoretical results on the behaviour 
of f(s)/f~(s) we refer to Albers et al. (1994). 
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It is obvious from this table that the parametric estimator cannot beat Rosenblatt’s 
estimator. Compared to the maximum likelihood estimators in the normal family (see 
Table 2) there is substantial improvement for large n, due to a better ratio f/f0 when 
the kurtosis is also involved. 

5. Pearson system 

To approximate unknown densities a well-known parametric family is the Pear- 
son system. For a detailed description of the system we refer to Johnson and 
Kotz (1970). Each combination of skewness and kurtosis corresponds to a distri- 
bution in the system, implying that the Pearson system contains a large variety of 
densities. 

As parametric estimators we use moment estimators, which are explicitly given 
in Johnson and Kotz (1970). A quantile approach is also possible, but more com- 
plicated. In the Johnson system, which is much alike, the quantile approach is more 
suitable (see Section 6). 

Table 5 shows the comparison between Rosenblatt’s estimator and the parametric 
estimator when f itself belongs to the Pearson system. By pi the squared skewness 
is denoted, while /I2 equals the kurtosis. 

While we hoped for an improvement of Rosenblatt’s estimator, especially for not 
too large n, the bad behaviour of the parametric estimator, when sampling from the 
family itself, is striking. Although from Table 5 clearly the parametric estimator of 
the Pearson system is not at all a competitor of Rosenblatt’s estimator, we shortly 
discuss how well the Pearson system approximates the unknown density. Therefore 
we consider EPD-densities and the contamined normal distribution (CND), given 

by 

f(x)=(l -$ 4 (x$) +r; cJqx*) 
with 0 < z < 1. (Note that P-densities are contained in the Pearson system. Therefore 
we take other densities than in Tables 2,4.) 

Instead of giving analogues of Tables 2 and 4 we restrict attention to the limiting 
values f (s)/fo(s). The densities are standardized. In case of CND-densities we take 
z = 0.9 and varying ,u~, g2, while pI and cl are such that the mean equals 0 and the 
variance equals 1. 

Table 6 clearly supports the claim in the first paragraph of the introduction. 

6. Johnson system 

Another well-known parametric family to approximate unknown densities is the 
Johnson system (cf. Johnson and Kotz, 1970). Quantile estimators are derived by 
Slitker and Shapiro (1980). They use @(-3z)-, @t-z)--, Q(z)--, @(3z)-quantiles. 
More information on these estimators is given in Albers et al. (1994). 
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Table 5 
Estimation of densities from the Pearson system at s (0.99-quantile) in two ways; mean 
squared error (MS!?) denotes E(fJf - 1)2 with f =fR or fg, respectively; mean and 
MSE of fe/_& calculated numerically; mean and h4SE of fG/fJ estimated by simulation 
with 1000 replications; between brackets the number of times that the estimated density 
was less than lo-’ or the parameters could not be determined 

Rosenblatt Pearson 

n PO EfelfR JMSE Efdfti XLim 

(Pi,Pz)=(O,6) 

(BI,Bz)=(o~ 15) 

(j&,82)=(0.5,4) 

100 0.000 0.814 
400 0.000 0.842 

1600 0.000 0.890 

100 0.001 0.808 
400 0.000 0.828 

1600 0.000 0.878 

100 0.012 0.862 
400 0.000 0.876 

1600 0.000 0.900 

100 0.023 0.872 
400 0.000 0.905 

1600 0.000 0.913 

100 0.001 0.883 
400 0.000 0.877 

1600 0.000 0.910 

100 0.006 0.859 
400 0.000 0.861 

1600 0.000 0.896 

100 0.013 0.866 
400 0.000 0.881 

1600 0.000 0.903 

0.434 
0.246 
0.157 

0.523 
0.285 
0.180 

0.605 
0.370 
0.201 

0.609 
0.425 
0.211 

0.538 
0.263 
0.159 

0.593 
0.323 
0.188 

0.607 
0.375 
0.201 

6.700 
1.116 
1.016 

5.143 
1.116 
1.019 

5.441 
1.431 
1.031 

9.638 
1.241 
1.298 

3.424 
1.083 
1.014 

5.704 
1.079 
1.014 

2.913 
1.103 
1.010 

88.321 (124) 
0.567 (1) 
0.120 

43.697 (123) 
0.915 (89) 
0.130 (101) 

43.698 (61) 
8.937 (2) 
0.176 

73.251 (59) 
0.919 (6) 
8.421 (5) 

