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Abstract: When screening a production process for nonconforming items the objective is to 
improve the average outgoing quality level. Due to measurement errors specification limits can- 
not be checked directly and hence test limits are required, which meet some given requirement, 
here given by a prescribed bound on the consumer loss. Classical test limits are based on normal- 
ity, both for the product characteristic and for the measurement error. In practice, often non- 
normality occurs for the product characteristic as well as for the measurement error. Recently, 
nonnormality of the product characteristic has been investigated. In this paper attention is 
focussed on the measurement error. 

Firstly, it is shown that nonnormality can lead to serious failure of the test limit. New test limits 
are therefore derived, which have the desired robustness property: a small loss under normality 
and a large gain in case of nonnormality when compared to the normal test limit. 

Monte Carlo results illustrate that the asymptotic theory is in agreement with moderate sample 
behaviour. 

Keywords and Phrases: specification limit, consumer loss, inspection, second order unbiasedness, 
density estimation, Monte Carlo experiments, Edgeworth expansion. 

1 Introduction 

M a n y  s ta t i s t ica l  p r o c e d u r e s  a r e  first ly d e v e l o p e d  a s s u m i n g  n o r m a l i t y  of  the  

obse rva t i ons .  R e a l i z i n g  tha t  resul ts  m a y  d ra s t i ca l ly  c h a n g e  w h e n  n o r m a l i t y  

fails a n d  rea l i z ing  tha t  as  a rule  the  c l a im of  n o r m a l i t y  in p rac t i ce  is h a r d l y  

r ea sonab l e ,  a lo t  o f  effort  is i nves t ed  to  gene ra t e  s ta t i s t ica l  p r o c e d u r e s  w h i c h  

c a n  be app l i ed  in m u c h  m o r e  gene ra l  s i tua t ions .  T h i s  t e n d e n c y  is a lso  seen  in 

se t t ing  test  l imits .  

T e s t  l imi t s  a re  used  w h e n  d u r i n g  i n spec t i on  i t ems  a re  c o m p a r e d  wi th  g iven  

spec i f i ca t ion  l imits .  T h e  p r e sence  o f  m e a s u r e m e n t  e r ro r s  forces  p r o d u c e r s  to  

set test  l imi t s  w h i c h  a re  s l igh t ly  m o r e  str ict  t h a n  the  spec i f i ca t ion  l imits .  I t  is 

i m p o r t a n t  to  set  these  accura te ly :  test  l imi ts  wh ich  a re  t o o  s t r ic t  cause  un-  

necessa ry  loss  o f  yield,  w h e r e a s  those  wh ich  a re  t o o  l ibera l  l e a d  to  c o n s u m e r  

losses w h i c h  e x c e e d  a g r e e d  bounds .  (The  c o n s u m e r  loss  is the  p r o b a b i l i t y  t ha t  
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a product is both nonconforming and accepted.) A test limit tl is called better 
or more accurate than another one given by t2, if it comes closer to the pre- 
scribed bound on the consumer loss. 

While nowadays statistical process control gets much attention, still the 
inspection approach remains of ongoing interest. This happens when rework 
costs are low or when relations between process characteristics and final 
product characteristics are not all that clear, as is often the case for example 
in semiconductor industry. Indeed, the problem has received attention in the 
literature over a long period, ranging (at least) from Grubbs and Coon (1954) 
to Mullenix (1990), Easterling et al. (1991), Albers et al. (1994a, b, 1997). When 
dealing with the topic of process screening one may use different models and 
different objectives as for example in the papers of Tang (1987), Bai et al. 
(1990), Bai and Lee (1993), Bai and Kwon (1995), Kim and Bai (1992), Owen 
et al. (1976, 1977, 1981). 

Distributional assumptions in this area concern the distribution of the pro- 
duct characteristic and the distribution of the measurement error. In Albers et 
al. (1997) attention is devoted to nonnormality of the product characteristic, 
still assuming normality for the measurement error. However, in practice 
it turns out that also normality of the measurement error often fails. So, the 
logical next step is to investigate this situation and that is the aim of this 
paper. 

The program is as follows. Firstly, we will investigate the effect of incor- 
rectly assuming normality of the measurement error. It turns out that test 
limits derived under the condition of normality of the measurement error, 
may seriously fail in the sense that nonnormality can lead to severe violation 
of the prescribed bound on the consumer loss. Results are given in section 2. 

Secondly, by nonparametric methods a new test limit is derived assuming 
that the distribution of the measured products is known, while the distribu- 
tion of the measurement error is completely unknown (apart from some regu- 
larity). This corresponds to an often in practice occurring situation, where we 
have many production data and only a few observations of the measurement 
error. Note that it requires some effort to get observations of the measure- 
ment error. For  instance, we can take the difference between the standard 
measurement of the product (in the factory) and a very precise measurement 
of the same product (for instance in a laboratory), where the latter one is con- 
sidered as free of measurement error. The new test limits are presented and 
investigated in section 3. The proof of the main result is given in section 7. It 
is among others based on Edgeworth expansions. 

Thirdly, in section 4 nonparametric density estimation is added, leading to 
new test limits in case both the distribution of the product characteristic and 
the distribution of the measurement error is unknown. 

Fourthly, instead of the criterion of unbiasedness, which is used in sections 
3 and 4, another criterion, related to the confidence interval concept, is studied 
in section 5. Simulations show that the asymptotic theory works very well in 
predicting finite sample behaviour of the test limits w.r.t, both criteria. 
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Finally, in section 6 an application of the results in semiconductor industry 
is presented. 

2 The Normal Test Limit Under Nonnormal Distribution of the 
Measurement Error 

Let X be the true value of the product characteristic and U the measurement 
error. Then we observe 

~" = X + U .  (2.1) 

We assume, that X and U are independent. Moreover,  U is small w.r.t. X in 
the sense that a 2 = var(U) ~ 0. Further let/1 = E[U] and 

implying E[V] = 0 and var(V) = 1. It is assumed that V has a continuous 
density, denoted by g. 

We consider a specification interval of the form ( -  ~ ,  s]. Denote by 

n = P ( X  > s) (2.3) 

the probability that a product characteristic is nonconforming. For  a given 
test limit t the consumer loss CL( t )  is defined by 

CL( t )  = P ( X  > s , ) (  < t) . (2.4) 

Since we accept a product if )f < t, CL( t )  is the probability that a product 
is both nonconforming and accepted. The producer and consumer have 
agreed that the consumer loss should be at most  ~, which is typically quite 
small (10-100 ppm, parts per million). To achieve a maximal yield within this 
restriction the test limit should satisfy 

CL( t )  = ~ .  
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The  behav iou r  of  the consumer  loss under  several  d i s t r ibu t ions  of the mea-  
surement  e r ror  becomes  more  clear  if C L ( t )  is e x p a n d e d  in terms of  a. In 
o rde r  to m a k e  such an expans ion  we put  some regular i ty  condi t ions .  

