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Abstract

Using the generalized variable formulation of the Euler equations of fluid dynamics, we develop a numerical method
that is capable of simulating the flow of fluids with widely differing thermodynamic behavior: ideal and real gases can be
treated with the same method as an incompressible fluid. The well-defined incompressible limit relies on using pressure
primitive or entropy variables. In particular entropy variables can provide numerical methods with attractive properties,
e.g. fulfillment of the second law of thermodynamics. We show how a discontinuous Galerkin finite element discretization
previously used for compressible flow with an ideal gas equation of state can be extended for general fluids. We also exam-
ine which components of the numerical method have to be changed or adapted. Especially, we investigate different possi-
bilities of solving the nonlinear algebraic system with a pseudo-time iteration. Numerical results highlight the applicability
of the method for various fluids.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Many numerical methods for fluid dynamics are suitable only for a single, idealized type of fluid. Most prom-
inently, algorithms for compressible flow are often tailored to ideal gasses and another class of schemes is
designed for incompressible media. Both underlying fluid models are important as they capture well the essential
behavior of many fluid flows. At the same time the restriction to one or the other case means that the numerical
method cannot be applied for other media (e.g. real gasses) or for situations in which several fluids with different
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properties populate the domain in the form of a fluid composite (e.g. bubbly flow). Furthermore, many com-
pressible flow schemes suffer from convergence and accuracy problems in the low Mach number (M) limit
[1,2], which hampers their application on domains where high and low Mach numbers coexist.

In this article, we develop a numerical method that can be applied to different media (i.e. different equations
of state) and for high as well as low Mach numbers. We use the compressible Euler equations but notice the
approach to conservation laws that was introduced by Godunov [3]: by performing a change of variables, the
system matrix of a (quasi-) linear system of partial differential equations (PDE) is symmetrized if the special set
of entropy variables is used. The symmetrized form of the governing equations has several interesting proper-
ties [4], in the case of fluid mechanics especially that it yields a formulation suitable for a wide range of phys-
ical conditions. Aside from the broad applicability of the numerical method, another advantage is the
satisfaction of the second law of thermodynamics [5]. Dependent on the numerical method, this property
may rely on the choice of a numerical flux [6]. Note that entropy stability is a global stability statement, just
like energy stability, and it does not ensure that locally no numerical oscillations can occur.

The application of the generalized variable approach – in which various sets of variables may be used
instead of the conservative base set – has been at the heart of a number of finite element discretizations for
the Euler and Navier–Stokes equations [5–7]. An important observation is that for pressure primitive and
entropy variables the Euler equations have a well-defined incompressible limit. Provided all components of
the numerical method maintain this property, stable and efficient algorithms can be designed that apply to
both compressible and incompressible flow. This route was taken in [4,8], which contain numerical examples
for both cases based on a least-squares continuous finite element method (FEM). The theoretical advantages
of entropy variable formulations are opposed by the complexity of using them, which may also be the reason
why they have not been exploited more often. For background on the symmetrization of hyperbolic systems
and the derivation of the entropy variables we refer to the work of Barth [6] and references therein.

Our numerical method combines the general variable formulation (with entropy variables constituting a par-
ticular choice) with a discontinuous Galerkin (DG) discretization [9,10]. The advantages of this type of discret-
ization include increased locality – both in the sense of data dependencies and regarding the possibility of more
accurate solution representation: local hp-adaptation is accommodated naturally, i.e., h-adaptation for refining
the mesh in space regions where (possibly discontinuous) small scale flow structures need to be resolved [9,11],
and p-refinement for representing the solution with higher order smooth basis functions per element [12]. By
using a space–time weak formulation and (discontinuous) finite-element basis functions in space and time,
the method can be readily combined with an arbitrarily Lagrangian–Eulerian formulation [9] to tackle problems
with moving and deforming meshes and boundaries. Barth [6] has analyzed the standard DG formulation and
has proven (nonlinear) entropy stability with entropy variables for several choices of the numerical flux.

In his implementation, Barth uses a Newton iteration for the solution of the system of equations arising
from the discretization. While the global linearization of the entropy variable formulation refers back to
the well-behaved Jacobians of the pseudo-linear form, its implementation is cumbersome and the computation
costly. In the algorithm developed in this article, we avoid the linearization and use a pseudo-time iteration for
solving the nonlinear system of equations [11,13]. The technique consists of augmenting the (time-dependent)
equations with an additional artifical time coordinate, for which the computed solution at a previous time level
is the initial condition, and for which a steady state solution is sought. The steady-state in pseudo-time is
approached by integrating with Runge–Kutta methods, often adapted to this special purpose [9,13–15].
The advantage of these methods is that the local character of the DG discretization is – as far as possible –
conserved as no global operations or data structures are required. Pseudo-time methods have been analyzed
by Klaij et al. [14] for the ideal gas Navier–Stokes equations and found beneficial in particular for advection-
dominated flow. An important question is, however, how to combine the pseudo-time method with the general
variable approach. The analysis by Klaij et al. cannot answer this question as it considers a simplified problem
– the scalar advection–diffusion equation – which does not accommodate the transformation that is interposed
in the generalized variable formulation. Our findings demonstrate how the pseudo-time iteration can be com-
bined with the generalized variable approach and which measures have to be taken when the incompressible
limit is attained. Note, however, that for large scale computations the pseudo-time integration method needs
to be combined with multigrid convergence acceleration. We have developed this technique both for viscous
and inviscid compressible flows [9,34], but in this article we focus on the investigation of the space–time
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discretization and pseudo-time integration method for the generalized variables approach including general
equations of state.

The outline of this article is as follows: the Euler equations of fluid dynamics and the variable sets which can
be used to obtain a formulation with well-defined incompressible limit are summarized in Section 2. Here we
also provide thermodynamical equations of state for different media. These relations are necessary to close
the Euler equations and to incorporate the behavior of different fluids. The main focus of this article is the finite
element discretization detailed in Section 3; we extend a space–time discontinuous Galerkin technique for an
ideal gas [9] to a method suitable for both compressible and incompressible flows. Stability aspects regarding
the solution of the nonlinear system of equations with a pseudo-time method are analyzed in Section 4. We
show how the pseudo-time iteration can be joined with the generalized variable formulation and what the
impact of different fluid models on the algebraic equation system is. We present numerical examples in Section
5 for both compressible and incompressible fluids. Finally, we draw conclusions in Section 6.

