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SUMMARY

In this paper we study discrete-time linear systems with full or partial constraints on both input and state.
It is shown that the solvability conditions of stabilization problems are closely related to important
concepts, such as the right-invertibility of the constraints, the location of constraint invariant zeros and the
order of constraint infinite zeros. The main results show that for right-invertible constraints the order of
constrained infinite zeros cannot be greater than one in order to achieve global or semi-global stabilization.
This is in contrast to the continuous-time case. Controllers for both state feedback and measurement
feedback are constructed in detail. Issues regarding non-right invertible constraints are discussed as well.
Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Two of the most commonly encountered constraints in control engineering are actuator
constraints and state constraints. References [1] and [2] capture some recent research activities
regarding constraints on actuators, i.e. on inputs. Besides actuator constraints, state constraints
are a major concern in control engineering. However, the state constraints, unlike the actuator
constraints, have not received much attention from a structural point of view. There have been
some efforts on dealing with state and input constraints utilizing the concept of positive
invariant sets [3] and techniques of model predictive control [4–6]. However, the available tools
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along these lines are computationally very demanding and the resulting controllers are highly
complicated.

During the last decade several aspects of control design problems for linear systems with
magnitude and rate constraints on control variables have been studied among others by the first
and third author and their students and collaborators. A number of powerful analysis and
design methods such as low gain, low-high gain, scheduled low gain, scheduled low-high
gain and many variations of them have been developed for several core control design
problems including global and semi-global internal stabilization, external stabilization, output
regulation, and disturbance rejection. We have studied stabilization (continuous-time in
Reference [7] and discrete-time in Reference [8]) and output regulation problems (continuous-
time in Reference [9] and discrete-time in Reference [10]) associated with magnitude and rate
constraints on control variables. Many of these issues have also been addressed in Refeence [11].
The research thrust of the first and third author and their students has broadened to include
additionally magnitude constraints on state variables. In connection with stabilization,
whenever amplitude and rate constraints on both state as well as input variables exist, a
taxonomy of all possible constraints is introduced, and several fundamental results on global,
semi-global and regional stabilization are developed in a recent paper [12]. The work of Saberi
et al. [12] focuses on continuous-time systems and generalizes, extends and covers all existing
results including those developed in Reference [13]. The focus of this paper is to address the
same issues for discrete-time systems. Output regulation for systems with both input and state
constraints has in the mean time also been studied in Reference [14] (continuous-time) and [15]
(discrete-time).

It is becoming evident that the taxonomy of constraints developed in Reference [12] plays
dominant roles in every type of control design problem, not only for continuous-time systems
but also for discrete-time systems. The taxonomy of constraints is developed by appropriately
modelling the constraints in terms of what is called a constraint output (of the given system)
with its magnitude and rate subject to some prescribed constraint sets. It turns out that the
structural properties of the mapping from the input to the constrained output vector play
dominant roles in dictating what is feasible and what is not feasible. Such structural properties
have been categorized in three directions. The first direction of categorization is based on the
right invertibility of the mapping from the input to the constraint output vector. This direction
of categorization delineates the constraints into two mutually exclusive categories: (1) right
invertible constraints representing the case when the mapping from the input to the constraint
output vector is right invertible and (2) non-right invertible constraints representing the case
when the mapping from the input to the constraint output vector is not right invertible. The
second direction of categorization is based on the so called constraint invariant zeros of the
plant, i.e. the invariant zeros of the mapping from the input to the constrained output vector.
Like in the first categorization, this second categorization also delineates the constraints into
two mutually exclusive main categories: (1) at most weakly non-minimum phase constraints
representing the case when the constraint invariant zeros are in the closed left-half complex
plane for continuous-time systems or in the closed unit disc for discrete-time systems and (2)
strongly non-minimum phase constraints representing the case when one or more of the
constraint invariant zeros are in the open right half complex plane for continuous-time systems
or outside the unit disc for discrete-time systems. The third direction of categorization is based
on the order of constraint infinite zeros, i.e. the infinite zeros of the mapping from the input to
the constrained output.
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Based on such a taxonomy of constraints, two main features emerge:

* Neither the constrained semi-global nor the constrained global stabilization problem is
solvable whenever the constraints are strongly non-minimum phase.

* There exists a perceptible demarkation line between the right and non-right invertible
constraints. In particular, the solvability conditions for the constrained semi-global and
global stabilization problems via state feedback do not depend on the shape of the
constraint sets for right invertible constraints, whereas for non-right invertible constraints
they indeed do so.

This paper, which deals with discrete-time systems, focuses on the above aspects. Although
the development for discrete-time systems parallels somewhat that in continuous-time systems,
there are several fundamental differences between continuous- and discrete-time systems: (1) the
solvability conditions for semi-global stabilization, unlike in continuous-time systems, requires
that the order of the constraint infinite zeros be less than or equal to one, (2) the methods of
constructing appropriate controllers need to be revised as needed and (3) some new issues arise,
which do not exist in continuous-time systems.

Following the problem formulation in the next section, a taxonomy of constraints is
presented in Section 3. This taxonomy facilitates the statements of the main results of global and
semi-global stabilization for right invertible constraints in Section 4. In this section control laws
are designed in detail for both state feedback and measurement feedbacks. Some new issues
regarding non-minimum phase constraints are discussed as well. Such issues were not observed
in the continuous-time case. Systems with non-right invertible constraints are studied in Section
5, where some necessary conditions for the global and semi-global stabilization are developed.
In the same section the shape dependence on the constraint sets is also carefully examined. This
paper concludes in Section 6.

2. PROBLEM FORMULATION

Consider a discrete-time linear system:

S :

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ

yðkÞ ¼ CyxðkÞ þDyuðkÞ

zðkÞ ¼ CzxðkÞ þDzuðkÞ

8>><
>>: ð1Þ

where x 2 Rn; u 2 Rm; y 2 Rr; z 2 Rp are respectively state, input, measurement output and
constrained output. The constrained output z is subject to both amplitude and rate constraints
in that for two a priori given sets S � Rp and T � Rp we require

zðkÞ 2 S; 8k50

zðkþ 1Þ � zðkÞ 2 T; 8k50
ð2Þ

Figure 1 shows the basic structure of the system model.
Given the system described above, our goal is to obtain necessary and sufficient conditions for

the possibility of stabilization. Whenever it is possible, we will present design methodologies for
constrained stabilization.
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Remark
Note that in (2) we only require the rate constraint to be satisfied for all k50 by ignoring the
rate constraint on zð0Þ � zð�1Þ: This avoids the technicality of requiring a non-abrupt transition
at the beginning. However, if we incorporate a deadbeat operator in the controller, this issue can
be easily resolved [16].

We make the following fundamental assumption on the structure of the constrained output
and the nature of the constraint sets S and T:

Assumption 2.1

(i) The sets S and T are closed, convex, and contain 0 as an interior point.
(ii) S\T is bounded.
(iii) The matrices Cz and Dz satisfy CT

z Dz ¼ 0 and moreover S and T satisfy the following
decomposition:

S ¼ ðS\ imCzÞ þ ðS\ imDzÞ

T ¼ ðT\ imCzÞ þ ðT\ imDzÞ

Remark
We observe that imCz reflects the state constraints while imDz reflects the input constraints.
Therefore the decomposition of S and T as required in (iii) reflects the fact that the constraints
can be on states and/or inputs.

Clearly, the set of initial conditions has to be restricted, otherwise one can never avoid
constraint violation if the system starts from certain initial conditions. We introduce the concept
of admissible set of initial conditions in the next definition.

Definition 2.2
Let the system (1) and constraint sets S and T be given. We define

AðS;TÞ :¼fxð0Þ 2 Rn j 9 uð0Þ such that Czxð0Þ þDzuð0Þ 2 S

and Cz½Axð0Þ þ Buð0Þ� � Czxð0Þ 2 Tg

as the admissible set of initial conditions.

Figure 1. Closed-loop system with constrained output.
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Remark
In defining the admissible set, one might expect the rate constraint condition to be

zð1Þ � zð0Þ ¼ Czf½Axð0Þ þ Buð0Þ� � xð0Þg þDz½uð1Þ � uð0Þ� 2 T

However, we have omitted the second term because by the decomposition in item (iii) of
Assumption 2.1 these two constraints are equivalent if we can ensure Dz½uð1Þ � uð0Þ� 2 T: But
this can be done by design.