Let  F x  and  .Ix be the d i s t r ibu t ion  funct ion and  densi ty  respectively,  of  X. 
Assume 

f x ( s )  > 0 , f fr  is b o u n d e d  . (A1) 

Since test l imits  are  as a rule more  strict  than  specif icat ion limits,  we have 
t < s if p = 0 and  t < s + p for genera l  p. Hence  

s + p - t  
a - - -  > 0 (2.5) 

O" 

and  the test l imit  is wr i t ten  as 

t = s + I t -  a a .  (2.6) 

M a n y  of the results we are  going to present  r ema in  true for, or  can be 
a d a p t e d  to negat ive  a, bu t  is does  not  seem wor thwhi le  to bo the r  a b o u t  this. 
F u r t h e r  we tac i t ly  assume tha t  a is bounded as a,  7 -*  0. Deno t ing  by l a  the 
i nd i ca to r  funct ion of  the set A, we define, for k = 0, 1, 2 , . . . ,  

co 

ha(a) = E [ ( V  - a)klv>a] = f (v -- a)kg(v)dv  . (2.7) 
a 

Note  tha t  

h~k(a) = - k h k - l ( a )  . (2.8) 

L e m m a  2.1: Assume (A1). Then  

C L ( t )  : o f x ( s ) h l ( a ) { 1  + O(a)} (2.9) 

as a - -*  O. 
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Proof: By definition 

CL(t )  = P ( X  > s , X  + U < t ) =  P ( X  > s , X  + l a - a V  < s + 1 2 - a a )  

P ( X  > s , X  < s + a ( V - a ) )  

o o  

f {Fx ( s  + a(v - a)) - Fx(s)}g(v)dv  
a 

oo 

(~fx(s)(v - a) + �89 - a)2)O(v)dv 
a 

for some ~v between s and s + a(v - a). The result now easily follows. [ ]  

In the part icular  case of  a normal  measurement  error  distribution we get 
9(v) = ~b(v) with ~ the s tandard  normal  density. In that  case we write 01 
instead of ht. So, 

ol(a)= ~ ( v -  a)O(v)dv. 

Let 

to : s + l t -- aoa 

be the test limit derived under  the assumption of a normal ly  distributed mea- 
surement error  with mean/~ and variance a 2. Then, by L e m m a  2.1, 

7 = afx(s)91(ao){1 + O(a)} . 

If  U is not  normal ly  distributed, but  still with expec ta t ion / t  and variance 
a 2, we get, again by L e m m a  2.1, 

CL (to) = afx (s) hi (ao) { 1 + O(a) } 

and hence we have the following theorem. 
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Theorem 2.1: Assume (A1). Fo r  the no rma l  test l imit to we have 

cL( t0)  _ h (a0) (1 + (2.10) 
7 gl (a0) 

a s  t r  ---* 0 .  

It  is clear  f rom (2.10) that  the behaviour  of  hl(ao)/gx(ao) determines  the 
pe r fo rmance  of the no rma l  test limit to. 

The  following examples  show tha t  the rat io hl(a) /gl(a)  can differ much  
from one to bo th  sides, even for symmet r ic  and un imoda l  densities g of  V and 
choices of  a between 0 and  3. 

Example 2.1: In this example  it is shown that  there exist cont inuous  sym- 
metr ic  un imodal  densities g for which hi (a) is arbi t rar i ly  small for any  a > 0. 

Consider  densities of  the form 

c +  ( ~ ) v  i f0_<  v < e  

g~(v) = d(e -1 - v) if/~ ( / )  ( •-1 

0 i f v _ > e  -1 

with c and d such that  fg~(v )dv= 1, fg~(v)vadv= 1, implying c =  
e- l (1  + o(1)), d -- 6e3(1 + o(1)) as e --- 0. Hence  ~ ( v  - e)g~(v)dv ~ 0 as 
e ~ 0 and thus ~a~(V -- a)g~(v)dv --* 0 for every a > 0 as e ---* 0. [ ]  

Example 2.2: In this example  we take the Laplace  dis tr ibut ion with expecta-  
t ion 0 and var iance  1. Its density is given by 

g ( , )  = 2 

Tak ing  a 0 = 2  we get 
hl(ao)/gl(ao) = 13.3. 

Fo r  the density 

h~(ao)/gl(a0) = 2 . 4 6  and  for a 0 = 3  we obta in  

g(v) = � 8 9  e x p { - [  lvq~lv l ]  1/2} 

we get hi (2)/#1(2) = 3.88 and  hi (3) /gl  (3) = 40.9. 



Accurate Test Limits Under Nonnormal Measurement Error 7 

Note that the densities in this example are also continuous, symmetric and 
unimodal. []  

From these examples we conclude that a test limit based on the assumption 
of normality of the measurement error indeed can lead to severe violation of 
the bound ~ if normality fails, due to differences in the tails of the true distri- 
bution and the normal distribution. 

Approximation by the normal distribution is often sufficiently well justified, 
if dealing for instance with the expectation of a measurable quality charac- 
teristic. If dealing with the nonconforming probability, i.e. with a quantity 
related to the tails of the distribution, then the normal approximation can be 
arbitrarily bad, thus leading to completely useless results. Therefore, often 
there are situations, where the normal approximation should not be used even 
for continuous, symmetric and unimodal distributions looking very similar to 
the normal distribution. 

Remark 2.1: In case of a N(0,a2)-distributed measurement error the only 
information needed is the variance a 2. It is seen from Theorem 2.1 and 
Examples 2.1 and 2.2 that information about  the variance (and the expecta- 
tion) of the measurement error distribution is not sufficient in the general 
case. To get a first order accurate test limit we also need hi (a). []  

Remark 2.2: One may hope that some knowledge on the distribution of U is 
available. Although in particular cases this may happen, one should realize 
that some global information is not enough. In Remark 2.1 it is already stated 
that "classical" quantities as the expectation and variance are not sufficient to 
get a reasonable result. Moreover, it is rather dangerous to rely on a vague 
idea on the shape of the distribution of U. It  is already seen Example 2.2 that 
for interesting values of a0 like 2 or 3, the ratio hl(ao)/gl(ao) (which deter- 
mines the performance of the test limit, cf. (2.10)) may differ much from 1. It is 
well-known that by eye the logistic distribution is close to the normal distri- 
bution. Nevertheless, for the logistic distribution we get hl(2)/gl(2)= 1.70 
and hi (3)/gl (3) = 6.24. So, assuming that the distribution of U is known can 
only be done if one is pretty sure about  it, especially w.r.t, its influence on 
hi (a). Otherwise, large errors may occur. [ ]  

Remark 2.3: One may think that since U is small w.r.t. X, the form of the dis- 
tribution of U is not that critical and to assume that this distribution is 
known is a rather weak assumption. However, this is not true. The fact that U 
is small is very important  in determining the test limit adequately as is seen 
from the error term O(tr 2) in Theorem 3.1: the smaller tr, the better the result. 
However, having used the fact that tr is small, it is seen from (2.7), (2.9) and 
(2.10) that V, the standardized U, is the crucial quantity and hence the form of 
the distribution is important  too. []  



8 W. Albcrs ct al. 

3 Asymptotically Second Order Unbiased Test Limits, f~ Known 

3.1 Stochastic Test limits 

It is clearly seen in Theorem 2.1 and Examples 2.1 and 2.2 that nonnormality 
of the measurement error distribution can not be ignored in determination of 
test limits. 

A straightforward solution to the problem would be to estimate the distri- 
bution of U (and X if it is also unknown) sufficiently well, take the estimates 
for the exact values, and fix the test limit t according to the defining relation 
given by (2.4). However, firstly, without analyzing the resulting procedure, 
one has no check on its quality and properties. Secondly, it is well-known 
from similar ~ituations, that inserting estimates in test limits causes serious 
bias, cf. Albers et al. (1994a, 1994b, 1997), and a correction is needed. The 
effect of inserting estimates can be ignored only if the estimates are based on 
very large samples. The reasoning that for moderately large sample sizes the 
distribution of U (and X if it is also unknown) can be estimated rather well 
and hence the estimated consumer loss is reasonably close to y, turns out to 
be quite misleading. Even if normality holds, considerable sample sizes (much 
larger than in "classical" estimation problems) will be required before the 
correction can be neglected. This is explained in detail, e.g. in Albers et al. 
(1994a, Section 3; 1994b, Section 3). Further, it should be noted that often 
there is in advance not much knowledge on the distribution of the measure- 
ment error, cf. the discussion on p. 98 of Albers et al. (t994a). In the general 
case, not assuming normality, yet larger sample sizes are needed. Therefore, as 
a rule, in practice the bias should be corrected. 