2. Governing equations and variable sets

2.1. The Euler equations for conservation variables

We consider a fluid during the time interval T :¼ [ts, te] in the d-dimensional space domain E. The physical
conservation statements for the conserved quantities mass, momentum, and energy lead to the introduction of
the conservation variables U and the flux matrix F given by
U ¼
q

qvi

qetot

0B@
1CA; F k ¼

qvk

qvivk þ pdik

vkðqetot þ pÞ

0B@
1CA; with i; k ¼ 1; . . . ; d: ð1Þ
Here q denotes density, vi are the velocity components with respect to a Cartesian coordinate system, and p is
the pressure. The total energy etot in this case is the sum of internal and kinetic energy,
etot ¼ eþ k ¼ eþ 1

2
v2

j ; ð2Þ
and the summation convention is implied on repeated indices. The Euler equations of fluid dynamics written
in conservation form are
oU s

ot
þ oF sj

oxj
¼ 0; s ¼ 1; . . . ; d þ 2; 8ðx; tÞ 2 E � T; ð3Þ
combined with suitable boundary and initial conditions of the form
Uðx; tÞ ¼ BðU ;U wÞ; 8ðx; tÞ 2 oE � T;
Uðx; tsÞ ¼ U 0ðxÞ; 8x 2 E;
with Uw a given set of boundary values and B a boundary operator depending on the type of boundary con-
ditions imposed. For the discretization discussed in this article, the time dimension is treated equally to the
space dimensions, hence we extend the flux matrix F by a column with the time flux F0(U) = U on the left,
to receive the space–time flux F. Making use of this definition, the Euler equations (3) can be stated as
oF sj

oxj
¼ 0; s ¼ 1; . . . ; d þ 2; ð4Þ
where the summation on j runs from 0 to d, i.e. over time and space dimensions.

2.2. Thermodynamic properties and equations of state

The non-linear system of partial differential equations (3) for the conservation variables and flux (1) con-
tains two more unknowns than equations, hence it is not closed. One additional relationship has been given by
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(2), but to complete the description, we have to specify how the internal energy e and pressure p depend on the
other variables.

Remark. In the more general context of the Navier–Stokes equations, an additional quantity, the temperature
T, is needed to describe the diffusive effect of internal energy: heat conduction. To remain within the
framework of thermodynamics that relates state variables of divariant fluids (i.e. those whose state is
determined by two independent variables, e.g. p and T), we include temperature in our formulation.

Equations that diagnostically relate state variables of a fluid, for instance q, p, e, T, are called equations of
state (EOS). The system consisting of (3) and (1) can be closed by specifying, for example, the functions
e = e(q,T) and p = p(q,T). These relations depend on the medium considered; countless variations have been
proposed to adequately describe different materials, see for example [16].

Another way to characterize different fluids – especially regarding their compressibility – is given by two
derived parameters, namely the volume expansivity ap and the isothermal compressibility bT, which are
defined as the relative changes of the specific volume a = 1/q as
ap :¼ 1

a
oa
oT

� �
p

; bT :¼ � 1

a
oa
op

� �
T

: ð5Þ
Knowledge of these two quantities in terms of the thermodynamical state allows to work out the previously
mentioned equations of state, too [17].

In the sequel we summarize the mentioned thermodynamical relations and parameters for three media: the
ideal gas, as the most frequently used idealization, the van der Waals gas, as a prototype of a real gas, and the
incompressible fluid.
2.2.1. Ideal gas

For an ideal gas with constant specific heat (at constant volume) cv and the gas constant R, the equations of
state are given by
eðT Þ ¼ e0 þ cvðT � T 0Þ; ð6aÞ
pðq; T Þ ¼ qRT ; ð6bÞ
where the subscript 0 refers to a suitable reference state. For the transformation to entropy variables (cf. Sec-
tion 2.3) we also need to know the entropy of an ideal gas at a given state:
sða; T Þ ¼ s0 þ R ln
a
a0

þ cv ln
T
T 0

: ð7Þ
The sound speed a can be computed as aðp; qÞ ¼
ffiffiffiffiffiffiffiffiffiffi
cp=q

p
with the adiabatic coefficient c = cp/cv, i.e., the ratio

of the specific heats at constant pressure and volume. The compressibility parameters defined in (5) evaluate to
ap = 1/T and bT = 1/p.
2.2.2. van der Waals gas

At high densities the interaction of the gas molecules modifies the thermodynamic behavior of the mate-
rial, which is neglected by the ideal gas approximation. The van der Waals (vdW) equations of state rep-
resent a model that takes into account the finite volume b occupied by the molecules in the total specific
volume a, and their attraction, governed by another material parameter a, see e.g. [18]. The equations of
state read
eða; T Þ ¼ e0 þ cvðT � T 0Þ þ a
1

a0

� 1

a

� �
; ð8aÞ

pða; T Þ ¼ RT
a� b

� a
a2
; ð8bÞ
where – analogously to the ideal gas – cv has been assumed constant. Unlike the ideal gas, it follows that the
specific heat at constant pressure of the vdW gas cannot be constant, since
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cp � cv ¼
R2a3T

Ra3T � 2aða� bÞ2
: ð9Þ
The derivation of the previous relationship and of the entropy of the vdW gas,
sða; T Þ ¼ s0 þ cv ln
T
T 0

þ R ln
a� b
a0 � b

; ð10Þ
can be found in, e.g., [17].
Although the vdW EOS reproduce the ideal gas EOS for a = b = 0, the vdW gas is substantially more com-

plicated because the pressure equation of state (8b) is a rational function in p, a, and T, and computing arbi-
trary states is made difficult by the nonlinearity. For temperatures below a critical temperature Tc, the (a,p)-
graph is non-monotone in an environment of the critical point (ac,pc), as can be seen from the expressions for
the compressibility parameters,
ap ¼
1

a
a�b T � 2a a�b

Ra2

; bT ¼
1

a
a�b p � a

a2 2� a
a�b

� � ; ð11Þ
which can change sign at sufficiently small values of T, p. Under these conditions sensible state evaluations are
impossible. Consequently the (iterative) computation of thermodynamical parameters fails close to the critical
point. This deficiency can be remedied, for example with the Maxwell construction. In this article only cases
with monotonic state functions are treated, which avoids non-uniqueness and guarantees the hyperbolicity of
the Euler equations with the used thermodynamical models [19,20].

2.2.3. Incompressible fluid

A different idealization, the incompressible fluid, represents the limit in which the density q is independent
of the thermodynamic state. In this case, pressure becomes a purely mechanical variable and is not determined
by an EOS like (6b). The internal energy depends only on temperature, and, assuming again a constant specific
heat at constant volume, cv, the energy is given by
eðT Þ ¼ e0 þ cvðT � T 0Þ: ð12Þ

For incompressible fluids the specific heats at constant volume and at constant pressure are necessarily equal,
cv = cp. The entropy is given by
sða; T Þ ¼ s0 þ cv ln
T
T 0

: ð13Þ
For an incompressible fluid, both compressibility parameters are zero, ap = 0, bT = 0.
At a later stage of this article the topic of different media will reappear and we will see an influence on the

choice of parts of the numerical algorithm. But notably, given the right choice, a simulation tool can be set up
that accommodates the different media mentioned above. Also in our software implementation the equations
of state are encapsulated in separate classes that can be exchanged independently from the other code. Having
provided the necessary equations of state we take a look at the Euler equations from a different angle now.