Remark
A concept related to the admissible set of initial conditions is the so called maximal output
admissible set, which was discussed extensively in Reference [17]. The definition of maximal
output admissible set was based on a given linear control law. However, our work in this paper
is mainly focused on characterizing solvability conditions under which appropriate control laws
can be synthesized so that the constraint violation is avoided during the whole control process.

The following problems are formulated either in global or in semi-global setting.

Problem 2.3 (Global constrained stabilization via state feedback)
Consider the system (1) with constraint sets S � Rp and T � Rp: Find, if possible, a state
feedback (possibly nonlinear) uðkÞ ¼ f ðxðkÞ; kÞ such that the following conditions hold:

(i) The equilibrium point x ¼ 0 of the closed-loop system is asymptotically stable with
AðS;TÞ contained in its domain of attraction.

(ii) For any xð0Þ 2 AðS;TÞ; we have zðkÞ 2 S and zðkþ 1Þ � zðkÞ 2 T for all k50:

Problem 2.4 (Semi-global constrained stabilization via state feedback)
Consider the system (1) with constraint sets S � Rp and T � Rp: For any a priori given
compact set A0 contained in the interior of AðS;TÞ find, if possible, a state feedback (possibly
nonlinear) uðkÞ ¼ f ðxðkÞ; kÞ such that the following conditions hold:

(i) The equilibrium point x ¼ 0 of the closed-loop system is asymptotically stable with A0

contained in its domain of attraction.
(ii) For any xð0Þ 2 A0; we have zðkÞ 2 S and zðkþ 1Þ � zðkÞ 2 T for all k50:

Problem 2.5 (Global constrained stabilization via measurement)
Consider the system (1) with constraint sets S � Rp and T � Rp: Find, if possible, a
measurement feedback (possibly nonlinear and time-varying) of the form,

vðkþ 1Þ ¼ gðvðkÞ; yðkÞ; kÞ; v 2 Rq

uðkÞ ¼ hðvðkÞ; yðkÞ; kÞ

such that the following conditions hold:

(i) The equilibrium point ðx; vÞ ¼ ð0; 0Þ of the closed-loop system is asymptotically stable
with AðS;TÞ � Rq contained in its domain of attraction.

(ii) For any ðxð0Þ; vð0ÞÞ 2 AðS;TÞ � Rq; we have zðkÞ 2 S and zðkþ 1Þ � zðkÞ 2 T for all
k50:
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Problem 2.6 (Semi-global constrained stabilization via measurement)
Consider the system (1) with constraint sets S � Rp and T � Rp: Find (if possible) a family of
measurement feedbacks (possibly nonlinear and time-varying) of the form

vðkþ 1Þ ¼ gðvðkÞ; yðkÞ; kÞ; v 2 Rq

uðkÞ ¼ hðvðkÞ; yðkÞ; kÞ

such that for any compact set A0 contained in the interior of the set AðS;TÞ and any compact
set V0 � Rq there exists a measurement feedback in this family such that the following
conditions hold:

(i) The equilibrium point ðx; vÞ ¼ ð0; 0Þ of the closed-loop system is asymptotically stable
with A0 �V0 contained in its domain of attraction.

(ii) For any ðxð0Þ; vð0ÞÞ 2 A0 �V0; we have zðkÞ 2 S and zðkþ 1Þ � zðkÞ 2 T for all k50:

3. TAXONOMY OF CONSTRAINTS

We let C; C�; C� and C* denote respectively the set of complex numbers in the entire complex
plane, outside the unit circle, inside the unit circle and on the unit circle.

The following notions are fundamental to the taxonomy of constraints given below.

Definition 3.1
The system:

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ

yðkÞ ¼ CxðkÞ þDuðkÞ

is said to be right invertible if for any sequence yref ðkÞ defined for k50 there exists an input u and
a choice of xð0Þ such that yðkÞ ¼ yref ðkÞ for all k50:

Definition 3.2
The invariant zeros of a linear system with a realization (A; B; C; D) are those points l 2 C for
which

rank
lI � A �B

C D

 !
5normrank

sI � A �B

C D

 !

where ‘normrank’ denotes normal rank.

The first categorization is based on whether the subsystem from u to z is right invertible or
not. We have the following definition:

Definition 3.3
The constraints are said to be

* right invertible constraints if the subsystem Szu : ðA;B;Cz;DzÞ is right invertible.
* non-right invertible constraints if the subsystem Szu : ðA;B;Cz;DzÞ is not right invertible.
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It turns out that the location of the invariant zeros of the subsystem Szu is also important in
characterizing the solvability of stabilization problems. We refer to these invariant zeros as
constraint invariant zeros:

Definition 3.4
The invariant zeros of the subsystem characterized by the quadruple ðA;B;Cz;DzÞ are called
constraint invariant zeros of the given system S:

The second categorization of constraints is based on the location of the constraint invariant
zeros. We have the following definition:

Definition 3.5
The constraints are said to be

* minimum phase constraints if all the constraint invariant zeros are in C�:
* weakly minimum phase constraints if all the constraint invariant zeros are in C� [ C*

with the restriction that any invariant zero in C* is simple,
* weakly non-minimum phase constraints if all the constraint invariant zeros are in C� [ C*

with at least one non-simple invariant zero in C*:
* at most weakly non-minimum phase constraints if all the constraint invariant zeros are in

C� [ C*:
* strongly non-minimum phase constraints if at least one constraint invariant zeros is in C�:

The third categorization is based on the order of the infinite zeros of the subsystem Szu: See
Reference [18] for a definition of infinite zeros of a system. Because of their importance, we
specifically label the infinite zeros of the subsystem Szu as the constraint infinite zeros of the
plant.

Definition 3.6
The infinite zeros of the subsystem Szu are called the constraint infinite zeros of the plant
associated with the constrained output z:

We have the following definition regarding the third categorization of constraints.

Definition 3.7
The constraints are said to be type one constraints if the order of all constraint infinite zeros is
less than or equal to one.

4. RIGHT INVERTIBLE CONSTRAINTS

In this section we provide necessary and sufficient conditions for the solvability of Problems
2.3–2.6, under the assumption that the subsystem ðA;B;Cz;DzÞ is right invertible, i.e. system (1)
has right invertible constraints. We leave the case that ðA;B;Cz;DzÞ is non-right invertible to
Section 5, where we clarify some extra difficulties involved in the general case.
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It is worth pointing out that for the discrete-time systems the solvability conditions for the
global and semi-global constrained stabilization are the same. This is in contrast to the
continuous-time case [12]. For an easy presentation, we separate this section in three
subsections. In the first subsection we present the main results for constrained global and
semi-global stabilization via state and measurement feedback. In the second subsection we
introduce the special coordinate basis [18,19], which is a tool for the later development and
present results for systems with non-minimum phase constraints. In the third subsection we
prove the results appeared in the first two subsections.

4.1. Main results for global and semi-global stabilization

The first result is about the solvability conditions for the constrained global or semi-global
stabilization via state feedback.

Theorem 4.1
Consider the plant S as given by (1) with the constraint setsS andT satisfying Assumption 2.1.
Assume that the constraints are right-invertible and the set S is bounded. Then the global or
semi-global constrained stabilization problem via state feedback as defined in Problem 2.3 or
Problem 2.4 is solvable if and only if:

(i) ðA;BÞ is stabilizable.
(ii) The constraints are at most weakly non-minimum phase.
(iii) The constraints are of type one.

Remark
A fundamental consequence of Theorem 4.1 is that the conditions are independent of any
specific shapes of the given constraint set. That is, for the case of a right invertible system S; if
the semi-global or global constrained stabilization problems are solvable for some given
constraint set satisfying Assumption 2.1, then these problems are also solvable for any other
constraint sets satisfying Assumption 2.1.

Note that the controller needs in general to be nonlinear. However, in the semi-global case,
the controller can be chosen either as a time-invariant nonlinear controller or as a time-varying
linear controller.