To analyse the procedure and to correct for the bias, insight on the influ- 
ence of the estimates on the behaviour of the test limits is required. The above 
mentioned straightforward solution is much too untransparant to give such 
insight. Hence, it can hardly be analysed and it seems not feasible to make the 
necessary bias correction. 

Moreover, even if it would be possible to give a bias correction, while the 
starting point of this solution looks rather straightforward, one ends up with 
a far more complicated procedure, when developing a bias correction. This is 
partly due to the definition of the test limit, which is of an implicit form. 
Therefore, to find a bias correction the obvious way is to simplify things 
by approximations. But then it seems far more promising to take the need 
of approximations into account from the very beginning. It is shown e.g. in 
Albers et al. (1994a), that second order approximations in this context perform 
strikingly well and are for all practical purposes almost equal to the exact solu- 
tion, still having the advantage of being explicit and analytically tractable. 

Lemma 2.1 indicates the first step in such an approach, giving the first 
order approximation (the final test limit will be based on a second order 
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approximat ion,  cf. (3.12) and (3.14)): we should take 

t = s + It - atr (3.1) 

with a given by 

h i ( a )  - Y (3 .2 )  
~fx(s) 

However,  in general It and a are unknown and also the function hi is 
unknown.  (Even also f x ( s )  may be unknown.) These unknown parameters  
and unknown function(s) should be estimated by available observations. This 
implies that  the resulting test limit t depends on these observations,  leading in 
turn to stochastic C L ' s .  

A new problem arises, since we now deal with a stochastic variable, rather 
than with a single number.  In the latter case the criterion to be used is evi- 
dent: the closer this number  is to ),, the better the test limit is. In the stochastic 
case more  choices can be made. In this section and the next one we take the 
viewpoint  of  unbiased estimation. So we look for a test limit such that the 
resulting stochastic C L ,  denoted by C L ( ~ ) ,  makes 

IE[CL(~)]  - Yt (3.3) 

sufficiently small. 

3.2  M o d e l  a n d  B a s i c  A s s u m p t i o n s  

Let X be the true value of  the produc t  characteristic and U the measurement  
error. Then  we observe 

Y~=-x+u. 

In this section we consider the situation, often occurr ing in practice, that  we 
have so m a n y  product ion  data  that  the density f~? (and its derivative) may  be 
assumed to be known.  With the nota t ion  as in section 2 we have 

f (  = X + It - t r V  (3.4) 



10 w. Albers et al. 

and hence 

f e ( s  + It) = 
oo 

I fx(s + ~v)0(v)dv --ix(s) + �89 + . . .  
- - 0 0  

(3.5) 

Therefore the following assumptions will 
O(~r2)): 

f 2 ( s + I t ) = f x ( s ) + O ( a  2) as a - - O ;  

f x (S  + It) = f ) ( s )  + O(a) as a ~ 0 .  

Further assume that 

typically hold ((A3) even with 

(A2) 

(A3) 

Jx andf~  are bounded ; (A4) 

E[I VI r] < oo for some r > 6 .  (A5) 

The parameters It, a and the density 9 of V are unknown. For  estimation 
i.i.d.r.v.'s U l , . . . ,  U, are available, each Ui distributed according to U. Often 
in practice the random sample has limited size. 

3.3 Definition o f  the New Test Limit 

Define for k = 0, 1,2 

rk(d) = E [ ( - U  -- d)kl{_v_d>O}] . 

The relation between rk and hk (cf. (2.2) and (2.7)) is 

rk(d) = o'khk(tr -1 (It + d) ) . 

In view of (3.1) and (3.7) now (3.2) reads as 

(3.6) 

(3.7) 

r l ( s -  t) = y / f x ( s )  �9 (3.8) 
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Estimating rk by 

n 

tk(d)  = n -1 y ~ ( - U ,  - d ) k l { _ u  _a>o} (3.9) 
i=1 

and p by 

/ / =  n -i s Ui , (3.10) 
i=1 

(3.8) and (A2) suggest the first order accurate test limit 

tl = s - ~ 1  (~/fYc (s + IJ)) = s - d, , say .  (3.11) 

Note that ~1 is a piecewise linear decreasing function and h e n c e  !'11 is well 
defined. To get (3.3) up to second order we have to add an additional term for 
correcting the second order term in the Taylor  expansion (one term further 
than in the proof of Lemma 2.1): 

1 fx(s + ~) t 2 ( d , )  
= - ( 3 . 1 2 )  

2f~(s + ;,) ~'o(dl) 

Further we have to correct for the bias involved by taking estimators at sev- 
eral places. It will turn out that the appropriate correction term for this effect 
equals 

~Su - ~ l (d l )  {1 - ~0(dl )}  (3 .13)  
n ~2(dl)  

and the resulting new test limit is 

= ~, - ~ -  G = s -  (d~ + ~ + G ) .  (3.14) 

3.4 S e c o n d  Order  U n b i a s e d n e s s  i f  lz is U n k n o w n  

Although the measurement error distribution may by nonnormal in many 
practical situations, still its mean may be zero or otherwise known. Therefore, 
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we here first discuss the si tuat ion that  /t is known.  In that  case at all 
places w h e r e / i  occurs, implicit  or  explicit, in (3.11)-(3.14) one should replace 
it by / t .  

Let  

al = hl  1 afs + It) (3.15) 

and 

dl = r1-1 /t ' (3.16) 

then 

a 1 dl + a (3.17) 
o" 

We put  the following mild assumpt ions  

ai is bounded  as a,  y ~ 0 

g(al) > 0 (A6) 

g'(a) is bounded  on [a - at[ < e for some e > 0 . 

The  following theorem expresses that  ~ is a second order  unbiased test limit, 
thus satisfying the aim as ment ioned  in (3.3). 

Theorem 3.1: Assume (A1)- (A6) .  Then  

E[CL([)] -= y(1 + o(n -1) + O(a2) ) + O(n -r/4) (3.18) 

a s n ~ o o a n d a ,  y ~ 0 .  

The  p r o o f  of  T h e o r e m  3.1 is given in section 7. 
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3.5 Simulation Results 

To demonstrate Theorem 3.1 for finite sample sizes, simulations have been 
carried out. For each replication a sample of size n of measurement errors 
U1 , . . . ,  Un is simulated, the test limit ~ is computed according to (3.14), and 
the corresponding consumer loss CL(~) is computed numerically. This total 
procedure is executed 10000 times. Based on the 10000 replications, the aver- 
age and standard deviation of the consumer loss is computed if observations 
on the measurement error are from a normal or a F-distribution. In order to 
see in what way the bias correction ~u, cf. (3.13), contributes, we also com- 
puted the 'uncorrected' test limit, 

t2 = tl - t~ (3.19) 

(again with/~ replaced by the known p). 
Further, for comparison, the normal test limit tN is presented. 
Firstly, it is seen in Table 1 and Table 2 that Theorem 3.1, which is based 

on asymptotics, gives good approximation results for finite sample sizes. This 
is seen by comparing the simulated E[CL(~)]'s with 7. Moreover, the approx- 
imation for E[CL(t2)] works very well also (compare theoretical E[CL(t2)] 
with simulated E[CL (t2)]. 

Secondly, it is seen that already t2 gives quite accurate results with still a 
significant improvement  by the bias correction. As a consequence E[CL([)] is 
almost equal to 7, except when to(dr) and n are too small. (Note that by defi- 
nition ?0(dl) >_ n - l  and hence to(d1) and consequently the correction term cu 
cannot be accurately estimated if r0 and n are too small.) 

Thirdly, in the normal case we are loosing not much compared to the nor- 
mal test limit (which is especially constructed for that  case), while with the 
gamma distribution we get a large gain. This is exactly what is wanted. 