2.3. Introduction of the pressure primitive and entropy variable sets

We return to our consideration of the Euler equations (3). One way to derive numerical methods that are
suitable both for compressible and incompressible flows is to solve for other unknowns than the set of con-
servation variables U, for which the equations are originally derived. Two sets of variables that yield well-
defined formulations in the incompressible limit are pressure primitive variables Y and entropy variables V,
cf. [4]. These sets are defined as
Y ¼
p

vi

T

0B@
1CA; V ¼ 1

T

l� 1
2
v2

j

vi

�1

0B@
1CA; ð14Þ
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respectively, with l the chemical potential. We now interpret the conservation variables U as dependent on
one of these variable sets. In formulae we generally use V, but the derivation of the discretization and algo-
rithm equally holds for pressure primitive variables Y. When results are specific for one or the other set we
explicitly differentiate between the two. By rewriting (3) as quasi-linear system with respect to the variables
V, we obtain
AV
0

oV
ot
þ AV

j

oV
oxj
¼ 0; ð15Þ
with the Jacobians AV
0 ¼ oU=oV , AV

i ¼ oF i=oV . Having stated the different variable sets the benefits of using
one or the other set have to be examined. Analysis shows that [4]:

� For conservation variables U, the flux Jacobians AU
i are not well defined in the incompressible limit

ap, bT ? 0 (i.e. they contain entries that diverge or take the form 0/0). This is connected to the fact that
the equation for density in (3) loses its prognostic character for q = const – and causes the breakdown
of many numerical methods using conservation variables when simulating (almost) incompressible fluids.
� The Jacobians AY

i ;A
V
i are well defined in the incompressible limit. This corresponds to the suitability of

numerical methods based on these sets of variables to compute both compressible and incompressible flows.
In particular, many methods for incompressible flow are based on the pressure variables.
� The matrix AV

0 (for entropy variables) is symmetric and positive definite (in the incompressible case this
weakens to semi-definiteness). The matrices AV

i are symmetric.

These properties led us to adapt a discontinuous Galerkin discretization [9] to use the pressure primitive
and in particular the entropy variables, in place of conservation variables. Note that our method is not built
on the quasi-linearized form (15), but discretizes the original conservation equations (3) with an additional
dependence of U on either Y or V. The method is elementwise conservative, even in the incompressible limit.
The entropy variables have the additional advantage that they symmetrize the equations and link to nonlinear
stability, cf. [6,21].

3. Space–time discontinuous Galerkin discretization

3.1. Definitions

3.1.1. Space–time geometry and formulation

In this article we consider a flow problem on a fixed d-dimensional space domain E. The extension to mov-
ing domains and meshes with an arbitrary Lagrangian–Eulerian (ALE) formulation is easily accomplished but
outside the focus of the current work and we refer to [9] in this respect. We incorporate the time dimension in
the domain so that E � R1þd is the space–time domain of the problem. As in the domain notation, symbols
with an overbar generally refer to space dimensions only, while those without include the time dimension,
too. A point in the space–time domain is denoted as x and, depending on the context, it is represented by
its coordinates with respect to an underlying Cartesian coordinate system as x ¼ ðx0; . . . ; xdÞ ¼ ðx0; �xÞ ¼ ðt; �xÞ.

The boundary of the space–time domain oE can be decomposed into the spatial domain at the start and end
time, EðtsÞ and EðteÞ, respectively, and the hypersurface spanned by the spatial domain boundary oE and time,
Q :¼ fx 2 oEjts < x0 < teg. An example of this notation for the spatial dimension one is given in Fig. 1.

To make the space–time domain E available to finite-element methods, it has to be discretized by a suitable
mesh. First, the considered time span T = [ts, te] is partitioned into Nt intervals Tn :¼ [tn�1, tn], with ts ¼ t0 <

t1 < � � � < tNt ¼ te. The space–time domain E is partitioned by the hyperplanes H n :¼ fx 2 R1þd jx0 ¼ tng into
space–time slabs En :¼ fx 2 Ejx0 2 Tng; 1 6 n 6 N t.

At each time tn�1, a tessellation T n�1;þ
h of the physical space domain Eðtn�1Þ into Nn

el elements

Kn�1;þ
e ; e ¼ 1; . . . ;N n

el, is given. We consider elements with a shape that can be related to the reference d-cubebK ¼ ½�1; 1�d by the invertible mapping Gn�1;þ
e : bK ! Kn�1;þ

e . By extending the elements Kn�1;þ
e orthogonally

into the time dimension we obtain the space–time elements Kn
e in the slab En, mappable to the reference ele-



(a) (b)

Fig. 1. Illustration of the notation for a one-dimensional space domain: (a) space–time domain and mesh; (b) space-tesselations at an
inter-timeslab boundary.
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ment bK ¼ ½�1; 1�1þd by Gn
e : bK ! Kn

e . The set of all space–time elements in the nth space–time slab constitutes
the space–time tessellation T n

h ¼ fK
n
e je ¼ 1; . . . ;Nn

elg, and the domain of the discretized space–time slab is

En
h :¼

SNn
el

e¼1K
n
e , with h some representative measure of the cell diameter.

Remark: . In the above framework, different space tessellations T n;�
h and T n;þ

h may exist on either side of the
hyperplane Hn, allowing a re-meshing procedure to be used in case the physical space tessellation does not
fulfill the quality requirements given the current solution. The re-meshing is fully conservative as the integrals
over the time faces Kn;�

e and Kn;þ
e from the old and new space–time slab are equal even under inexact

quadrature.

In the following, the entities of codimension one (with regard to the space dimension) that bound the space
element Kn�1;þ

e are called the element faces Sn�1;þ
e;j ; j ¼ 1; . . . ; 2d. The element face Sn�1;þ

e;j is extended in the
same way into space–time as the elements, which defines the space–time element face Sn

e;j. The space–time ele-
ment Kn

e then has the boundary
oKn
e ¼ Kn�1;þ

e [Kn;�
e [

[2d

j¼1

Sn
e;j: ð16Þ
For a function w defined on the discrete space–time slab En
h, the traces at a point x of the boundary oKn

e of
element Kn

e are defined as
w�Kn
e

:¼ lim
�#0

wðx� �nKn
e
Þ: ð17Þ
Given that the normal vector nKn
e

is outward with respect to element Kn
e , the superscript ‘+’ defines the exterior

trace and ‘ � ’ the interior trace. If the point x 2 oKn
e is situated on the boundary oEn

h n ðH n�1 [ H nÞ of the
space–time slab then only the interior trace w�Kn

e
exists.