For the case of measurement feedback, we have the following theorem.

Theorem 4.2
Consider the plant S as given by (1) with the constraint sets S and T satisfying 2.1. Assume
that the constraints are right-invertible. Then, the global and semi-global constrained
stabilization problem via measurement feedback as defined in Problems 2.5 and 2.6 are
solvable if the following conditions hold:

(i) ðA;BÞ is stabilizable.
(ii) The constraints are at most weakly non-minimum phase.
(iii) The constraints are of type one.
(iv) The pair ðCy;AÞ is observable.
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(v) kerCz � kerCzA:
(vi) ker ðCy DyÞ � ker ðCz DzÞ:

Moreover, conditions (i) to (iii) are necessary.

Remark
Note that condition (vi) states that the constrained output is part of the measurements. The
following example shows that conditions (v) and (vi) in Theorem 4.2 are needed for discrete-
time systems. Consider the system

x1ðkþ 1Þ ¼x1ðkÞ þ x2ðkÞ

x2ðkþ 1Þ ¼ uðkÞ þ x1ðkÞ

yðkÞ ¼x1ðkÞ þ 2x2ðkÞ

zðkÞ ¼x2ðkÞ

It is easy to see that all the conditions except (v) and (vi) in the theorem are satisfied. Suppose we
have a constraint zðkÞ 2 ½�1; 1� for all k50: There exists a deadbeat observer which gives an
exact state estimate for x1ðkÞ and x2ðkÞ for k51:

The set of admissible initial conditions is characterized by the set of all initial conditions
satisfying jx2ð0Þj41: Using this information together with the first measurement yð0Þ we can
only conclude that

x1ð0Þ 2 ½y1ð0Þ � 2; y1ð0Þ þ 2� ð3Þ

But then there is no choice for uð0Þ to ensure that

x2ð1Þ ¼ x1ð0Þ þ uð0Þ 2 ½�1; 1�

for all possible values of x1ð0Þ satisfying (3), i.e. there is no guarantee that at time k ¼ 1 the
constraint is not violated. Hence, the semi-global constrained stabilization via measurement
feedback is in general not possible without conditions (v) and (vi).

Remark
The solvability conditions as given by Theorems 4.2 are independent of any specific features of
the given constraint sets. But the solvability of the semi-global or global constrained
stabilization problems in the measurement feedback case is in general dependent on the shape
of the constraint sets even for the case of right-invertible constraints. But, this is not in
contradiction with the above theorem since we only obtained sufficient conditions for
solvability. For example, consider the system

x1ðkþ 1Þ ¼ u1ðkÞ

x2ðkþ 1Þ ¼ u2ðkÞ þ x1ðkÞ

yðkÞ ¼ x2ðkÞ

z1ðkÞ ¼ x1ðkÞ

z2ðkÞ ¼ x2ðkÞ
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Semi-global and global constrained stabilization problems are trivially solved by the state
feedback u1 ¼ 0 and u2 ¼ �x1: But in the measurement case we can only implement this
feedback for k51: At time k ¼ 0 we have no information available about x1ð0Þ except for the
fact that the state must be in the admissible set of initial conditions.

* For the constraint set jz1j41 and jz2j42 the controller u1 ¼ 0 and u2 ¼ 0 trivially solves
the global stabilization problem.

* For the constraint set jz1j41 and jz2j41=2; no measurement based feedback can
guarantee that the constraint is not violated at time k ¼ 1; because the controller lacks
information about x1ð0Þ:

Note that the above is in contrast with continuous time where the solvability is always
independent of the constraint set for right-invertible systems.

4.2. Main results for non-minimum phase constraints

From Theorems 4.1 and 4.2 we see that the global and semi-global constrained stabilization
problems are solvable only for a system S which has at most weakly non-minimum phase
constraints. If the given system S has strictly non-minimum phase constraints, the domain of
attraction cannot be enlarged arbitrarily, that is, the domain of attraction is bounded at least in
some directions of the state space. Our next goal is to characterize a maximally achievable
domain of attraction, in the sense that the given system cannot be stabilized for those initial
conditions outside of such a set.

To present such a characterization we need to introduce special coordinate basis for the
subsystem represented by the quadruple ðA;B;Cz;DzÞ which is related to the mapping from the
input u to the constrained output z: For simplicity, we denote this subsystem as Szu ðA;B;Cz;
DzÞ: The special coordinate basis as developed in References [18,19] clearly reveal most of the
system properties involving invariant zeros and infinite zeros.

Under the assumption that the subsystem Szu ðA;B;Cz;DzÞ is right invertible, we can choose
coordinate basis in the state space, input space and output space such that the subsystem Szu can
be rewritten in term of scb in the following form:

xaðkþ 1Þ ¼AaaxaðkÞ þ KazðkÞ

xcðkþ 1Þ ¼AccxcðkÞ þ Bc½ucðkÞ þ JaxaðkÞ� þ KczðkÞ

xdðkþ 1Þ ¼AddxdðkÞ þ Bd ½udðkÞ þ EaxaðkÞ þ EcxcðkÞ þ EdxdðkÞ� þ KdzðkÞ

yðkÞ ¼CyaxaðkÞ þ CycxcðkÞ þ CydxdðkÞ þ *DDy *uuðkÞ

z0ðkÞ ¼ u0ðkÞ

zd ðkÞ ¼CdxdðkÞ ð4Þ

where

xa

xc

xd

0
BB@

1
CCA ¼ *xx ¼ G�1

x x;

u0

uc

ud

0
BB@

1
CCA ¼ *uu ¼ G�1

u u;
z0

zd

 !
¼ G�1

z z

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:435–461

A. SABERI ET AL.444



and xa; xc; xd ; u0; uc; ud are of appropriate dimensions, while Gx; Gu and Gz are
transformation matrices. This decomposition renders the subsystem characterized by the state
variables xc and xd strongly controllable without finite zeros (see Reference [18]). Moreover, the
pair ðAaa;KaÞ is stabilizable.

The zero dynamics of the subsystem Szu are the dynamics of xa in (9) and given by

S1 :
xaðkþ 1Þ ¼ AaaxaðkÞ þ KazðkÞ

¼ AaaxaðkÞ þ Ka0z0ðkÞ þ Kadzd ðkÞ

(
ð5Þ

where Ka ¼ ðKa0; Kad Þ: By viewing z as the input to this subsystem, we have a system with input
constraints in the sense that zðkÞ 2 S and zðkþ 1Þ � zðkÞ 2 T for all k50: Since S and T
satisfy Assumption 2.1 there exist appropriate sets S0; Sd ; T0; and Td such that

z 2 S if and only if z0 2 S0 and zd 2 Sd ð6aÞ

%zz 2 T if and only if %zz0 2 T0 and %zzd 2 Td ð6bÞ

Next we introduce the second subsystem:

S2 :

xcðkþ 1Þ ¼ AccxcðkÞ þ Bc½ucðkÞ þ JaxaðkÞ� þ KczðkÞ

xdðkþ 1Þ ¼ Addxd ðkÞ þ Bd ½udðkÞ þ EaxaðkÞ þ EcxcðkÞ þ EdxdðkÞ� þ KdzðkÞ

z0ðkÞ ¼ u0ðkÞ

zdðkÞ ¼ CdxdðkÞ

8>>>>><
>>>>>:

ð7Þ

The decomposition of the original system into two subsystems makes it possible to design a
controller in two layers.

Now we are at a position to characterize the maximal domain of attraction of the closed-loop
system with constraints in terms of the two subsystems obtained above. We define the admissible
set for the subsystem S2 as

AðS2;S;TÞ ¼ x2 ¼
xc

xd

 !
2 Rn2

�����Cdxd 2 Sd and 9 u0 2 S0 and ud such that

(

Cd Addxd þ Bdud þ Kd

u0

Cdxd

 !
� xd

" #
2 Td

)

where x2 :¼ ðxTc ; x
T
d Þ

T and n2 is the dimension of x2: Note that xa has no effect on AðS2;S;TÞ
as can be seen from the scb structure.