Finally, both for ~, t2 and the normal  test limit the standard deviation is 
rather high. This is no problem if all parts are shipped to the same consumer. 
If this is not the case, we can hardly expect that a consumer who complains 
about  receiving parts with 215 ppm rather than 100 ppm, will be soothed 
much if he is told that his competitor received only 30 ppm, thus making the 
average more correct! This point is further discussed in section 5. 

3.6 Estimation of p 

When ~ is unknown, it is estimated by (3.10) leading to the test limit ~ as given 
in subsection 3.3. It can be shown that, to the order considered, no additional 
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Table 1. Test limit i with a N(0, a2)-distributed measurement error 

theory 

(7,a,n) = (100,0.01,0.01), to(d1) = 0.481 

n E[CL(i2)] 

40 102.7 
80 101.4 

500 100.2 
2000 100. I 

simulated 

E{CL(/2)] E[CL([)] E[CL(/N)] 

102.7 (24.2) 100.0 (24.1) 100.0 (11.6) 
101.4 (16.9) 100.1 (16.8) 100.0 (8.2) 
100.2 (6.8) 100.0 (6.8) 100.0 (3.3) 
100.1 (3.4) 100.0 (3.4) 100.0 (1.6) 

(~,,a,n) = (100,0.10,0.01), ro(dt) = 0.082 

n E[CL(~2)] E[CL(i2)] E[CL(t3] E[CLqN)] 

40 127.9 125.3 (77.4) 101.9 (73.3) 100.3 (43.6) 
80 113.9 112.3 (51.5) 99.5 (50.0) 99.4 (30.0) 

500 102.2 102.1 (19.5) 99.9 (19.4) 100.0 (12.0) 
2000 100.6 100.7 (9.7) I00.1 (9.7) 100.1 (6.0) 

(y,a,n) = (20,0.01,0.15), r0(dt) = 0.023 

n E[CL(i2)] E[CL(/2)] E[CL(t')] E[CL(&)] 

40 41.3 43.2 (40.8) 31.9 (36.3) 20.3 (15.6) 
80 30.6 31.0 (24.8) 23.5 (22.9) 20.1 (10.4) 

500 21.7 21.7 (8.2) 20.0 (8.1) 19.9 (4.0) 
2000 20.4 20.4 (4.0) 20.0 (4.0) 20.0 (2.0) 

The table shows simulated mean and standard deviation (between brackets) of CL(i2), CL(t') and 
of CL(iN), based on 10000 replications. Moreover the approximation to the mean of CL(f2) is 
shown. The values of y are in ppm, n denotes P(X > s), the probability that a product is non- 
conforming, and n is the number of observations on the measurement error. 
The characteristic is standard normally distributed. 

c o r r e c t i o n  t e r m  is n e e d e d  for  e s t ima t i ng /~ .  The re fo r e ,  T h e o r e m  3.1 c o n t i n u o u s  

to  h o l d  in this m o r e  gene ra l  s i tua t ion .  W e  do  n o t  p r e sen t  he re  the  t echn ica l  

detai ls ,  b u t  refer  to sec t ion  6.3.4 in O t t e n  (1995). 

S i m u l a t i o n s  as the  ones  p r e s e n t e d  in T a b l e  1 a n d  2 b u t  wi th  e s t i m a t i o n  of  

/z by  /~, i ndeed  yie ld  resul ts  w h i c h  a re  p r a c t i c a l l y  the  s a m e  as the  resul ts  

o b t a i n e d  w h e n / z  is k n o w n .  N u m e r i c a l  e x a m p l e s  a re  the re fo re  o m i t t e d .  

4 Asymptotically Second Order Unbiased Test Limits, f~ Unknown 

W e  s tar t  w i t h  i n v e s t i g a t i n g  the  s i t u a t i o n  w h e r e / z  is known.  W h e n  the  dens i ty  

o f  X is e s t ima t ed ,  an  a d d i t i o n a l  c o r r e c t i o n  t e r m  is n e e d e d  to t he  test  l imi t  
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Table 2. Test limit i with a F(8)-distributed measurement error 

theory 

(y,a,n) = (100,0.01,0.01), to(dr) = 0.533 

n E[CL(i2)] 

40 102.2 
80 101.1 

500 100.2 
2000 100.0 

simulated 

E[CL(i2)] E[CL(0] E[CL(iN)] 

102.1 (20.7) 99.9 (20.5) 98.9 (14.7) 
101.2 (14.6) 100.1 (14.6) 98.9 (10.4) 
100.1 (5.7) 99.9 (5.7) 98.7 (4.2) 
100.0 (2.9) 100.0 (2.9) 98.7 (2.1) 

(y,a,n) = (100,0.10,0.01), ro(d~) = 0.120 

n E[CL(i2)] E[CL(i2)] E[Ct,(t3] E[CL(i~)] 

40 118.2 116.6 (60.2) 99.6 (57.0) 46.9 (39.0) 
80 109.1 107.6 (40.0) 98.9 (38.6) 43.7 (26.6) 

500 101.5 101.1 (15.3) 99.7 (15.2) 40.6 (10.5) 
2000 100.4 100.2 (7.6) 99.9 (7.6) 40.2 (5.2) 

(~,, a, n) = (20, 0.01,0.15), ro(dt) = 0.040 

n E[CL(i2)] E[CL(i2)] E[CL(t3] E[CL(iN)] 

40 32.1 33.4 (29.3) 24.4 (26.6) 2.7 (5.9) 
80 26.0 26.1 (17.2) 20.8 (16.0) 1.7 (2.9) 

500 21.0 21.0 (5.9) 20.1 (5.8) 1.0 (0.7) 
2000 20.2 20.3 (2.8) 20.0 (2.8) 0.8 (0.3) 

This table summarizes the same simulation as in Table 1, however, with a measurement error 
which has a F-distribution with shape parameter 8 and with the location and scale parameter 
such that the mean is 0 and the variance a 2. 

which  has  been  der ived  in sec t ion  3. It  will be seen by a s imple  heur i s t ic  a rgu -  
m e n t  tha t  e s t i m a t i o n  of the  m e a s u r e m e n t  e r ro r  d i s t r i b u t i o n  a n d  e s t i m a t i o n  
of f 8  c an  be dea l t  wi th  separa te ly .  (The s ame  p h e n o m e n o n  of n o  m i x - u p  of 
e r rors  is p resen t  in  Albers  et al. (1994b, cf. f o r m u l a  (3.11)).) T o  a v o i d  too  m a n y  
technica l i t i es  we do  n o t  give a r igo rous  proof.  

I t  is i n tu i t ive ly  c lear  tha t  co r rec t ing  for e s t i m a t i n g  f 8  m a y  be res t r ic ted  to 
the first o rde r  te rm of  E[CL(~)] as G in  (3.13) also o n l y  is c o n c e r n e d  wi th  the  
first o rde r  t e rm  of E[CL(~)], cf. (7.28) a n d  (7.34). 

T o  der ive  the a d d i t i o n a l  co r r ec t i on  term,  let fSc(s + It) be the e s t i m a t o r  of 

f.g(s + It) a n d  define 

7 
q -  , (4.1)  fe(s+it) 

a n d  

al  = h { l ( q ) ,  41 = h ~ l ( ~ ) .  (4.2) 
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With test limit tl = s + ~ - tile the consumer loss CL(tl)  is approximated by, 
cf. Lemma (2.1) and condition (A2), 

af2 (s + 12)hl (dtl) , 

and its relative error by 

CL(tl) - y ~ hl(til) - hl(al) = hl(til) - hl(al) ~- hl(dl) - hl(t~l) (4.3) 
)' hi (al) hi (al) hi (al) 

The first term in (4.3) is equal to 

c l - q  _ f s  ( f s  1 + ( f s  1 + . . "  �9 
h,(al) f , ( s  + lt) ~f2(s + P) \ f2 (s  + l t) 

(4.4) 

For the second term in (4.3) we write 

h1(~1) - h1(~1) = hl(h-(l(?l)) - ~1 

(4.5) 
(h~(h-(l(r 1) = hl(h~l(q)) - q + (71 - q) \ ~ ( r  , 

with ~ between q and ~. Note that h' 1 is the derivative of hi and not some 
newly defined estimator of h~. 