For the discontinuous Galerkin method it is beneficial to see the faces not as induced by the elements
but as independent constituents of the mesh. Hence we define different kinds of faces, according to their

position in the space–time slab En
h. Based on the element face Sn

e;j we define an internal face F int;n
fe;e0g if

9e; e0 2 f1; . . . ;N n
elg; e 6¼ e0; j; j0 2 f1; . . . ; 2dg : Sn

e;j ¼ Sn
e0;j0 , and a boundary face F bnd;n

e;j otherwise. The

internal faces are subsumed in the set F int;n and the boundary faces in F bnd;n, and finally

F n ¼ F int;n [ F bnd;n.
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3.1.2. Function spaces

The test and trial spaces for our DG method contain functions that are elements of the space of tensor
product polynomials in space, augmented with monomial basis functions in time, Qðpt ;psÞðbKÞ, on the space–
time reference element bK. Their maximum order in time and space is given by pt and ps, respectively. These
properties are reflected in the definition of the function space for test and trial functions on the space–time slab
n,
P
n;ðpt ;psÞ
h :¼ fw 2 ðL2ðEn

hÞÞ
dþ2jwjKn

e
	 Gn

e 2 ðQðpt ;psÞðbKÞÞdþ2
; 8Kn

e 2 T n
hg: ð18Þ
On one element, all variables are expanded to the same order. The order of the temporal and spatial expansion
could vary between elements, but we do not exploit this advantage of DG methods here. At the internal faces,
the polynomial representations of a variable V on the two adjacent elements may lead to different values on
the two sides of the face.

3.2. Weak form

In (4), the Euler equations appear in (space–time) divergence form and thus lend themselves well to the
standard procedure to derive the weak form of a hyperbolic PDE system: scalar multiplication with a test
function vector W 2 P

n;ðpt ;psÞ
h and integration over the space–time domain. The latter is represented as the

sum of the integrals over space–time elements Kn
e of the tessellation T n

h. Integration by parts yields
XNt

n¼1

X
Kn

e2T n
h

�
Z
Kn

e

oW r

oxs
F rsdKþ

Z
oKn

e

W �
r
eF rsnsdðoKÞ

( )
¼ 0; ð19Þ
with n the unit outward normal vector with respect to element Kn
e . The repeated index r implicitly sums over the

equations, r = 1, . . ., d + 2 and the sum over s covers the space–time dimensions, s = 0, . . ., d. In the integral
over the element boundary, the Euler flux is denoted eF . The tilde denotes a numerical flux function, whose intro-
duction is necessary because the previously defined function spaces allow discontinuities at the inter-element
boundaries. To make the discretization conservative, eF ðUL;U R; nÞ determines a unique value of the flux in
the direction n given two states UL and UR. Necessary conditions for numerical flux functions for correct cou-
pling and consistency are (i) eF ðU L;UR; nÞ ¼ �eF ðUR;U L;�nÞ, and (ii) eF ðU ;U ; nÞ ¼ F ðUÞ � n. The choice of the
spatial numerical flux function for the Euler equations is the subject of Section 3.3. Having introduced the
numerical flux, the range of the summation in (19) can be conceptionally changed: instead of integrating over
the element boundaries oKn

e one rather uses the faces F n as summation base. In this way the flux is defined un-
iquely per face and – in computational regard – needs to be evaluated only once per face, as opposed to once per
side of the face (i.e. element boundary). Obviously the numerical flux function may have to be evaluated in sev-
eral points to approximate the face integral based on a numerical quadrature rule.

In the space–time face integrals, the traces (17) are no longer uniquely defined because we lose the connec-
tion to an element. Instead, for each internal face we arbitrarily declare one element to be the left one (L) and
the other one to be the right one (R). Boundary faces have only a left neighbor and an external state VR has to
be determined from the boundary condition, for example an inflow state, or a ‘ghost state’. In any case, the
normal vector n is outward from the left element; to compensate for this, the internal limit W� in (19) has to be
replaced by the difference WL �WR in the face integral, see [9].

The sum over the space–time slabs in (19) can be dropped based on the introduction of a suitable numerical
flux in the time direction. The definition
eU ðV Þ :¼
UðV n�1

e0 jKn�1;�
e0
Þ on Kn�1;þ

e ;

UðV n
e jKnþ1;�

e
Þ on Knþ1;�

e ;

8<: ð20Þ
ensures causality and decouples a space–time slab from all others except its immediate predecessor. Here e0

denotes the number of the element in En�1
h that connects to Kn

e at Kn�1;þ
e . The limited explicit dependence

on the previous slab has been exploited already in the definition of the function space P
n;ðpt ;psÞ
h in (18). Further

it is now used to give the weak form based on a single space–time slab as:



5434 L. Pesch, J.J.W. van der Vegt / Journal of Computational Physics 227 (2008) 5426–5446
Find V 2 P
n;ðpt ;psÞ
h such that for all W 2 P

n;ðpt ;psÞ
h holds
�
X
Kn

e2T n
h

Z
Kn

e

oW r

oxs
F rsðUðV ÞÞdKþ

X
F2Fn

Z
F

ðW L
r � W R

r ÞeF rðUðV LÞ;UðV RÞ; nÞdF

�
X
Kn

e2T n
h

Z
K

n�1;þ
e

W �
r UrðV þKn

e
ÞdKþ

X
Kn

e2T n
h

Z
K

n;�
e

W �
r U rðV �Kn

e
ÞdK ¼ 0: ð21Þ
3.3. Numerical fluxes

In Eq. (21), integrals of the flux are computed on the faces. To give a meaning to the ambiguity of the state
on inter-element boundaries, the two states from the data on the neighboring elements may be considered a
(hypothetic) initial value problem with discontinuous data, a so-called Riemann problem. This interpretation
is frequently adopted in gas dynamics. The solution of the Riemann problem requires additional knowledge
about the considered medium and – depending on the amount of detail invested in the solution – different
compromises between accuracy and computational cost are possible, cf. [22]. Alternatively, the numerical flux
can be defined purely based on mathematical considerations, without reference to underlying physics. Two
possible choices for the spatial numerical flux function eF for the DG method are presented next, along with
a discussion of their suitability for the goals set out for the current work.

3.3.1. HLLC numerical flux

The HLLC numerical flux, cf. [22,23] for its derivation, is an approximate Riemann solver originally devel-
oped in the context of Godunov finite volume methods. It has been applied many times in DG FEMs, e.g. in
[10,11], and in [9], which also details the computation of the flux in space–time.