Next we introduce the notion of null-controllability region of a linear system with constrained
input. Given any two sets %SS � Rm and %TT � Rm; we define the set

Uð %SS; %TTÞ :¼ f %uu: %uuðkÞ 2 %SS and %uuðkþ 1Þ � %uuðkÞ 2 %TT; 8k50g:

Definition 4.3
Consider the system:

%SS : %xxðkþ 1Þ ¼ %AA %xxðkÞ þ %BB %uuðkÞ
�

ð8Þ
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subject to constraint %uu 2 Uð %SS; %TTÞ; where %SS and %TT are two closed convex sets containing zero as
an interior point and satisfying that %SS\ %TT is bounded. The set

Rð %SS; %SS; %TTÞ ¼ %xxð0Þ 2 Rn: 9 %uu 2 Uð %SS; %TTÞ such that lim
k!1

%xxðkÞ ¼ 0

� �

is said to be the region of asymptotic null-controllability with input constraint sets %SS and %TT:

We will connect the domain of attraction of the first subsystem to the domain of attraction of
the full system but only for the case without rate constraints. The general case is not much more
difficult but involves some additional techniqualities. Note that if we want to control the state xa
of the first subsystem then we can do so through u0 and zd : However, we cannot choose zd
arbitrarily. We can control zd arbitrarily after a delay of at most k steps where k is the maximal
order of the constraint infinite zeros. Therefore we need to able to make sure that in the first k
steps the system dynamics behave appropriately. We define:

V0 ¼
x1

x2

 !����� x1 2 RðS1;S;RpÞ;x2 2 AðS2;S;RpÞ

( )

and recursively:

Viþ1 ¼ f *xx 2 Rn j 9 *uu such that *AA *xxþ *BB *uu 2 Vi and *CC *xxþ *DD *uu 2 Sg

where ð *AA; *BB; *CC; *DDÞ are the system matrices of the system ðA;B;Cz;DzÞ after transforming it to the
scb, i.e. *AA ¼ G�1

x AGx; *BB ¼ G�1
x BGu; *CC ¼ G�1

z CzGx and *DD ¼ G�1
z DzGu:

If the order of the infinite zeros is less than or equal to k then we have for i5k:

Viþ1 ¼ Vi

We define:

%RRðS;S;RpÞ ¼ Vi

where i > k:
The following theorem characterizes the maximum domain of attraction of a system S when

the constraints are non-minimum phase. Let u ¼ f ðxÞ be any stabilizing control law for system S
subject to constraints (2) and let Rf ðS;S;TÞ denote the domain of attraction of the zero
equilibrium of the closed-loop system with no violation of the constraints.

Theorem 4.4
Consider the plant S as given by (1) with constraint sets S and T satisfying Assumption 2.1.
Let the constraints be right invertible and non-minimum phase. Then, for any given stabilizing
controller u ¼ f ðxÞ; the domain of attraction Rf ðS;S;TÞ of the zero equilibrium under this
control law satisfies

Rf ðS;S;TÞ � RðS1;S;TÞ �AðS2;S;TÞ

For the case without rate constraints we can strengthen the above inclusion and obtain:

Rf ðS;S;RpÞ � %RRðS;S;RpÞ
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For the case without rate constraints, we call the set

%MM :¼ %RRðS1;S;RpÞ

the maximum achievable domain of attraction. In the original coordinate system %MM becomes
M ¼ Gx

%MM: Following the similar philosophy of the semi-global stabilization inside the
admissible set AðS;TÞ as defined in Problem 2.4, we can define a semi-global stabilization
problems inside the maximum achievable domain of attraction M:

Problem 4.5 (Semi-global stabilization for non-minimum phase constraints via state feedback)
Consider the system (1) with constraint sets S � Rp and T ¼ Rp: For any a priori given
compact set W contained in the interior of the maximum achievable domain of attraction M
find, if possible, a state feedback (possibly nonlinear) uðkÞ ¼ f ðxðkÞ; kÞ such that the following
conditions hold:

(i) The equilibrium point x ¼ 0 of the closed-loop system is asymptotically stable with W
contained in its domain of attraction.

(ii) For any xð0Þ 2 W; we have zðkÞ 2 S for all k50:

Remark
Note that the above semi-global stabilization problem reduces to Problem 2.4 whenever the
constraints are at most weakly non-minimum phase. In this case the maximum achievable
domain of attraction M is equal to the admissible set AðS;RpÞ:

Note that Problem 4.5 can also be defined for the case of rate constraints but this requires the
appropriate definition of the set %MM: The next theorem provides solvability conditions for the
semi-global stabilization with non-minimum phase constrains.

Theorem 4.6
Consider the plant S as given by (1) with constraint sets S and T ¼ Rn satisfying Assumption
2.1. Let the constraints be right invertible. The semi-global stabilization problem as defined in
Problem 4.5 is solvable. More specifically, for any compact setK contained in the interior of the
maximal achievable domain of attraction M; there exists a stabilizing controller u ¼ gðxÞ for the
whole system S such that

K � RgðS;S;RpÞ

where RgðS;S;RpÞ denotes the domain of attraction of the zero equilibrium of the closed-loop
system with the constraints enforced.

4.3. Proofs and construction of controllers

The solvability conditions in Theorems 4.1 and 4.2 both require that the constraints be at most
weakly nonminimum phase and of type one. Once the constraints are of type one, the scb
representation of system S in (4) can be simplified. More specifically, the equations for xd and zd
have a simpler structure because of the first order relative degree. To facilitate the proofs of
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Theorems 4.1 and 4.2, we rewrite (4) after simplification as

xaðkþ 1Þ ¼AaaxaðkÞ þ KazðkÞ

xcðkþ 1Þ ¼AccxcðkÞ þ Bc½ucðkÞ þ JaxaðkÞ� þ KczðkÞ

xdðkþ 1Þ ¼ ud ðkÞ þ GaxaðkÞ þ GcxcðkÞ þ GdxdðkÞ

yðkÞ ¼CyaxaðkÞ þ CycxcðkÞ þ CydxdðkÞ þ *DDy *uuðkÞ

z0ðkÞ ¼ u0ðkÞ

zdðkÞ ¼xdðkÞ ð9Þ

where Ga; Gc and Gd are matrices with appropriate dimensions.

Proof of Theorem 4.1
Necessity: The necessity of conditions (i) and (ii) is obvious. By the decomposition obtained
above, the constrained variable z becomes the input to the zero dynamics (5), hence the system
has to be at most weakly non-minimum phase, i.e. the poles of the zero dynamics must be in the
closed unit disc. Next, we show the necessity of condition (iii).

We consider the global case first. Since the system is right invertible, having no infinite zeros
of order greater than one is equivalent to ðCzB DzÞ being surjective. Therefore, if the system has
infinite zeros of order greater than one, then there exists a vector c=0 such that

cTDz ¼ 0 and cTCzB ¼ 0 ð10Þ

Moreover, since T contains zero in its interior, we can guarantee that c 2 T: Let z0 2 S be such
that

hz; ci4hz0; ci

for all z 2 S: Since S is a compact and convex set, such a z0 always exists at the boundary ofS:
Next, because ðA;B;Cz;DzÞ is right invertible there exist an initial condition xð0Þ ¼ x0 and an
input uð0Þ ¼ m0 such that the output z satisfies zð0Þ ¼ z0 and zð1Þ � zð0Þ ¼ c: Clearly x0 2
AðS;TÞ: But if the system starts at time 0 from x0 then we have

hc; zð0Þi ¼ hc;Czx0i ¼ hc; z0i and hc; zð1Þ � zð0Þi ¼ hc; ci > 0

for any input signal u because of property (10). Hence, hc; zð1Þi > hc; z0i for any input u: By
definition of z0 this implies zð1Þ =2 S for any input u: Therefore, there exist initial conditions in
AðS;TÞ which cannot be stabilized without violating the constraints. This yields a
contradiction.