The first term in (4.5) is already studied in the proof of Theorem 3.1, cf. 
(7.28), (7.26) and (7.3). The second factor in the last term of (4.5) will be small 
and hence its expectation will be of smaller order than E[~ - q], appearing in 
the first term of (4.3). Together with (4.3) and (4.4) we therefore obtain 

- [h-~)l) h l (h-{ l (q) ) -q]  (4.6) E[CL(tl)] )' ,~ E c l - q  + 
y hi(a1) 

In view of (4.6) we see that indeed estimation of fs  and estimation of the 
measurement error distribution can be done separately. The first term on the 
right-hand side of (4.6) concerns estimation of fs  (cf. (4.4)), the second term 
concerns the estimation of the measurement error distribution with known 
fs  For the latter the correction term was already derived in section 3. What 
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remains is an additional correction term in ~u to cancel 

E[~ - q] 
h , ( . , )  

Hence, cf. (7.28), the additional correction term should be equal to 

hi(a1) E[Cl - q] 
h0(al) hl(al) 

To estimate the density (and its derivative) we assume that we have inde- 
pendent observations -~l, .--,~'m from ~', which are also independent of the 
observations U1, . . . ,  Un from the measurement error. We take Rosenblatt's 

estimator (by (f'~?) we denote the estimator of Jx to avoid possible confusion 

with the derivative offx ,  which is denoted bYfx ) 

1 Zi and (f '~) (s + p) = Zi , (4.7) f~(s+l,) = 2-m-h ,=~ 

where 

Z~=_{1 if f ( i ~ [ s + p - h , s + p + h ]  
0 otherwise, 

-1  if X i ~ [ s + l t - h , s + g ]  

Z,i = 1 if X~ e (s + / t , s + / t  + hi 

0 otherwise, 

h = f{m~((s + / t -  f)/.?)}-1/2 

(4.8) 

and 

h : ~ {m~( ( s  + ~, - ~ ) / / ) } - l / , .  

Here in the bandwidths ~ and f are the sample mean and sample standard 
deviation of X. (For a discussion on the choice of the estimator and the band- 
widths we refer to Albers et al. (1997).) 
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As a consequence we have 

m 1 1 E[0 - q] ~ _ (4.9) 
hi(a1) 2mhfs  m 

The test limit then becomes, cf. (3.14), 

(4.10) 

with 

dl = r, ' (;-+ l') 

_ 1 ~f~2)(s+p) ~2(dl) (4.11) 
2 f 2 ( s + a )  ~'o(d,) 

---- ~ -  ~ ( d l )  ro(dl) 2mhf,2-(s+It) " 

To see how this test limit behaves for finite sample sizes, simulations are carried 
out  for the same situations as in Table 1 and Table 2, see Table 3 and Table 4. 

The results indicate that  m = 100 observat ions are not  enough to estimate 
the density in the tail of  the distribution. If a sufficiently large number  of 
observat ions is available the consumer  losses are quite close to y. Est imation 
of  the measurement  error  works very well, except when to(d1) and n are too  
small. This is seen by not ing that  there is only a minor  difference between 
n -- 80 and n = 2000. If  p is unknown, it is est imated by (3.10). Replacing in 
(4.10) and (4.11)/1 b y / i  (and of  course also in (4.7) and (4.8)) the desired test 
limit is obtained. As in section 3 no further correct ion term is needed. 

Remark 4.1: The distribution of  the produc t  characterist ic X may  be not  con- 
stant in time in certain practical situations. This issue is not  specific for the 
new test limit, derived in this paper. The quest ion whether  one may  assume 
that  the distribution of  X (and also of  the measurement  error  U) does not  
depend on time is more  general and can be put  for all test limits. 

Test limits are not  used for one single new item, but a whole series of  new 
items is judged. After some time the test limit will be updated.  The longer one 
is going to use a certain limit, the better it should be and hence the more  
observat ions are needed for the est imation part. This intuitive feeling is made  
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Table  3. Test limit i with a N(0, a2)-distributed measurement error 

(y,o,n) = (100,0.01,0.01), to(d1) = 0.481 

(m = 100) 
n E[CL(t')] nr 

40 67.0 (28.9) 43 
80 67.0 (25.4) 33 

500 66.8 (21.9) 34 
2000 66.4 (21.4) 21 

(y,a,n) = (100,0.10,0.01), r0(dt) = 0.082 

(m = 100) 
n E[CL(i)] nr 

40 74.6 (64.9) 23 
80 69.7 (47.8) 32 

500 67.9 (30.4) 25 
2000 68.2 (27.0) 25 

(m = 400) (m = 1600) 
E[CL(t')] nr E[CL(t')] nr 

90.5 (39.7) 37 98.0 (36.7) 1 
90.1 (36.2) 27 98.2 (33.6) 1 
90.4 (33.5) 5 97.8 (29.8) 1 
89.7 (32.3) 4 98.1 (29.9) - 

(m = 400) (m = 1600) 
E[CL(i)] nr E[CL(i)] nr 

96.9 (81.7) 4 99.6 (77.5) 
92.4 (63.6) 3 97.9 (58.9) 
93.1 (50.7) 2 97.5 (39.1) 
92.7 (48.5) 3 97.6 (34.5) 

(y, tr, 7t) = (20, 0.01,0.15), r0(dl) = 0.023 

(m = 100) (m = 400) 
n E[CL(i)] nr E[CL(i)] 

40 32.0 (37.4) - 32.5 (37.6) 
80 23.9 (23.3) - 24.1 (23.5) 

500 19.9 (10.2) - 20.1 (9 3) 
2000 19.8 (7.5) 20.0 (6.1) 

nr 
(m = 1600) 

E[CL(O] 

32.7 (37.1) 
24.0 (23.0) 
20.2 (8.8) 
20.0 (5.2) 

nr 

The table shows simulated mean and standard deviation (between brackets) of CL(i), with i from 
(4.10) based on 10000 replications. To estimate the density and its derivative Rosenblatt's estima- 
tors are applied. The number of observations to estimate the density is denoted by m. In the table, 
nr denotes the number of replications for which the test limit could not be determined (caused by a 
very small estimate of the density). The values of y are in ppm, n denotes P(X > s), the probability 
that a product is nonconforming, and n is the number of observations on the measurement error. 
The characteristic is standard normally distributed. 

m o r e  prec ise  in A lbe r s  et al. (1994b). It  has  been  s h o w n  there  that ,  at  first 

o rder ,  there  is no  loss  in w o r k i n g  wi th  a n u m b e r  of  sma l l e r  samples ,  e a c h  

l e a d i n g  to its o w n  es t ima tes ,  as c o m p a r e d  to  us ing  one  single,  ve ry  l a rge  s a m -  

ple. M o r e o v e r ,  f r o m  the  pe r spec t i ve  o f  robus tness ,  i t  is e v e n  qu i te  a t t r a c t i v e  

to  w o r k  wi th  a n u m b e r  o f  s e p a r a t e  steps, as  this will  p r o v i d e  be t t e r  p ro t ec -  

t ion  aga ins t  d e v i a t i o n s  f r o m  the  a s s u m p t i o n  tha t  the  p r o d u c t i o n  p roce s s  is 

s t a t i ona ry .  F o r  m o r e  de ta i l s  we  refer  to Albe r s  et  al. (1994b), Sec t ion  5. 