The HLLC flux is a good choice for computing ideal gas flow, and can be applied to real gasses (see the
application with the covolume EOS in [23] and Section 5.3), but ultimately its derivation restricts it to gaseous
media. The same holds for many numerical fluxes, which often do not scale correctly in the low Mach-num-
ber/incompressible limit [1,2]. This may manifest itself in the deterioration of numerical accuracy and conver-
gence. Consequently such flux functions are not suitable for a numerical method that aims at being applicable
for different media and flow conditions. Hence, when general applicability is the main concern, our simulation
framework uses the local Lax–Friedrichs flux, which applies to all fluids since it does not exploit specific infor-
mation, for example about the wave structure of a Riemann problem.

3.3.2. Local Lax–Friedrichs flux

The Lax–Friedrichs (LF) flux for conservation variables in the direction of a normal n is given by
eF ðUL;U R; nÞ :¼ 1

2
ðF sðULÞ þ F sðURÞÞns �

1

2
kmaxðUH; nÞðU R � ULÞ: ð22Þ
with kmax(Uw;n) an estimate of the maximum eigenvalue of AU ðU ; nÞ ¼ nsoF s=oU for the states U on a face.
The computation is facilitated by the knowledge of the eigenvalues of the Euler flux Jacobians for conserved
variables, cf. [22].

The LF flux adds a diffusion-like term to the (unstable) mean flux to damp numerical instabilities. It is actu-
ally overly diffusive, but thanks to its very general nature and independence of the EOS it is often preferred
when (mixtures of) general fluids are treated. For the local version (LLF), the eigenvalue computation is based
on the mean states on the adjacent element(s) and hence needs to be done only once per element. The global
version maximizes the eigenvalue non-locally, which is computationally more involved. Cockburn and Shu
[24] report that they found the LLF flux to be well-suited for their Runge–Kutta DG method, leading to less
dissipation, but also decreased robustness, compared with the global Lax–Friedrichs flux.

For entropy variables, Barth [6] defines the flux as
eF ðV L; V R; nÞ :¼ 1

2
ðF sðV LÞ þ F sðV RÞÞns �

1

2
kmaxðV H; nÞAV

0 ðV HÞðV R � V LÞ; ð23Þ
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and proves nonlinear entropy stability. The matrix AV
0 ðV HÞ is evaluated for the state Vw, for which the above

eigenvalue maximization occurs.

3.4. The nonlinear set of equations and its solution

Based on the weak form (21), a set of equations is obtained by choosing the basis and test functions.
We use the basis functions ŵ directly as test functions and define the basis as tensor product of the mono-
mials with the aforementioned order ps in space combined with the monomials up to order pt in time. In
two-dimensional space, for example, we choose as a basis of Qðpt ;psÞðbKÞ the following sequence of mono-
mials in reference coordinates x̂i: ½ŵ0 ¼ 1, ŵ1 ¼ x̂1, ŵ2 ¼ x̂2, ŵ3 ¼ x̂1x̂2, ŵ4 ¼ x̂0�, where it has been assumed
that the reference time x̂0 maps to x0 = t. Limiting the number of basis functions to 1, 4, or 5, respectively,
includes the standard cases: (i) constant representation per element (pt = ps = 0), resulting in a first order
convergent numerical method, (ii) constant in time and bilinear in space (pt = 0, ps = 1), which makes the
spatial discretization second order accurate, and (iii) second order description in both space and time
(pt = 1, ps = 1). Corresponding bases for other dimensions and the generalization to higher order are
straightforward to procure.

The basis functions exist on each element and hence we enumerate the physical space basis functions as
w(e,k,m), where e represents the element number, k 2 {1, . . ., d + 2} gives the equation number, and m indexes
the local basis functions per element. For a variable vector V 2 P

n;ðpt ;psÞ
h we denote the expansion coefficient

matrix on element Kn
e as �V n

e and subsume all expansion coefficients related to the nth space–time slab as �V n.
Based on (21), we define for V 2 P

n;ðpt ;psÞ
h (no summation on double index k):
An
ðe;k;mÞðV Þ :¼ �

Z
Kn

e

own
ðe;k;mÞ

oxs
F ksðV ÞdK; ð24aÞ

Bn
ðe;k;mÞðV Þ :¼ �

Z
Kn�1;þ

e

ðwn
ðe;k;mÞÞ

�U kðV þKn
e
ÞdKþ

Z
Kn;�

e

ðwn
ðe;k;mÞÞ

�UkðV �Kn
e
ÞdK; ð24bÞ

Cn
ðe;k;mÞðV Þ :¼

X
F2Fn

Z
F

ðwn;L
ðe;k;mÞ � wn;R

ðe;k;mÞÞ
eF kðUðV LÞ;UðV RÞ; nÞdF : ð24cÞ
In the definition of An
ðe;k;mÞ and Bn

ðe;k;mÞ we could immediately make use of the fact that the support of wn
ðe;k;mÞ is

limited to a single element Kn
e . In the same way it is clear that Cn

ðe;k;mÞ only yields contributions from faces F
that neighbor Kn

e .
For a single choice of the test function W as w(e,k,m), Eq. (21) becomes
Ln
ðe;k;mÞð�V n; �V n�1Þ :¼ An

ðe;k;mÞð�V nÞ þ Bn
ðe;k;mÞð�V n; �V n�1Þ þ Cn

ðe;k;mÞð�V nÞ ¼ 0; ð25Þ
and the set of all these equations for the nth space–time slab is denoted as
Lnð�V n; �V n�1Þ ¼ 0; ð26Þ

including the unknowns �V n and the known solution �V n�1 from the previous space–time slab, which enters
through the integral over the ‘past’ time faces in (24b). Note that the method developed in this article is
implicit, hence no Courant–Friedrichs–Lewy (CFL) criterion applies, but just the accuracy requirement
limits the time step. The evaluation of all integrals in Eq. (24) is based on Gauss quadrature rules of order
2(p + 1) on the faces and 2p + 1 on the elements, with p the maximum order of the polynomial
representation.

Having derived the FE discretization of the Euler equations, a crucial part of the numerical method is how
to solve the algebraic system of Eq. (26) for the expansion coefficients �V n. In the generalized variable context,
Newton’s method has frequently been used [4,6], since the solution of the linear system in each iteration can
benefit from the symmetrization property of the entropy variables. However, the linearization needs the flux
Jacobians AV

i , which are nontrivial to derive, implement and evaluate. In the DG context also the linearization
of the numerical flux would be required. Based on our previous work [9,10], we have chosen to pursue a dif-
ferent strategy, namely pseudo-time iteration. To apply this technique, Eq. (26) is considered dependent on an
additional (hypothetical) time variable, s, in the form
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jKn
e jP

oV
os
¼ � 1

Dt
LnðV ; �V n�1Þ; ð27Þ
where the volume of the space element jKn
e j approximates the mass matrix and the division by the time step Dt

facilitates the computation of steady state solutions and restores dimensional consistency [9]. The presence of
the matrix P will be explained later.