The necessity of condition (iii) for the semi-global case follows by a mild modification of the
above argument. Choose a l close to 1 from below such that hc; ci > ð1� lÞhc; z0i; where z0 is
chosen as before. Let zð0Þ ¼ lz0: By the right invertibility as above, there exist an initial
condition x0 and an input uð0Þ ¼ m0 such that the output z satisfies zð0Þ ¼ lz0 and zð1Þ � z�
ð0Þ ¼ c: Then we can choose a compact set A0 in the interior of AðS;TÞ so that x0 2 A0: Since
hc; zð1Þ � zð0Þi ¼ hc; ci > 0; we get hc; zð1Þi ¼ hc; zð0Þi þ hc; ci > hc; z0i: By the same argu-
ment as in the global case, this implies that zð1Þ =2 S for any input u; which is a contradiction.

Sufficiency: The proof of sufficiency is constructive. It follows from two steps.

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:435–461

A. SABERI ET AL.448



Step 1: We first design for the first subsystem S1 in (5) while viewing z as an input variable.
Let v ¼ z� f; where the functions v and f will become clear shortly. Then, (5) becomes

xaðkþ 1Þ ¼ AaaxaðkÞ þ KafðkÞ þ KavðkÞ ð11Þ

Note that the conditions of the theorem require that all eigenvalues of Aaa be in the closed unit
disc. Viewing f as an input to this subsystem, we can construct a state feedback law
fðkÞ ¼ f ðxaðkÞÞ for the system (11), which has the following properties:

(a) It satisfies the constraints:

f ðxaðkÞÞ 2 S; f ðxaðkþ 1ÞÞ � f ðxaðkÞÞ 2 T; k50

(b) It renders the zero equilibrium point of the closed-loop system of (11) globally or semi-
globally attractive in the presence of any signal satisfying

jjvðkÞjj4Mlk; l 2 ð0; 1Þ ð12Þ

for some M > 0; i.e. xaðkÞ ! 0 as k ! 1:
(c) It renders the zero equilibrium point of the closed-loop system with v ¼ 0 locally

exponentially stable.

Note that the two parameters M and l in (12) only depend on the size of the constraint sets S
and T: Whenever S and T are known, M and l can be chosen a priori following the way
specified in the design of Step 2. Knowing these facts, we are assured that the ‘2 norm of v signal
is uniformly upper bounded. For completeness the details of designing such a state feedback for
the first subsystem in the global or semi-global sense are presented in Appendix A. Note that in
the global case the function f ðxaÞ must be nonlinear; however, in the semi-global case f ðxaÞ can
be linear.

Step 2: In this step we design a control law for the second subsystem S2 given in (7), so that
the closed-loop system of the interconnection of the two subsystems with the control law is
asymptotically stable and without constraint violation.

Choose l 2 ð0; 1Þ such that

ð1� lÞ %SSd � Td ; ð13Þ

where %SSd :¼ fx� Z : x 2 Sd ; Z 2 Sdg: The control law is designed as follows. Partition f and v
compatibly with the decomposition of z as

f ðxaÞ ¼
f0ðxaÞ

fdðxaÞ

 !
and v ¼

v0

vd

 !

Then choose

ucðkÞ ¼ FcxcðkÞ � JaxaðkÞ ð14Þ

where Fc is such that Acc þ BcFc is Schur-stable. Choose

u0ðkÞ ¼ f0ðxaðkÞÞ ð15Þ

udðkÞ ¼ l½xdðkÞ � fd ðxaðkÞÞ� þ fdðxaðkþ 1ÞÞ � lkþ1½fdðxaðkþ 1ÞÞ � fdðxaðkÞÞ�

� GaxaðkÞ � GcxcðkÞ � GdxdðkÞ ð16Þ

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:435–461

CONSTRAINED STABILIZATION PROBLEMS FOR DISCRETE-TIME LINEAR PLANTS 449



where xaðkþ 1Þ ¼ AaaxaðkÞ þ KazðkÞ: Note that the control law for ud is time-varying, and is
nonlinear in the global case and linear in the semi-global case. It remains to show that for the
control law given above we have zðkÞ 2 S and zðkþ 1Þ � zðkÞ 2 T for all k50; moreover,
vðkÞ ¼ zðkÞ � f ðxaðkÞÞ satisfies (12) for a suitably chosen M > 0:

Given the feedback for ud ; we obtain

xdðkþ 1Þ � fd ðxaðkþ 1ÞÞ ¼ l½xd ðkÞ � fdðxaðkÞÞ� � lkþ1½fdðxaðkþ 1ÞÞ � fdðxaðkÞÞ� ð17Þ

Solving this difference equation yields that

xd ðkÞ ¼ lkxdð0Þ þ ð1� lkÞfdðxaðkÞÞ ð18Þ

Since both xdð0Þ and fdðxaðkÞÞ are in the convex set Sd ; we have zdðkÞ ¼ xd ðkÞ 2 Sd : On the
other hand,

xdðkþ 1Þ � xdðkÞ ¼ lk ð1� lÞ½fdðxaðkþ 1ÞÞ � xdð0Þ�f g

þ ð1� lkÞ½fd ðxaðkþ 1ÞÞ � fdðxaðkÞÞ�

Hence, by (13) we get

zdðkþ 1Þ � zd ðkÞ ¼ xdðkþ 1Þ � xdðkÞ 2 Td

From (18) we see that

vdðkÞ ¼ xdðkÞ � fdðxaðkÞÞ ¼ lk½xdð0Þ � fdðxaðkÞÞ� ð19Þ

Noting that both xd ð0Þ and fdðxaðkÞÞ are in the bounded set Sd and that z0 ¼ u0 ¼ f0ðxaÞ; we
find that there exists M > 0 such that (12) holds.

So far we have shown that the equilibrium point x ¼ 0 of the overall closed-loop system is
globally attractive. Since we have used a time-varying control law and the control law is
nonlinear in the global case, the asymptotical stability of the equilibrium point x ¼ 0 needs a
careful verification. First note that, according to the design of f ðxaÞ presented in Appendix A,
the feedback f ðxaÞ is globally Lipschitz and locally linear in terms of xa: Then, it can be shown
that for sufficiently small initial conditions xa0 ¼ xað0Þ; xc0 ¼ xcð0Þ; and xd0 ¼ xd ð0Þ we have
jjxaðkÞjj4k1ðjjxa0jj þ jjxd0jjÞ for some constant k1 > 0 and all k50: This part of proof is presented
in Appendix B. From (18) we see that jjvðkÞjj4k2ðjjxa0jj þ jjxd0jjÞ for some constant k2 > 0 and all
k50: From (17) it is straightforward that jjxd ðkÞjj4k3ðjjxa0jj þ jjxd0jjÞ for some constant k3 > 0
and all k50: Finally, viewing the dynamics of xc as a Schur stable system with disturbance
KczðkÞ ¼ Kc½f ðxaðkÞÞ þ vðkÞ� we obtain that jjxcðkÞjj4k4ðjjxa0jj þ jjxc0jj þ jjxd0jjÞ for some
constant k4 > 0 and all k50: In conclusion, we have shown the local stability of the equilibrium
point x ¼ 0: This completes the proof. &

Proof of Theorem 4.2
Note that condition (v) kerCz � kerCzA implies that Ga ¼ Gc ¼ 0 in (7). Moreover, condition
(vi) ker ðCy DyÞ � ker ðCz DzÞ ensures that we can decompose y in a suitable basis such that

y ¼
*yy

xd

 !
¼

*CCya
*CCyc 0

0 0 I

 ! xa

xc

xd

0
BB@

1
CCAþ

*DDyu

0

 !
*uu
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which clearly indicates that the state xd is directly determined by y: We get the following system

xaðkþ 1Þ ¼AaaxaðkÞ þ KazðkÞ

xcðkþ 1Þ ¼AccxcðkÞ þ KczðkÞ þ Bc½ucðkÞ þ JaxaðkÞ�

xdðkþ 1Þ ¼ udðkÞ þ GdxdðkÞ

*yy ¼ *CCyaxa þ *CCycxc þ *DDyu *uu

z0ðkÞ ¼ u0ðkÞ

zd ðkÞ ¼ xd ðkÞ ð20Þ

Since ðCy;AÞ is an observable pair, the scb decomposition guarantees that the pair

Aaa 0

BcJa Acc

 !
; ð *CCya

*CCyc Þ

 !

is also observable. That is, there exist matrices La and Lc such that

*AA ¼
Aaa � La

*CCya �La
*CCyc

BcJa � Lc
*CCya Acc � Lc

*CCyc

 !