30.423 (107) 
0.327 (1) 
0.118 

42.318 (139) 
0.411 (196) 
0.123 (250) 

10.446 (80) 
0.415 (13) 
0.146 

Table 6 
Contaminated normal and exponential power densities f at s 
(0.99-quantile) fitted by fo from the Pearson system such that 
skewness and kurtosis correspond to f 
(a) CNDh,o2,0.9) (b) EWB) 

p2 02 s flfH B s flffl 
0.0 0.8 2.682 1.469 0.25 1.291 2.016 
0.0 0.6 3.332 3.656 1 1.138 2.766 

-0.2 0.8 2.828 1.160 2 0.819 3.107 
-0.2 0.6 4.078 3.021 

Table 7 compares Rosenblatt’s estimator with the parametric estimator when f 
itself belongs to the Johnson system. Again fi, is the squared skewness and j?* is 
the kurtosis. 
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Table 7 
Estimation of densities from the Johnson system at s (0.99-quantile) in two ways; mean 
squared error (MS?) denotes E( fn// - 1)’ with {= fR or f,-, respectively; mean and 
MSE of fo/fR calculated numerically; mean and MSE of fG/fa estimated by simulation 
with 1000 replications; between brackets the number of times that the estimated density 
was less than l/lOth of the true density 

Rosenblatt Johnson 

(81,82) n PO Ef7h mz Efo/fg - 

(0, 2.51, B 100 0.000 1 0.682 0.453 0.8 
400 0.0000 0.792 0.273 0.9 

1600 0.0000 0.869 0.171 0.9 

(0, 3)> N 100 0.0013 0.808 0.523 0.7 
400 0.0000 0.828 0.285 0.8 

1600 0.0000 0.878 0.180 0.8 

(0, 6), U 100 0.0156 0.575 0.575 0.7 
400 0.0000 0.790 0.388 0.8 

1600 0.0000 0.875 0.214 0.8 

(0, lO), U 100 0.0296 0.535 0.587 0.7 
400 0.0001 0.808 0.434 0.8 

1600 0.0000 0.885 0.224 0.8 

(0.49, 3) B 100 0.0009 0.735 0.502 0.8 
400 0.0000 0.834 0.272 0.9 

1600 0.0000 0.900 0.162 0.9 

(0.49, 4), u 100 0.0056 0.619 0.558 0.7 
400 0.0000 0.782 0.343 0.8 

1600 0.0000 0.868 0.201 0.9 

(0.49, 6), U 100 0.0142 0.577 0.574 0.7 
400 0.0000 0.788 0.384 0.8 

1600 0.0000 0.873 0.213 0.8 

1.312 1.210 (61) 
1.035 0.397 
1.013 0.146 

1.126 0.872 (34) 
1.059 0.370 
1.019 0.151 

1.093 0.886 (12) 
1.065 0.426 
1.016 0.175 

1.096 0.947 (10) 
1.041 0.402 
1.012 0.179 

1.241 0.985 (48) 
1.011 0.279 
1.013 0.139 

1.105 0.860 (28) 
1.043 0.368 (1) 
1.000 0.147 

1.146 0.905 (20) 
1.042 0.412 
1.005 0.171 

Table 8 
Contaminated normal and exponential power densities f at s (0.99-quantile) fitted by Aj 
from the Johnson system such that the @(-3z)-, @(-z)-, Q(z)-, @(3z)-quantiles of X are 
the same when X has density fo as when X has density f 
(a) CND(p2, mO.9) (b) EWP) 

Z P2 c2 s f/h Z B s f/b 
0.7 0.0 0.8 2.682 1.529 0.7 0.25 2.016 0.809 

0.0 0.6 3.332 2.788 0.50 2.326 1.000 
-0.2 0.8 2.828 1.095 1 .oo 2.766 1.168 
-0.2 0.6 4.078 2.569 2.00 3.107 1.204 

0.8 0.0 0.8 2.682 1.268 0.8 0.25 2.016 0.761 
0.0 0.6 3.332 2.399 0.50 2.326 1 .ooo 

-0.2 0.8 2.828 1.250 1.00 2.766 1.249 
-0.2 0.6 4.078 3.075 2.00 3.107 1.317 
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Table 9 
Standardized /I- and r-densities at s (0.99-quantile), estimated in two ways; bias denotes 
E(f/fi - fife); mean squared error (MS.!?) denotes E(f/f^ - 1)’ with f = fR or l;g, 
respectively; mean and MSE of f/_& calculated numerically; mean and MSE of f/fi 
estimated by simulation with 1000 replications; between brackets the number of times 
that the estimated density was less than 10e5 or the parameters could not be determined 