O f  course ,  in cases  of  s t r o n g  t i m e - d e p e n d e n c e ,  the  d e p e n d e n c e  of  t i m e  

s h o u l d  be  in se r t ed  m o r e  d i rec t ly .  H o w e v e r ,  one  s h o u l d  h a v e  an  i d e a  of  the  

fo rm of  this d e p e n d e n c e ,  s ince it  s h o u l d  be  m o d e l l e d  exp l ic i t ly  to de r ive  test  

l imits .  I f  the  d e p e n d e n c e  is s t r o n g  e n o u g h  a n d  can  be  m o d e l l e d  a d e q u a t e l y ,  i t  

m a y  be  useful  to  d o  it. I n v e s t i g a t i o n s  in this  a r e a  m a y  l e a d  to  new in t e r e s t i ng  

p r o b l e m s .  W e  d o  n o t  t r ea t  such  m o d e l s  in this  paper .  
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Table 4. Test  limit i with a F(8)-distributed measurement  error  

(~,,a,n) = (100,0.01,0.01), ro(dl) = 0.533 

(m = 100) (m = 400) (m = 1600) 
n E[CL(O] nr  E[CL(i)] nr E[CL(~] nr  

40 66.0 (26.5) 35 90.0 (37.5) 28 97.8 (34.9) 1 
80 66.1 (23.7) 19 90.4 (35.0) 16 97.6 (32.5) 1 

500 66.0 (20.9) 24 89.8 (32.8) 4 98.0 (29.9) 
2000 65.7 (20.4) 27 90.3 (32.t) 4 97.8 (28.7) 1 

(y,a,n) = (100,0.10,0.01), ro(di) = 0.120 

(m = 100) (m = 400) (m = 1600) 
n E[CL(t')] nr  E[CL(i)] nr  E[CL(~)] nr  

40 70.6 (53.4) 26 94.6 (70.2) 3 99.5 (65.3) 
80 68.2 (39.4) 34 93.7 (58.8) 9 99.4 (51.1) 

500 68.1 (27.3) 24 93.5 (45.9) 7 99.4 (35.8) 
2000 68.4 (25.4) 40 92.7 (42.3) 3 99.2 (33.6) 

(~,,a,n) = (20,0.01,0.15), ro(al) = 0.040 

(m = 100) (m = 400) (m = 1600) 
n E[CL(~)] nr  E[CL(i)] nr  E[CL(i)] nr 

40 24.1 (26.8) - 24.4 (26.9) - 24.5 (27.1) 
80 21.0 (17.5) - 21.2 (17.2) - 21.0 (16.6) - 

500 19.8 (8.4) - 19.9 (7.3) - 20.1 (6.6) - 
2000 19.7 (6.9) - 20.0 (5.5) - 20.0 (4.3) - 

This  table summarizes  the same simulat ion as in Table 3, however, with a measurement  error  
which has a F-dis t r ibut ion with shape parameter  8 and with the location and scale parameter  
such that the mean is 0 and the variance a 2. 

Even if one assumes no change in time, choosing n and m consti tutes an 
impor tan t  problem. The effect on  the accuracy w.r.t, n when f 8  is known is 
given in Theorem 3.1. Est imating f~? results in case of  normal  measurement  
errors in an addit ional  error  term of order  O(~,m-t), of. Theorem 3.3 in Albers 
et al. (1997). The simulat ion results in Table 3 and 4 show that  also here the 
improvement  f rom m = 100 to 400 and from m = 400 to 1600 is twice about  a 
factor  4 in most  cases. [ ]  

5 Test Limits for Which ~ is Violated With Small Probability 

It is seen from Tables 1 -4  that the new test limits accurately correct for the 
bias. However,  the standard deviation is not small and hence CL(~) will vary 
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widely a round  ~. Fo r  certain applications,  for example  one and the same con-  
sumer  receiving all batches,  this will be no serious problem,  since the long run 
average  of the consumer  loss will indeed tend to 7, notwi ths tanding the con- 
siderable var ia t ion between batches.  

In other  appl icat ions  a s t ronger  condi t ion will be more  satisfactory. A test 
limit ~ (with v from 'violated')  is required such that,  for some small  posit ive 0t, 

P(CL(~) > 7) = a (5.1) 

with sufficient precision. This approach ,  related to the wel l -known confidence- 
interval concept ,  guarantees  that  in the long run in a fract ion of 1-~t of the 
cases the consumer  loss will be at mos t  y. 

F r o m  (7.27), (7.28) and the definition of al in (7.3) it follows by L e m m a  7.2 
that  CL(~) is asymptot ica l ly  normal .  Fo r  the unbiased test limit this would 
imply (5.1) with ~t = 0.5. To  get smaller  ct we modi fy  the test limit by intro-  
ducing a negat ive bias. 

Let  

(5.2) 

with 

~i, = hi -1 ( s + / t )  ' (5.3) 

the correct ion term ~ as in (4.11) and 6v such that  

P(CL(;v) >__ 7) = a (5.4) 

is ob ta ined  to sufficient precision, for a given ~. 
F r o m  (7.27) and (7.28), neglecting higher order  terms, in combina t i on  with 

(4.3), (4.4) and  (4.5) it follows that  

CL(iv) - y ~,(~l_al)h'l(al) [/~(S+lX) ) 
hl(a l )  \ f 2 ( s  +/1) 1 

+ k f  ~ (s + IX) h, (al-----~ " 
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Rosenblatt's estimator is applied to estimate the density, cf. (4.7) and (4.8). It fol- 
lows from Lemma 7.2 and section 4 that the right-hand side is asymptotically 
normal AN(IaCL , tr2L) with (neglecting terms of order n - l ,  h 2 and (mh)-x in/~CL) 

h~(al) 
f l C L  ~- Cv hl(al) 

and, cf. (7.17) and (7.24), 

o.2L = h2(a,) - h~(al) + 1 
nh2(al) 2mhf.c(s + la) " 

Hence cv should be taken 

hl(al) I h 2 ( a l )  - h2(al) 
cv = -U" htl(al---~ V nf~{(a-~ -~ 2 m h f s ( s + p )  ' 

where u~ = qb-l(1 - ~). 
The test limit thus becomes 

iv = s - d l - ~ - ~ v  , 

with 

e -  1 + l , )   2(dl) 
2 fe(s + It) Po(d,) 

rl(dl) l~2(dl)  - i f ( d  1) ~0 U~t 
 O(al) 2mhfj?(s + It) " 

When p is unknown, it should be estimated by / i ,  given in (3.10). Our ex- 
perience with the approach in this section is that it works very well for finite 
samples, el. e.g. Albers et al. (1994a, Section 3). 
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6 An Application in Semiconductor Industry 

As an example of  the theory we consider a television color  decoder  TDA9162 /  
N1 manufac tured  at Philips' consumer  IC plant at Nijmegen. F rom several 
characteristics specified we choose one that  should be below s = 670.0. For  
n = 44 products  both a s tandard measurement  and a precise labora tory  mea-  
surement is carried out. F rom product ion m = 2732 observat ions are avail- 
able. T w o  histograms summarize the data. 

The histograms indicate that  the assumption of  normali ty  for neither the 
characteristic nor  the measurement  error  is justified. A plot (not presented 

F 

r 120" 
e 

q 100" 
u 

e 80" 
n 

c 60" 
Y 

40" 

20 

t 
, - l 

I . 
I 

580 600 620  640 660 680  700 720 740  

Fig. 1. His togram for production data. 