The solution �V n of (26) is obtained as the steady state of (27). The steady state is computed by advancing in
pseudo-time s with a Runge–Kutta (RK) method. For this purpose, specialized RK methods are available that
reduce the amount of storage and computations by computing each RK stage based solely on the previous
one. In this article, we use a 5th order method (RK5) [9] together with the Melson correction [13]. For low
values of the CFL number rDt = Dtjvj/Dx, the Melson correction stretches the stability domain of the RK
method further into the imaginary half plane to cover the eigenvalues of the Euler operator L. For high
CFL numbers, the eigenvalues are concentrated close to the imaginary axis and the Melson correction van-
ishes. These effects are achieved by making the RK scheme semi-implicit, depending on the CFL number.
The computation of the RK5 stages �V ðiÞ; i ¼ 1; . . . ; 5, using the coefficients [a1; . . . ; a5] =
[0.0791451; 0.163551;0.283663;0.5;1.0] proceeds as
�V ð0Þ ¼ �V n�1;

ð1þ askÞ�V ðiÞ ¼ �V ð0Þ þ ask �V ði�1Þ � 1

jKn
e j

P�1Lð�V ði�1Þ; �V n�1Þ
 !

; i ¼ 1; . . . ; 5;
ð28Þ
where k = Ds/Dt = rDt/rDs incorporates the influence of the physical and pseudo-time CFL numbers, rDt and
rDs = Dsjvj/Dx, respectively. In practice, a pseudo-time CFL number rDs is prescribed and used to locally de-
duce the pseudo time step Ds.

The success of the pseudo-time iteration depends on the choice of the pseudo-time step Ds. Making it too
small renders the method inefficient, while a too large value of Ds leads to numerical instabilities. The analysis
of Section 4 aims at finding suitable bounds for the pseudo-time CFL number and ways and means to allow
large pseudo-time steps in different circumstances.

It remains to explain the premultiplication of the pseudo-time derivative o�V =os with the matrix P in Eq.
(27). Although the augmentation of the system (26) with the pseudo-time derivative is an artificial step and
one could argue that it should work for any variable set directly, we found out that this is not necessarily true.
In the original pseudo-time method, the conservation variables U are related to the residual LnðUÞ in the
ordinary differential equation (ODE) system (27). If, however, the left hand side of the equations contains
a different variable set, the system can become very stiff and thereby hardly solvable, unless extremely small
pseudo-time steps are used. This effect – occurring for P ¼ I , with I the identity matrix – can be undone by
transforming to the conserved variable metric with P ¼ AV

0 . As we proceed to show in Section 4, for regular AV
0

the resulting system has the same properties as the one for conservation variables. Unfortunately, the choice
P ¼ AV

0 is not well-defined in the incompressible limit because then AV
0 is singular, independent of which var-

iable set we use. To be able to solve the system also for the case of incompressible fluids, we apply Chorin’s
idea of artificial compressibility [25] in the matrix AV

0 , which has the following functional form for entropy
variables,
AV
0 ¼ q2T

bT bT vi bT ðhþ kÞ � aapT

bT vivj þ aI ½bT ðhþ kÞ � aðapT � 1Þ�vj

sym ðhþ kÞ½bT ðhþ kÞ � 2aapT � þ aðcpT þ 2kÞ

0B@
1CA; ð29Þ
with i,j = 1, . . ., d, [17]. It is easily seen that for an incompressible medium (ap = 0, bT = 0) the first row and
column contain only zeroes. To keep AV

0 regular, we set its top left entry to a positive value d in case of (near-)
incompressibility. Since we cannot build on available analysis for the magnitude of this artificial compressibil-
ity-like parameter, we have evaluated its impact by numerical experiment, cf. Section 4.3. It should be empha-
sized that the artificial compressibility is used only for the pseudo-time iteration. Unlike the direct application
of the idea in the physical time derivative, the combination with the pseudo-time variable allows to obtain a
time accurate solution [26]. In practice, the incorporation of P in (27) requires a premultiplication of the resid-
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ual per element with P�1 or the solution of a (d + 2) � (d + 2) linear system with as many right hand sides as
the number of basis functions used on the element.

4. Stability analysis

4.1. Description

One consequence of both the usage of a generalized variable set and the different equations of state is that
the stability properties of the discretization change compared to the standard conservation variable/ideal gas
case that is usually considered. Further investigation in the stability proved necessary, but the approach pre-
viously applied by Klaij et al. [14] – considering a scalar linear advection–diffusion equation and derive per-
tinent stability bounds – could not be applied here. The reason is that the numerical method investigated here
contains the extra transformation between the entropy or pressure primitive variables and the conservative
base set, which cannot be included in a single advection–diffusion equation. Therefore, we have numerically
linearized the complete discrete Euler operator Ln from Eq. (26) with respect to the expansion coefficients �V n.
The base state is a two-dimensional subsonic homogeneous flow (with constant density and temperature) diag-
onally over the domain E ¼ ½0; 1�2 with periodic boundary conditions in both space directions. All computa-
tions were carried out on a mesh of 20 � 20 equal-sized elements.

The analysis of the spectrum of the matrix oLn=o�V discloses two problems: firstly the use of other variable
sets than the conservative variables generally affects the stiffness of the ODE system. This is demonstrated in
Section 4.2 based on the ideal gas. Secondly, incompressibility causes the spectrum to concentrate along the
imaginary axis, and we address this in Section 4.3.

4.2. Compressible media

4.2.1. Conservative variables

We first consider the spectrum of Ln for an ideal gas, using conservative variables U at the physical CFL
numbers rDt = 1 and 100. In Fig. 2, the eigenvalues are plotted in the complex plane together with the stability
domain of the Runge–Kutta method RK5 defined in (28). The pseudo-time CFL number rDs is chosen such
that the eigenvalues remain within the linear stability domain of RK5. Note the stretching of the stability
domain along the negative real axis in the low CFL number case due to the Melson correction. This initial
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Fig. 2. Eigenvalues (‘+’) of the linearized Euler operator Ln for two different physical CFL numbers rDt. The convex hull of the spectra
appears as dashed line; the stability domain of the RK5 method is plotted with solid lines indicating the damping factor. The pseudo-time
CFL number rDs has been adapted to locate all eigenvalues inside the stability domain of the RK5 method: (a) rDt = 1, rDs = 1.9; (b)
rDt = 100, rDs = 1.3.
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test serves to verify the results of Klaij et al. [14] about the stability of the pseudo-time iteration. Note that
Klaij et al. obtained their results by applying a DG discretization to the advection–diffusion equation and
inserting Fourier-modes, which is quite different from the approach taken here. Nevertheless the results are
in the same range: where Klaij et al. gave the maximal pseudo-time CFL numbers rDs = 1.6 and 1.8 for
the physical CFL numbers rDt = 1 and 100, respectively, the current method yields rDs = 1.9 and 1.3. For
practical cases, the pseudo-time step has to be limited more strictly owing to stronger nonlinearity and the
presence of boundary conditions; for applications as those in Section 5, we use rDs = 0.8–1.0. From now
on, we discuss the effects of introducing a different variable set for the time-accurate case, rDt = 1. The overall
effects are the same for rDt = 100. Mainly we consider constant basis functions, pt = ps = 0, but a comparison
with higher order is given in Section 4.2.3.