is Schur-stable. For the above system, we use a reduced-order observer for the state variables
ðxa; xcÞ:

#xxaðkþ 1Þ ¼Aaa #xxaðkÞ þ KazðkÞ þ La½ *yyðkÞ � *CCya #xxaðkÞ � *CCyc #xxcðkÞ � *DDyu *uuðkÞ�

#xxcðkþ 1Þ ¼Acc #xxcðkÞ þ KczðkÞ þ Bc½ucðkÞ þ Ja #xxaðkÞ�

þ Lc½ *yyðkÞ � *CCya #xxaðkÞ � *CCyc #xxcðkÞ � %DDyu *uuðkÞ�

Note that the measurement error is exponentially decaying.
The remaining design procedure follows the state feedback controller design presented in the

proof of Theorem 4.1 with ðxa;xcÞ replaced by ð #xxa; #xxcÞ in the controller, except that we have an
additional exponentially decaying error perturbation as a result of the replacement. Note that
this additional error disturbance can be accommodated in the error signal v in the state feedback
design, which is taken care of by a properly designed feedback z0 ¼ f ð #xxaÞ for the first subsystem.
From the construction of state feedback, it can be verified that with the states ðxa; xcÞ replaced
by their measurements ð #xxa; #xxcÞ the constraints remain not violated. This completes the
proof. &

Proof of Theorem 4.4
Let xð0Þ ¼ ðxTa ð0Þ;x

T
2 ð0ÞÞ

T be any an initial condition in the domain of attraction Rf ðS;S;TÞ
where xT2 ¼ ðxTc ;x

T
d Þ: It is clear that x2ð0Þ 2 AðS2;S;TÞ because x2ð0Þ must be in the admissible

set of initial conditions for subsystem S2: On the other hand the first subsystem S1 can be
viewed as being controlled by z with initial condition xað0Þ: Since xð0Þ is in the domain of
attraction, we know that xðkÞ ! 0 as k ! 1; which implies that the state xaðkÞ converges to
zero as k ! 1 while z satisfies the constraints. This means that xað0Þ 2 RðS1;S;TÞ: &
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Proof of Theorem 4.6
Since K � M; by the definition of M; we can find an input u which guarantees that at time k;
xaðkÞ ¼ %xxa 2 RðS1;S;RpÞ: Clearly, there exists a feedback z ¼ f ðxaÞ from time k onward which
guarantees stability of the first subsystem when starting inside the set RðS1;S;RpÞ: On the other
hand, we can find an input from time 0 onward that guarantees that we still have xaðkÞ ¼ %xxaðkÞ
but additionally zðiÞ ¼ f ðxaðiÞÞ for i5k: Choosing u such that zðiÞ has the desired value is
initially a noncausal feedback since the subsystem from u to z contains delays. But since this
system does not contain external disturbances we can implement this feedback in a causal way
since the trajectory from time i onward is completely determined by xðiÞ: &

5. NON-RIGHT INVERTIBLE CONSTRAINTS

For a system with non-right invertible constraints, according to scb, there exists a
transformation matrix Gz such that *zz ¼ G�1

z z yields the following decomposition

*zz ¼

z0

zb

zd

0
BB@

1
CCA ¼

0

Czb

0

0
BB@

1
CCAxb þ

0

0

Ind

0
BB@

1
CCAxd þ

In0

0

0

0
BB@

1
CCAu0 ð21Þ

The decomposition of state has to be modified as *xx ¼ G�1
x x ¼ ðxTa ;x

T
b ; x

T
c ;x

T
d Þ

T: Then system S in
scb becomes (see References [18,19] for details):

xaðkþ 1Þ ¼AaaxaðkÞ þ Ka *zzðkÞ

xbðkþ 1Þ ¼AbbxbðkÞ þ Kb *zzðkÞ

xcðkþ 1Þ ¼AccxcðkÞ þ Kc *zzðkÞ þ Bc½ucðkÞ þ JaxaðkÞ�

xdðkþ 1Þ ¼ udðkÞ þ GaxaðkÞ þ GbxbðkÞ þ GcxcðkÞ þ GdxdðkÞ

yðkÞ ¼CyaxaðkÞ þ CybxbðkÞ þ CycxcðkÞ þ CydxdðkÞ þ *DDy *uuðkÞ

z0ðkÞ ¼ u0ðkÞ

zbðkÞ ¼CzbxbðkÞ

zdðkÞ ¼ xd ðkÞ ð22Þ

Note that choosing a basis in the output space affects our sets S and T: Therefore, we obtain
new constraint sets *SS ¼ G�1

z S and *TT ¼ G�1
z T: Since CT

z Dz ¼ 0; it is guaranteed that these new
constraint sets still satisfy Assumption 2.1.

Consider our original system in the special coordinate basis as given in (9) together with the
extra output transformation in (21). Defining

*AA1 ¼
Aaa 0

0 Abb

 !
; *BB1 ¼

Ka

Kb

 !
; *xx1 ¼

xa

xb

 !
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*CC1 ¼ Czb; *vv1 ¼ *zz; and *zz1 ¼ zb; we obtain for i ¼ 1 the following system:

*SSi :
*xxiðkþ 1Þ ¼ *AAi *xxiðkÞ þ *BBi *vviðkÞ

*zziðkÞ ¼ *CCi *xxiðkÞ

(
ð23Þ

where both *vv1 and *zz1 are constrained. Temporarily dropping the constraint on *vv1; we can repeat
the same procedure to obtain *SS2 from *SS1 and so on. At each step of the construction we should
make sure that the matrix *BBi has full column rank and the matrix *CCi has full row rank. This can
be done without loss of generality. This chain ends if we obtain a subsystem *SSi which is right
invertible in the sense that *SSiþ1 satisfies *CCiþ1 ¼ 0: Another possibility of termination is that at
some step we get *BBi ¼ 0; which obviously implies that we can end the chain. It can be shown
easily that if the pair ðA;BÞ of the given system S is stabilizable, then all the systems *SSi as defined
in (23) are stabilizable.

The following theorem contains some necessary conditions for constrained global or semi-
global stabilization when the system is not right invertible.

Theorem 5.1
Consider the system S as given by (1) . Let the sets S and T satisfy Assumption 2.1. Moreover,
let the chain of systems *SSi ði ¼ 1; . . . ; sÞ be as described above. Then the global and semi-global
constrained stabilization problems formulated in Problems 2.3 and 2.4 are solvable only if the
following conditions are satisfied:

(i) ðA;BÞ is stabilizable.
(ii) The constraints of system S are at most weakly non-minimum phase.
(iii) The constraints of system S are of type one.
(iv) All the subsystems *SSi (i ¼ 1; . . . s) have at most weakly non-minimum phase constraints.
(v) The subsystems *SSi (i ¼ 1; . . . ; s) with realization (23) satisfy:

ker *CCi � ker *CCi
*AAi ð24Þ

Proof
The necessity of these conditions except (v) is self-evident by considering each subsystem as an
independent system with input and output constraints and recalling the necessary conditions in
Theorem 4.1 for systems with output constraints. To see that the condition (v) is also necessary,
we go back to the scb decomposition used earlier in the proof of Theorem 4.1. As an illustration,
let us look at the xd equation in (7) at time 0: We must have

xdð1Þ ¼ udð0Þ þ Gaxað0Þ þ Gcxcð0Þ þ Gdxdð0Þ 2 Sd ð25Þ

for all possible initial conditions, but keep in mind that now ud is constrained following the way
we obtain the decomposition of *SSi: Since xa and xc are completely unconstrained whereas udð0Þ
and xd ð0Þ are constrained, condition (25) can be guaranteed only if Ga and Gc both equal 0: This
is a condition equivalent to condition (v). &

The following example indicates that the conditions given in Theorem 5.1 are just necessary
but not sufficient conditions for solving the constrained stabilization problems. Also, this
example shows that the solvability conditions for global and semi-global stabilization in the case
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of non-right invertible constraints in general depend on the particular choice of constraint sets
S and T; unlike the case of right invertible constraints.