F 
1-  

e 

q 

U 

e 

n 

C 

Y 

12" 

10" 

8" 

6 ~ 

4" 

2" 

,, 

- 1 2  

i i i 

- 8  - 4  0 4 8 12 16 

Fig. 2. His togram for the measurement  error. 



24 W. Albers  et al. 

here) of the values of Xi against the values of Ui(i = 1 , . . . ,  n) shows that it is 
reasonable to assume that the measurement error and the inspected charac- 
teristic are independent. 

The estimated mean of the measurement error is equal to 1.38, therefore we 
estimate the density (and its derivative) at s + / ~  = 671.38. To apply Rosen- 
blatt 's estimators, first we determine the bandwidths, cf. (4.8). The sample 
mean and sample standard deviation of the X-observations are 653.6 and 
10.02, respectively, leading to h = 0.666 and h = 2.584. We find f2,(s + ~) = 
0.0096 and (fx)(S +/])  = -0.002.  

Suppose the bound on the consumer loss is ~ = 100 ppm. Then in case of 
unbiased estimation we find ~ = 661.92, cf. (4.10). Since m is very large, the 
part  of the correction ~,, cf. (4.11) which corrects for the estimation of f~  may 
be omitted. (Its value is 0.006.) If the consumer loss should exceed ), with 
probabili ty ~t = 0.10 only, we find tv = 661.70, cf. (5.2). (Again we omit the 
part  of the correction term with m in the denominator.) 

About the reliability of the test limit we remark the following. The simu- 
lation results show that the accuracy of the test limit depends on the value of 
to(d1) = P ( U  < -d l ) .  In the present situation there are two observations to 
the left of - d l  = -7.98.  The simulation results indicate that two observations 
in expectation to the left of the true value of - d l  is sufficient. 

7 Proof of Theorem 3.1 

It is assumed in this section that the conditions of Theorem 3.1 hold. The 
proof starts with showing that we may restrict ourselves to a neigbourhood of 
al, where we can make expansions. 

Let, for k = 0, 1, 2, 

?1 

hk(a) = n - '  ~_,( Vi - a)kl(v,>at (7.1) 
i= l  

with 

g i = - ~ - I ( u  i - ] . l )  , i = 1 , . . . , n .  (7.2) 

Let 

=h_,f y (7.3) 
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and for every el, e2, e3 > 0 let 

A = A(el, e2, e3) 

__:{,a,_a,,<e,,Ihz(&t.___)_ h'l(til) h2(al)h,l(al ) _<e2, 

1 + h;(~l) 1 + h](al) < e3~ (7.4) 
{h;(tit)} 2 {h' l (al)}  2 - J " 

Note  that  h' 1 is the derivat ive of  hi and not some newly defined es t imator  of 
h i. Since obviously  

E[CL(t)]  = E[CL( t ) IA]  + O(P(AC) ) , (7.5) 

the error  caused by restriction to A is determined by p(AC). 

Lemma  7.1: For every el, e2, e3 > 0 

P ( A  c) = O(tl -r/4) as n --~ oo . (7.6) 

Proof" Since hi is nonincreasing,  h i ( ~ i l ) - - h i ( a t )  by (3.15) and  (7.3) and  
h' 1 = - h o  by (2.8), til - al > el implies 

hi (al + el) - hi (al + el ) ~ hi (al)  - hi (al + el ) >__ elho(al + el) > 0 . 

(Note that  the smaller  el, e2, e3 the larger A c. Hence  w.l.o.g, we m a y  assume 
tha t  el is sufficiently small to ensure that  ho(al + el) > 0 by (A6) and  the con- 
tinuity of  g.) In view of (A5) 

Elhl (a l  + el) - hi(a1 + el)l r = O(n -r/2) 

as n ~ ~ and hence 

P(t]l - al ~ el) = O(n -r/2) as n ~ oo . (7.7) 
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S i m i l a r l y  we get  

P( t] l  - a l  _< - el)  = O(n -r/2) as n ~ ~ . 

A g a i n  b y  (A5) 

E[lh2(al + el) - h2(al  + el)l  r] = O(n -r/4) as n ~ oo . 

O n  the set  ldl - a l l  < el m o n o t o n i c i t y  of  h2 imp l i e s  

h2(al + el) < h2(t~l) _< h2(al - el)  �9 

F o r  a n y  q > 0 we m a y  t a k e  el suff ic ient ly  sma l l  such  t h a t  

(1 - q)h2(al) <_ (1 - rl/2)h2(at + el) �9 

Hence ,  for  a n y  ~ />  0, 

(7.8) 

P ( td l  - all < el,h2(dl) < (1 - q )h2(a l ) )  (7.9) 

<_ P(h2(al + el)  _< (1 - tl/2)h2(al + e l ) )  = O(n -r/4) as n ~ ~ . 

S i mi l a r l y ,  for  a n y  r / >  0, 

P( l a l  - a l l  --- el, h2(a l )  >-- (1 + r / )h2(al ) )  = O(n -r/4) as n ---* oo . (7.10) 

S ince  h' 1 (a) is a s u m  of  b o u n d e d  i . i .d . r .v . ' s ,  p r o b a b i l i t i e s  l ike  

P(h ' l ( t i l  ) >_ (1 + rl)h'l(al)) (7.11) 

a r e  even  e x p o n e n t i a l l y  sma l l  for  a n y  r / >  O. In c o m b i n a t i o n  wi th  (7.7)-(7.10) 
the  resu l t  is n o w  eas i ly  o b t a i n e d .  [ ]  

Remark 7.1: If  (A5) is r e p l a c e d  b y  

E[e tv2] < ~ for  s o m e  t > 0 
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we obtain  P(A c) = O(e -a") for some 6 > 0 by s tandard  large deviat ion 
results. [ ]  

The  next step in the p roof  is to m a k e  expansions.  We give an Edgewor th  
expansion of the distr ibution of fix in L e m m a  7.2, leading to expansions of 
momen t s  in L e m m a  7.6. In the rest of  this section el is small enough to ensure 
that  o(a) > 0 and o'(a) is bounded  on [a - atl < e, cf. (A6). 

We define the following 

nn(y)  = P((til - al)X/n _~ y) = P(hl (a l  + y/x/n)  < ht(a l ) )  

lan(y ) = hl(al + y/x/n)  

a2(y) = h2(a, + y/~fn) - h~(al + y/v/-n) (7.12) 

pn(y) = E[{(V - (al + y / v 'n ) ) ,  l{v>a,+y/v,~} -/a, ,(y)}a]/a3(y) 

zn(y) = hi(a1) - Pn(Y) v ~ .  
~.(y) 

Lemma 7.2: With H,  and z, as in (7.12), uniformly for lY[ -< e l v ~  we have 

{1 + [z,(y)[3}]H.(y) - H*(y)[ -- o(n -1/2) , (7.13) 

with 

H i ( y  ) = ~(z , (y ) )  - p"(y---~) (~(z,(y)){z~(y) - 1}n -1/2 . (7.14) 
O 

Proof" Direct  appl ica t ion of T h e o r e m  20.6 in Bha t t acha rya  and Rao  (1976), 
taking, in their nota t ion,  s -- 3 and 

f ( y )  -- (1 + Ix13} �9 l(-o~,x](y) if x < 0 

and 

f ( y )  = {i  + [x[3} �9 l[x,oo)(y) if x > 0 ,  

respectively. [ ]  
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Lemma 7.3: With z., Pn f rom (7.12) we have, a s  n ~ o o ,  uniformly in 

]Yl </~IV/~, 

zn(y) = A t y  + A2y2/x/n  + O([yl3/n) 

Pn(Y) : A3 + O(lyl/x./-h) , 

(7.15) 

(7.16) 

with 

A1 = -hrl (al)b 

A2 = - �89 - h'l(al){1 + h' t(al)}hl(al)b 3 

A3 : {h3(al) - 3h2(al)hl(al)  + 2h~(al)}b 3 

b = {h2(a 0 - h2(al)} -U2 . 