4.2.2. Pressure primitive and entropy variables with P ¼ I
As the goal of our work is to use a variable set that has a well-defined incompressible limit we continue by

examining the use of pressure primitive and entropy variables. Initially, we treat the nonlinear system as if we
were solving directly for the concerning set of unknowns, hence P ¼ I in Eq. (27). The spectra of the resulting
Euler operators are shown in Fig. 3. Apparently, these are of little use for computational purposes: for Y-vari-
ables the spectrum extends into the (unstable) right half-plane. For V-variables, on the other hand, the eigen-
values stay in the left half plane, but extend extremely far away from the origin, outside the stability domain of
Runge–Kutta methods for any reasonable pseudo-time step.

Hereby the need for restoring the metric of the conservation variables in the pseudo-time iteration becomes
evident. This is equivalent to preconditioning with the inverse of the Jacobian of the transformation from
entropy to conservation variables.

4.2.3. Pressure primitive and entropy variables with P ¼ AV
0

By using the Jacobian AV
0 ¼ oU=oV of the transformation U ? V as the ‘preconditioner’ matrix P, we

recover the same operator as in the conservation variable case. This is confirmed by the spectrum plotted
in Fig. 4a. It was computed using entropy variables with the residual transformation by ðAV

0 Þ
�1, and it coin-

cides with the eigenvalue structure for U-variables in Fig. 2a. For pressure primitive variables the introduction
of P ¼ AY

0 leads to the same result.
Incidentally, we show a result for the eigenvalues when using bilinear basis functions in space (ps = 1).

Fig. 4 supports that the same bound for the pseudo-time CFL number rDs = 1.9 that originated from the anal-
ysis for constant representation per element also holds for such a higher order computation.
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Fig. 3. Eigenvalues for pressure primitive and entropy variables with P ¼ I . Note the different scales on both real and imaginary axis: (a)
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4.3. Incompressible media

In Section 3.4 we have already discussed that AV
0 is singular in the incompressible limit and how to avoid the

related problems by the introduction of an artificial compressibility-like parameter d in the matrix. Generally,
the eigenvalues of the incompressible operator lie very close to the imaginary axis so that the pseudo-time step
Ds is limited primarily by the imaginary extent of the spectrum. When this is the case, the introduction of the
artificial compressibility parameter d in AV

0 can help alleviate the stability restriction. In Fig. 5a the convex
hulls of the eigenvalue sets computed with different values of d are plotted. The pseudo-time CFL number
rDs = 0.016 is the same for all shown sets. The figure substantiates that the extent in the imaginary direction
is decreased by approximately a factor of 3 when setting d = 1 instead of d = 0.001. For d > 1 the effect sat-
urates and no further advantage is gained. For smaller values of d the eigenvalues spread out further along the
imaginary axis. The introduction of d does not degrade the (time) accuracy, because it affects only the pseudo-
time process and the equations solved in physical time are still the original Euler equations.

Fig. 5b shows an alternative Runge–Kutta method, RK44 [27], which may help to overcome some of the
trouble caused by the proximity of the eigenvalues to the imaginary axis. The stability domain of RK5 only
touches the imaginary axis in the origin and then turns away from the axis, which may be a problem in the
incompressible case. In contrast, the stability domain of RK44 runs along the imaginary axis and even con-
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Fig. 5. Examination of the eigenvalue spectrum of the Euler operator L for entropy variables with P ¼ AV
0 and incompressible flow: (a)

convex hulls of the eigenvalue spectra for different values of d; (b) rDt = 1, rDs = 0.018; stability domain of the RK44 method.
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tains a small part of the positive half plain. Thereby the eigenvalues are enclosed even if they are very close to
the imaginary axis. The problem that the time step is limited by the extent along the imaginary axis, however,
remains. Runge–Kutta methods that stretch out further in this direction typically have more stages and are
more expensive to compute, so that no runtime advantage can be expected. Improvements hence should con-
cern the structure of the spectrum, but further research is necessary on this topic. The numerical examples in
Section 5 were all computed using the RK5 method.

5. Numerical examples

To complete the presentation of the numerical method, we present results of computations for several flow
problems. The main emphasis is to demonstrate applicability for different media, e.g. compressible and incom-
pressible fluids, when using entropy or primitive variables. The discretization uses linear in space and constant in
time basis functions for the stationary solutions, unless stated otherwise. We start with a low Mach-number flow
through a channel with a bump in Section 5.1. Supersonic flow is the topic of the following two test cases, of which
one uses an ideal gas, cf. Section 5.2, and the other one a non-ideal gas, see Section 5.3. In Section 5.4, we provide
results for compressible and incompressible flow around a circular cylinder. Finally, in Section 5.5, we add some
remarks about the relative computational cost of using the different variable sets. For the supersonic gas flows we
use the HLLC flux. In the compressible/incompressible comparison, for the described reasons, HLLC is replaced
by the LLF flux. All computations are based on entropy variables unless explicitly mentioned otherwise. Our
implementation is based on the general-purpose DG FEM software framework hpGEM [28].

5.1. Ideal gas: channel with a bump

We consider subsonic flow in a channel of unit width with a 10% circular bump in the central third of the
simulated length [29]. The grid is boundary fitted with 63 � 22 cells. Results are given for the inflow Mach
numbers M1 = 1.0 � 10�6, and M1 = 0.5. At the inflow, entropy, stagnation enthalpy and the flow angle
are prescribed, while at the outflow only the pressure is specified [30]. Along the upper and lower channel wall,
a slip flow boundary condition is used. All ideal gas tests assume the adiabatic index to be c = 1.4.

For subsonic flow, the Mach number fields should be symmetric with respect to the middle of the channel
(x1 = 1.5). This is confirmed by the results in Fig. 6, with a small deviation for the higher inflow Mach number
in the region downstream of the bump. The plots show the same contour levels as used by Bijl and Wesseling
[29] for this test case, and very good agreement with their results is observed.

5.2. Ideal gas: oblique shock

To give evidence of the wide range of applicability of the developed method, we add a result for a compress-
ible inviscid test case also presented in [4]: an oblique shock forming at an angle of 29.3� due to a Mach 2
inflow at an angle of 10� with respect to a slip wall at the lower edge of the unit square computational domain.
The left and top boundaries of the domain are inflow boundaries. The right boundary is the outflow and along
the base only v2 = 0 is enforced.