Rosenblatt Box-Cox 

n PO Efl& v%% f/f0 bias Azz 

/I(2,2) (s = 1.973) 100 0.000 0.948 0.328 
400 0.000 0.972 0.173 

1600 0.000 1.008 0.102 

/I(S, 32) (s = 2.633) 100 0.003 0.851 0.567 
400 0.000 0.853 0.296 

1600 0.000 0.893 0.179 

8(2,8) (s = 2.853) 100 0.002 0.869 0.567 
400 0.000 0.865 0.287 

1600 0.000 0.901 0.173 

r(2) (s = 3.280) 100 0.005 0.834 0.579 
400 0.000 0.848 0.321 

1600 0.000 0.889 0.190 

r(6) (s = 2.902) 100 0.005 0.859 0.588 
400 0.000 0.860 0.315 

1600 0.000 0.896 0.185 

I-(32) (s = 2.582) 100 0.003 0.845 0.568 
400 0.000 0.850 0.300 

1600 0.000 0.890 0.182 

1.113 0.162 0.636 (28) 
1.113 0.023 0.192 
1.113 0.009 0.134 

0.990 1.064 5.300 (9) 
0.990 0.099 0.469 
0.990 0.025 0.171 

0.937 0.550 2.784 
0.937 0.046 0.296 
0.937 0.013 0.136 

1.008 0.849 3.409 (4) 
1.008 0.092 0.441 
1.008 0.027 0.171 

1.032 1.834 9.718 (8) 
1.032 0.104 0.515 
1.032 0.035 0.201 

1.020 1.850 (1.19 (9) 
1.020 0.115 0.592 
1.020 0.029 0.193 

We conclude that, compared to the Pearson system, the (quantile) estimators of 
the Johnson system perform much better. Nevertheless, for 12 = 100 Rosenblatt’s 
estimator is still substantially better. So again we have the surprising situation that 
for not too large n the parametric estimator is worse, even if the sampling is from 
the parametric family itself. 

Table 8 shows how well unknown densities are approximated by the Johnson 
system, when applying quantile estimators. 

Although in case of EPD-densities there is a substantial improvement compared 
to the Pearson system, approximations to CAD-densities remain poor and hence the 
claim in the first paragraph of the introduction is still in action. 

7. Box-Cox transformation 

Box and Cox ( 1964) introduced a parametric model by assuming that the trans- 
formed observation has a known type of distribution, for which we take the normal 
family. More specifically, we say that X belongs to the Box-Cox model if Y, 



60 W. Albers et al. I Computational Statistics & Data Analysis 27 (1998) 47-60 

defined by 

1 (Xfi*)” -I 

Y= 1, ’ A # 0, 
log(X + &), 21 = 0 

is N(,M~,$)-distributed. If (L,,LL~+~)/(~~,c~) is sufficiently large, then the probability 
that 1, Y + 1 is negative is sufficiently small. We will assume that this indeed is the 
case, and we ignore that X is not well defined on this set of small probability. 

Estimators based on sample-quantiles are derived in Albers et al. (1994). Here 
we show (Table 9) how the parametric approach compares to Rosenblatt’s estimator, 
when sampling from standardized fi- and r-densities, not belonging to the family 
(cf. Tables 2,4). 

Although the ratios f(s)/f ( ) 0 s are close to one, there is no improvement in MSE- 
terms compared to Rosenblatt’s estimator. On the contrary, for IZ 5 400 (which is of 
special interest to us) Rosenblatt’s estimator performs (much) better. 

8. Conclusions 

For estimating the density f at a fixed point s parametric models are studied as 
a compromise between assuming perfect knowledge of the form of the density (like 
normality) and no knowledge at all (nonparametric approach). Special attention is 
focussed on the situation where f(s) is small and the number of observations not too 
large. This estimation problem arises e.g. in determining test limits in quality control. 

It turns out that larger parametric models give improvements for a great variety 
of distributions compared to application of the normal density, but that they hardly 
can compete with Rosenblatt’s estimator. Surprisingly, even with observations from 
the parametric family itself, for sample sizes up to 400 there is no guarantee for 
improvement compared to the nonparametric Rosenblatt estimator. Therefore in the 
test limit problem we recommend to apply the one based on Rosenblatt’s estimator, 
as presented in Albers et al. (1997), when normality fails. 
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