(7.17) 

Proof" By Tay lo r  expansion we have, uniformly in [Yl < elV ~, 

I~,z(y) = hl (a l )  + h' l(al)Y/v 'n + �89 h]'(al)y2/n + O([y[3/n 3/2) 

try(y) = h2(al) - h~(al) + {h~(al) - 2h ' l (a l )h l (a l )}y /x /n  + O(y2/n)  , 

as n ~ ~ .  The  results follow by noting tha t  h~ = - 2 h l .  [ ]  

Lemma 7.4: With H~ from (7.14) and A and el f rom (7.4) we have 

E[v/n(al - a l ) l a ]  = 1 - H*(y) - H * ( - y ) d y  + o(n -1/2) 
o 

E[n(dl - al)21x] = f 2y{1 - U;(y) + u ; ( - y ) } d y  + o ( n - l n ) ,  
o 

(7.18) 

(7.19) 

a s n ~  o o .  
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Proof" Let  B = {141 - a l l - <  el}. It is seen f rom the p r o o f  of  L e m m a  7.1, cf. 
(7.9)-(7.11), tha t  P(A n B c) = O(n -~/4) as n ~ oo. 

There fo re  

E[n(dI - al)21A] = E[n(5 - at)21B] + O(n -r/4+1) (7.20) 

a nd  

E[x/~(til - a l) lA] = E[v~( t ]  - a l ) ln ]  + O(n -'/4+1/2) (7.21) 

as n ~ oo. N o t e  tha t  for r > 6, n -r/4+l = o(n -U2) as n ~ oo. 
Par t ia l  in tegra t ion  yields 

E1v~ 
E[n(fq - al)21B] = J" y2dHn(y) 

--E 1 V ~ 

= - H . ( , 1  + 

+ 2 J" y{ l  - H.(y)  + H n ( - y ) } d y .  (7.22) 
0 

The first t e rm on the r igh t -hand  side is sufficiently small.  T o  see this we wri te  

e~n{1 - H n ( e , v ~ )  + H . ( - e , v ' % ) }  -=- e~n{1 - H*(e, vfn) + H ~ ( - e l v ' n ) }  

- eZn(H.(elv/-n) - H*(elvfn)} + e Z n { H . ( - e l v ~ )  - H * ( - e , V ~ ) }  . 

There  exists e4 > 0 (cf. also (7.15)) such that  

]z.(Y)l >- e4[yl , 

for [y[ _< et v ~ .  Hence ,  for some  J > 0 we have  tha t  

e~n{1 - H ; ( e l v ' ~ ) }  = O(e -a") 

(7.23) 

e~nH* ( -e l  vfn) = O( e-'~n) . 
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By L e m m a  7.2 we get 

~ . { n . ( - ~ , V ~ )  - n ; ( - ~ , ~ ) }  = o ( . - ' )  

and  therefore the first term on the r ight-hand side of  (7.22) is o(n - l )  
n --+ oo. By (7.13) and (7.23) we obtain 

.[ lyllH,(y ) _ H,(y) ldy < o(n-1/2) ~[ lYt dy 
-~,,/n _~,~ 1 + e431yl 3 

= o ( n - 1 / 2 )  

as n ~ ~ and (7.19) is established. 
In the same way (7.1 8) is proved. 

Lemma 7.5: I f y  = o(nl/2), then for some A # 0 

H*n(y) = # ( A l y )  + A2q~(Aly)y2/v"n - ~ ~ (A ly ) { (A ly )  2 - 1} 

+ O(qJ(Ay)/n) , 

a s n - +  o o .  

Proof  In  view of  L e m m a  7.3 Taylor  expansion of 
r + x)) a round  x = 0 yields the result. 

Lemma 7.6: We have 

E [ v / n ( d l  - a l ) lA]  --  
A2 1 
A~ vrh 

- -  + o(n  -1/2)  

E[#l(t~ 1 - a l )21A] = ~ 1 2 +  o ( n - l / 2 )  , 

a s n ~  ~ .  

functions 

as 

[ ]  

like 
[ ]  

(7.24) 
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Proof." C o m b i n a t i o n  of L e m m a  7.4 and  L e m m a  7.5 and direct calculat ion 
yields the result. [ ]  

Next  we expand  CL(~) on the set A. By a similar  Tay lo r - a rgumen t  as in the 
p roof  of L e m m a  2.1, but  going one step further, we get 

CL(t)IA = {txfx(s)hl(6) + �89 ~2f~c(s)h2(6)}{1 q- O(txZ)}lA , 

where 

6 _ s + p - t  

(7.25) 

_ _  _ ~ :  + ~(~) + ~ ( ~ ) ,  
o" 

~(a) c" a f x ( s  + lu) h2(6,) (7.26) 
2 / ~ ( s + u )  h'1(61) ' 

~(a) _ 2. _ h1(6,)  {1 + h'1(61)} 
. {h{ (6 , ) }  2 

Applicat ion of (A2) and  (A3) yields in combina t ion  with (7.25) 

CL(t)IA {afs + p)hl(6) 1 2 ,  = + ~ a  fx(S+l~)h2(&)}{1 + O(o'2)}lA . (7.27) 

Tay lo r  expansion of  hi (6) a round  al yields 

hi(a) = hi(a1) + ((al - al) + (o(a) _~_ o(a))}h,l(al ) 

+ 1(61 -- al)2h~(al)  + 1(61 - al)2{h~t(r - h~r(al)} 

+ { ( 6 t -  al)(6 (a) + 6(u a)) + �89 (~(a)+ f(a))2}h~,(~ ) (7.28) 

for some ~ between al and 6. 

Wri t ing c (a) and c (a) for the correct ion terms with at and  hk instead of &l 
and  hk, we have  that  c (a) = O(tr) and c(u a) = O(n -1) as n -~ ~ ,  a ~ 0. 

In view of (7.4) and  (7.26) it is seen that  ~(~)IA = O(a) and &(,a)lA = O(n -1) 
as n -~ ~ ,  a --~ 0 and  hence 

E[1A(~(~))2I = O(~2), E[1A(G(a)) 2] = O(n -2) . (7.29) 
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Moreover ,  using e.g. results on the oscillation modulus  of  the empir ical  pro-  
cess (cf. M a s o n  et al. (1983); we omit  the technical details) 

E[1AO (a)] = c (a) -~ O(trn -3/4 log n) , E[1AC(u a)] = C(u a) At- 0 ( ,  -7/4 log n ) .  

(7.30) 

Toge the r  with L e m m a  7.6 this gives 

E[1A(til -- a l)(~ (a) q- cu(a))] = O((7/,1-1 + P1-2) . (7.31) 

Again by L e m m a  7.6 and the definition of ~ we obta in  

E[la(f i  - al)2{h~'(~) - h~(al)}] = o(n -I) . (7.32) 

Further ,  combina t ion  of (7.17), (7.24) and (7.26) yields 

E[la{(fi l  - a,)h'l(al ) + c(a)h'x(al) + �89 (fi, - al)2h'[(al)}] : o(n -1) �9 (7.33) 

By (7.27)-(7.33) we get, using tha t  hl(al)afs +/~)E[1A] = ~{1 + O(n-r/4)} 

E[CL('i)IA] = y{1 + o(n -1) + O(a2)} + c(a)hPl(al)afs + I z) 

+ �89 + 

Not ing  that  

E[h2(ti)lA] = h2(al) + O ( t r +  n -1) (7.34) 

it is seen tha t  indeed c (a) compensa tes  the second order  t e rm of CL([). This 
comple tes  the p roo f  of Theo rem 3.1. 
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