The pressure field including the shock is plotted in Fig. 7a. Note that we are not using any form of discon-
tinuity stabilization, hence the overshoot close to the shock. In this way, it is also reasonable to compare the
results for different sets of variables, cf. Fig. 7b. Only minor differences can be observed, after all the equations
that are solved are always the same set of conservation equations (3). The small differences that are visible
arise because of the differing discrete solutions when expanding in terms of the various variable sets and
due to the transformations between the conservative or entropy variables and the plotted variable p. Indepen-
dent of the variable set the location of the shock is correctly represented.

5.3. Real gas: shock-tube problem

We add a test case for a real gas as described in Section 2.2.2. Toro [31] posed a shock-tube problem with
the following initial data: left state qL = 1, uL = 0, pL = 1, right state qR = 0.125, uR = 0, pR = 0.1, separated
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at x = 0.5, for a gas with a = 0, cf. Eq. (8b), but the (unrealistically high) covolume b = 0.8. The adiabatic
index is c = 1.4. As it is well-known that the performance of the LLF flux is inferior to Riemann-problem
based methods on this kind of problems, we use the HLLC flux to obtain a result of comparable quality as
with more specialized methods.

This test highlights the wide applicability of the generalized variable formulation of the Euler equations
(here using V-variables) and our implementation. The solution of the shock-tube problem for a covolume
gas differs substantially from the ideal gas case, cf. Fig. 8, which is reflected well by the numerical results.
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5.4. Compressible and incompressible flow around a circular cylinder

We consider the flow of an ideal gas (subsonic) and an incompressible fluid around a fixed circular cyl-
inder with unit radius. The far-field flow is aligned with the x1-axis, constant, and homogeneous:
v1 = u1e1. In the limit of vanishing Mach number, M1? 0, the flow field is given by the classical poten-
tial flow solution. To conform to a previous study [32,33], we choose the free-stream Mach number of the
ideal gas flow as M1 = 0.38. At the outer boundary, we prescribe the far-field state p1 = 4.945, v = v1,
T = 1, as the external state of the numerical flux. Due to the absence of viscosity in the Euler equations,
a slip flow condition is applied on the inner cylinder surface: v � n = 0. This test indicates the magnitude of
the error of the numerical method in the compressible simulation by evaluating the total pressure loss p,
defined as
p ¼ 1� p
p1

1þ 1
2
ðc� 1ÞM2

1þ 1
2
ðc� 1ÞM2

1

 ! c
c�1

: ð30Þ
The total pressure loss should be zero everywhere [32], deviations occur only due to the discrete approxima-
tion, which leads to entropy production at the surface of the cylinder.

Flow around a cylinder is also a test case for numerical methods for incompressible flow. The results are
very close to those of low Mach number compressible computations.

The pressure field (normalized by the far-field pressure p1) and Mach contours for M = 0.38 according to a
computation with entropy variables using linear basis functions per element on a mesh with 48 � 36 elements
is shown in Fig. 9. Note that we plot a continuous solution by averaging the solution from neighboring ele-
ments in each node. The result should be contrasted with those presented by Bassi and Rebay in [33]: without
superparametric elements, higher order discretization, and on a mesh with lower resolution than their 64 � 16
grid, we are able to compute a numerical solution without the substantial unsteady wake behind the cylinder.
This is confirmed by a computation with doubled resolution, cf. Fig. 10.

Fig. 11 shows the total pressure loss along the cylinder surface for entropy variables using two different
orders of the spatial representation (since this is a steady state case, we use pt = 0 on all elements). The result
using bilinear polynomials per element compares very well with the one obtained in [32] on a linear isopara-
metric mesh of comparable resolution. Results for different variable sets are hardly distinguishable in this test,
so we do not present a comparison.
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Repeating the same test with an incompressible fluid yields almost symmetric fields about x1 = 0, cf.
Fig. 12.

5.5. Runtime comparison

Finally, we give an indication of the relative cost of using the different variable sets for simulations of the
Euler equations. It is quite difficult to compare on the level of a complete simulation as the magnitude and
convergence of the residual LnðV Þ, which is used as stopping criterion for the pseudo-time iteration, differs
between variable sets and it is not clear how to compare residual levels. Errors may be amplified by the dis-
continuous discretization, see Fig. 7b, so that again an exact comparison is hard to realize. What we can com-
pare quite easily, however, is the cost per pseudo-time step, unrelated to its effect on the convergence. If we
define the cost of a pseudo-time step using U-variables as 1.0, then the relative cost of one step with pressure
primitive variables Y is approximately 1.0–1.1 and for entropy variables V it is in the range 1.6–1.7. These are
indications that depend on several details of the numerical method, such as the numerical flux, the Runge–
Kutta method, the order of the polynomial expansion per element, and the thermodynamical relations of
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the medium considered. Two contributions account for the extra cost: firstly the transformation that has to
take place each time a certain set of quantities is used, most notably to conservation variables in the flux eval-
uations. Secondly, the residual transformation with P ¼ AV

0 introduces additional effort.
The cost of pressure primitive variable computations is surprisingly low, a pseudo-time step takes

approximately the same time as one with conservative variables. Presumably, this effect is rooted in the
extra computations that are necessary also when conservative variables are used (e.g. to obtain the pres-
sure for the flux evaluation) and that the transformations for pressure primitive variables are comparably
simple, mostly rational functions. For entropy variables, by contrast, the variable transformations typi-
cally use more complex functions (this depends on the thermodynamics of the medium of course). Fur-
thermore, in our software the residual transformation is implemented as a linear system solution for
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entropy variables, but as a direct multiplication of the residuals with ðAY
0 Þ
�1 for pressure primitive vari-

ables. This difference is rooted in the simpler structure of AY
0 and presumably accounts for a considerable

part of the difference.
Ultimately, the consideration of the computational cost has to be combined with an appraisal of the ben-

efits of different variable sets, cf. Sections 1 and 2.3. Entropy variables constitute an interesting choice because
of their theoretical properties while a consideration solely based on computational efficiency suggests prefer-
ring pressure primitive variables.

6. Conclusions

We have described the extension of a discontinuous Galerkin finite element discretization of the Euler equa-
tions to allow using different sets of variables. In particular we have considered entropy variables, because of
their theoretically appealing properties. Using entropy variables allows to treat compressible and incompress-
ible flows with the same numerical method. Some parts of the solution algorithm have to be adapted, though.
We have investigated the working of the pseudo-time stepping method used to solve the nonlinear algebraic
system of equations. By transforming the residual and exploiting an artificial compressibility-like idea we find
the method suitable for entropy and pressure primitive variables. We have presented several numerical test
cases originating from different fields in compressible and incompressible fluid dynamics. Further work will
aim at improving the efficiency of the nonlinear solution step using a multigrid algorithm [9,34] and the exten-
sion to viscous flows.
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