Example 5.2
Consider the system:

x1ðkþ 1Þ ¼ x2ðkÞ

x2ðkþ 1Þ ¼ uðkÞ

z1ðkÞ ¼ x1ðkÞ

z2ðkÞ ¼ x2ðkÞ ð26Þ

Note that the transfer matrix from u to z is non-right invertible and all the conditions in
Theorem 5.1 are satisfied. If the constraint set is defined as

S ¼ fz : jz1j41; jz2j42g and T ¼ R2

Then for any initial condition with x1ð0Þ ¼ 0 and x2ð0Þ > 1; we find that x1ð1Þ will violate the
constraints. Therefore constrained stabilization is not possible.

However, for the constraint set defined by

S ¼ fz : jz1j41; jz2j41g and T ¼ R2

it is easily seen that the feedback u ¼ 0 achieves constrained stabilization.

The shape dependence on the constraint sets causes trouble in developing solvability
conditions for non-right invertible systems. Hence, it is meaningful to ask under what conditions
the solvability conditions for the non-right invertible constraints will not depend on the specific
shape of constraint sets. The following theorem provides an answer to this question.

Theorem 5.3
Consider the system (1). The following two statements are equivalent:

(i) The global or semi-global constrained stabilization is possible for all constraint sets S
and T satisfying Assumption 2.1.

(ii) The constraints of system S are at most weakly non-minimum phase and of type one.
Moreover, the subsystem *SS1 defined in (23) takes the following form:

xaðkþ 1Þ

xbðkþ 1Þ

 !
¼

Aaa Aab

0 aI

 !
xaðkÞ

xbðkÞ

 !
þ

%KKa

0

 !
%zzðkÞ

zbðkÞ ¼ ð 0 Czb Þ
xaðkÞ

xbðkÞ

 !
ð27Þ

where %zzT ¼ ðzT0 ; z
T
d Þ; the matrix Czb is injective, and a 2 ½0; 1Þ:

Proof
The proof of (ii) ) (i) is obvious. It remains to prove (i) ) (ii).
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We decompose Ka ¼ ðKa0 Kab KadÞ and Kb ¼ ðKb0 Kbb Kbd Þ: Then we rewrite the subsystem
*SS1 defined in (23) as

xaðkþ 1Þ

xbðkþ 1Þ

 !
¼

Aaa Aab

0 %AAbb

 !
xaðkÞ

xbðkÞ

 !
þ

%KKa

%KKb

 !
%zzðkÞ

zbðkÞ ¼ ð 0 Czb Þ
xaðkÞ

xbðkÞ

 !
ð28Þ

where Aab ¼ KabCzb; %AAbb ¼ Abb þ KbbCzb; %KKa ¼ Ka0 Kadð Þ; %KKa ¼ ðKa0 Kad Þ; and the partial state
xa represents the zero dynamics. Viewing %zz as input to the zero dynamics and noting that zb is
constrained, the necessary condition for global or semi-global constrained stabilization as stated
in condition (v) of Theorem 5.1 requires that

kerCzb � kerCzb
%AAbb

This means that kerCzb is part of the zero dynamics. But all of the zero dynamics of the original
system has been included in the dynamics of xa: Hence, kerCzb ¼ f0g; i.e. Czb is injective.

Knowing that Czb is injective, we can choose a constraint set on zb so that xb is constrained to
be arbitrarily small. However, %zzð0Þ can be anywhere in the constraint set for %zz which can be
arbitrarily large. If Kb=0 then we cannot guarantee that xb is small enough to be in its
constraint set and we get a constraint violation. Hence, we must have Kb ¼ 0:

With Kb ¼ 0; the subsystem of xb becomes completely uncontrollable. For asymptotic
stabilization of the whole system we need jaj51: However, if the constraint set on xb is not
symmetric, to avoid constraint violation we must have a 2 ½0; 1Þ: &

6. CONCLUSION

This paper has considered the semi-global and global stabilization problems of discrete-time
linear systems in the presence of magnitude and rate constraints on both state and input
variables. It turns out that the solvability conditions are largely dependent on the structural
properties of linear plants such as the right invertibility, the location of the constraint invariant
zeros, and the order of infinite zeros (or relative degree). New notions like constraint invariant
zeros, constraint infinite zeros, right invertible constraints, and non-right invertible constraints
have been introduced to characterize the conditions under which the global and semi-global
stabilization problems are solvable. The general results presented here include the stabilization
problems of linear systems with input constraints as a special case.

APPENDIX A: GLOBAL AND SEMI-GLOBAL STABILIZATION WITH
AMPLITUDE AND RATE CONSTRAINTS AND ‘2 DISTURBANCE

In this section we first develop a nonlinear control law satisfying the amplitude and rate
constraints that achieves globally asymptotic stabilization for an asymptotically null
controllable system without disturbance, meanwhile it achieves global attractivity of the origin
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when an ‘2 disturbance is in presence. Then we develop a linear control for the semi-global case
which achieves a similar result.

Theorem A1
Consider the system

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ þ BwðkÞ ðA1Þ

with input subject to the amplitude and rate constraints:

jjuðkÞjj14a; jjuðkþ 1Þ � uðkÞjj14b; 8k50 ðA2Þ

for some a > 0 and b > 0: The sequence wðkÞ is any disturbance in ‘2: Assume that ðA;BÞ is
stabilizable with all eigenvalues of A in the closed unit disc. Then, there exists a static nonlinear
state feedback which has the following properties:

* The constraints in (A2) are not violated.
* In the absence of disturbance the equilibrium point x ¼ 0 of the closed-loop system is

globally asymptotically stable and locally exponentially stable.
* In the presence of any ‘2 disturbance the state x ¼ 0 remains globally attractive.

Proof
We first recall the following fact. Let QðeÞ be any parameterized positive definite matrix
satisfying: QðeÞ > 0 for e > 0; QðeÞ ! 0 as e ! 0; and ðd=deÞQðeÞ > 0: Then the discrete-time
algebraic Riccati equation (DARE)

ATPA� P� ATPBðBTPBþ IÞ�1BTPAþQðeÞ ¼ 0

has a unique positive definite solution PðeÞ for any e 2 ð0; 1�: Moreover, this positive definite
solution PðeÞ has the following properties:

(i) The matrix ½A� BðBTPBþ IÞ�1BTPðeÞA� is Schur-stable for all e > 0:
(ii) lime!0 PðeÞ ¼ 0:
(iii) PðeÞ is continuously differentiable with dPðeÞ=de > 0 for any e 2 ð0; 1�:
(iv) There exists a constant M > 0 such that

jjP1=2ðeÞAP�1=2ðeÞjj4M ðA3Þ

for any e 2 ð0; 1�:

For simplicity, we choose QðeÞ ¼ eI :
The idea of scheduling is to choose the parameter e to be state dependent, that is, we define

eðxðkÞÞ ¼ maxfe 2 ð0; 1�: xTðkÞPðeÞxðkÞtr½PðeÞ�4d* 2g ðA4Þ

so that when QðeÞ in the above Riccati equation is replaced by QðeðxðkÞÞÞ; it yields a unique
solution PðeðxðkÞÞÞ:Note that, because of the properties possessed by PðeÞ; eðxðkÞÞ is well defined.
To simplify notation, we denote eðkÞ ¼ eðxðkÞÞ; Qk ¼ QðeðxðkÞÞÞ ¼ eðkÞI and Pk ¼ PðeðxðkÞÞÞ:
Following this, we define a nonlinear static control law as

uðkÞ ¼ �ðBTPkBþ IÞ�1BTPkAxðkÞ ðA5Þ

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:435–461

A. SABERI ET AL.456



and show that there exists a sufficiently small dn > 0 such that the control law satisfies the
amplitude and rate constraints (A2) and achieves global asymptotic stabilization of system (A1)
when w ¼ 0:

Let r ¼ minfa; b=2g and choose dn > 0 small enough so that

M2lmaxðBBTÞd*24r2

where M is the constant defined in (A3). Then,

jjuðkÞjj2 ¼ xTðkÞATPkBðBTPkBþ IÞ�2BTPkAxðkÞ

4 jjP�1=2
k AP

1=2
k jjlmaxðBBTÞfxTðkÞPkxðkÞ trPkg

4M2lmaxðBBTÞd*2

4r24a2

which implies that jjuðkÞjj14jjuðkÞjj4a for all k; i.e. the control law (A5) does not violate the
amplitude constraint. On the other hand, the above also yields that jjuðkÞjj14b=2 for all k:
Hence,

jjuðkþ 1Þ � uðkÞjj14jjuðkþ 1Þjj1 þ jjuðkÞjj14b

for all k which shows that the control law also does not violate the rate constraint.
Next we show that the closed-loop system is globally asymptotically stable when w � 0:

Choose a Lyapunov function

VðkÞ :¼ VðxðkÞÞ ¼ xTðkÞPkxðkÞ

The variation of VðkÞ along the state trajectory of the closed-loop system is

Vðkþ 1Þ � VðkÞ

¼ xTðkþ 1Þ½Pkþ1 � Pk�xðkþ 1Þ � eðkÞxTðkÞxðkÞ � uTðkÞuðkÞ

þ wTðkÞBTPkBwðkÞ � 2uTðkÞwðkÞ ðA6Þ

¼ xTðkþ 1Þ½Pkþ1 � Pk�xðkþ 1Þ � eðkÞjjxðkÞjj2 � jjuðkÞ þ wðkÞjj2 ðA7Þ

þwTðkÞðBTPkBþ IÞwðkÞ ðA8Þ

When w � 0; we get

Vðxðkþ 1ÞÞ � VðxðkÞÞ4� eðkÞjjxðkÞjj2 þ xTðkþ 1Þ½Pkþ1 � Pk�xðkþ 1Þ ðA9Þ

Consider the following two cases:

Case 1: If eðkþ 1Þ4eðkÞ; we find by the monotonicity of PðeÞ that Pkþ14Pk and using (A9)
that Vðxðkþ 1ÞÞ � VðxðkÞÞ50 for xðkÞ=0:

Case 2: If 15eðkþ 1Þ > eðkÞ; then Pkþ1 > Pk and

VðxðkÞÞ trPk ¼ d*25Vðxðkþ 1ÞÞ tr Pkþ1

which yields Vðxðkþ 1ÞÞ � VðxðkÞÞ50 for xðkÞ=0:
In conclusion, the control law (A5) guarantees that Vðxðkþ 1ÞÞ � VðxðkÞÞ50 for xðkÞ=0;

which implies the global asymptotic stability. The local exponential stability follows easily by
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noting that eðxðkÞÞ � 1 if the system starts sufficiently close to the origin and the control law is
linear and the input saturation is never overloaded.

The global attractivity of the origin in the presence of ‘2 disturbance follows from the
following argument. From (A8) we claim that if Vðkþ 1Þ5VðkÞ then

Vðkþ 1Þ � VðkÞ4� eðkÞjjxðkÞjj2 þ ZjjwðkÞjj2 ðA10Þ

where Z ¼ lmax½BTPð1ÞBþ I �: This is because the scheduling defined in (A4) guarantees that
Pkþ14Pk whenever Vðkþ 1Þ5VðkÞ: This yields

Vðkþ 1Þ � VðkÞ4ZjjwðkÞjj2 ðA11Þ

for all k50: This inequality guarantees that, given an ‘2 disturbance w; the state starting from
anywhere in Rn is bounded. This implies that eðkÞ has a lower bound emin > 0: It remains to show
that the state x starting from any point in Rn is also in ‘2; hence it approaches to the origin.

First, note that if the initial state is sufficiently close to the origin, say jjxð0Þjj4r0 for some
r0 > 0 small enough, and the disturbance is bounded by jjwðkÞjj4d0; then for sufficiently small d0
the amplitude and rate constraints (A2) will not be violated, and the closed-loop system is linear
and exponentially stable. Hence, xðkÞ 2 ‘2:

Now, let d2
05eminr0=Z: We show that for any initial state xð0Þ 2 Rn and any disturbance w 2 ‘2

there exists K > 0 such that jjxðKÞjj4r0 and jjwðkÞjj4d0 for all k > K : Since w is vanishing, there
exists K1 > 0 such that jjwðkÞjj4d0 for all k5K1: On the other hand, if jjxðkÞjj > r0 and V �
ðkþ 1Þ5VðkÞ for some k5K1 then from (A10) we have

Vðkþ 1Þ � VðkÞ4� eðkÞjjxðkÞjj2 þ ZjjwðkÞjj25� eminr0 þ Zd050

for k5K1: This contradiction yields that either jjxðkÞjj4r0 or Vðkþ 1Þ5VðkÞ: For the former
case, we are done. For the later case, there exists K > K1 such that jjxðKÞjj4r0: In conclusion,
there exists K > 0 such that jjxðKÞjj4r0: This shows the global attractivity. &

Theorem A2
Consider the system (A1) with input subject to the amplitude and rate constraints (A2). Assume
the same condition as stated in Theorem A1. Then, given any compact set K in the state space
and any D > 0 there exists a linear state feedback which has the following properties:

* The constraints in (A2) are not violated.
* In the absence of disturbance the equilibrium point x ¼ 0 of the closed-loop system is

asymptotically stable with K contained in the region of attraction.
* In the presence of any ‘2 disturbance satisfying jjwjj‘24D the state x ¼ 0 remains

attractive.

Proof
The proof of this theorem is easily adapted from the proof of Theorem A1. Since we are dealing
with semi-global stabilization, we can fix e to be a constant, instead of being state dependent. Let
VðxÞ ¼ xTPðeÞx be the Lyapunov function and LV ðcÞ :¼ fx : xTPðeÞx4cg be the level set.
Choose a sufficiently small e 2 ð0; 1� so that

2ZD2 tr PðeÞ4d*2 and K � LV ðZD2Þ
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where the constants Z and dn are defined in the proof of Theorem A1. Following this choice of e;
we claim that the level set LV ð2ZD2Þ is an invariant set for trajectories starting from any point in
K and any disturbance w satisfying jjwjj‘24D: This claim follows easily from the inequality
(A10) which holds for all k50 when e is fixed. The rest of the proof follows similarly as the
global case. &

APPENDIX B: COMPLETION TO THE PROOF OF THEOREM 4.1

Lemma B1
Consider the following system

xðkþ 1Þ ¼ AxðkÞ þ lkGxðkÞ

where A is Schur stable and jlj51: Then, for all xð0Þ 2 Rn there exists k > 0 such that

jjxðkÞjj4kjjxð0Þjj

for all k50:

Proof
Since A is Schur stable, there exists a positive definite matrix P > 0 such that ATPA� P ¼ �I :
Let VðxÞ ¼ xTPx and denote Vk ¼ VðxðkÞÞ: Then

Vkþ1 � Vk ¼ � xTðkÞxðkÞ þ 2lkxTðkÞGTPAxðkÞ þ l2kxTðkÞGTPGxðkÞ

4 2jljkðxTðkÞATPAxðkÞÞ1=2ðxTðkÞGTPGxðkÞÞ1=2 þ jlj2kxTðkÞGTPGxðkÞ

4 ð2b1=2jljk þ bjlj2kÞVk

4 c0jljkVk

where we have used xTðkÞATPAxðkÞ4xTðkÞPxðkÞ; b ¼ lmaxðGTPGÞ=lminðPÞ; and c0 ¼ 2b1=2 þ b:
It follows that

Vkþ14ð1þ c0jljkÞVk4expfc0jljkgVk

Thus,

Yk�1

i¼0

Viþ1

Vi
4exp

X1
k¼0

c0jljk
( )

i.e.

Vk4exp
X1
k¼0

c0jljk
( )

V0

for all k50: Hence the lemma follows. &

Completion to the Proof of Theorem 4.1
Note that the feedback f ðxaÞ as constructed in Appendix A is globally Lipschitz and locally
linear. Let r > 0 be sufficiently small and let f ðxaÞ ¼ �Faxa for jjxajj4r: As we shall see later, we
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can choose the initial conditions sufficiently small to guarantee that the trajectory of xa remains
in this ball. The construction of f ðxaÞ guarantees that *AAaa :¼ Aaa � KaFa is Schur stable. We
decompose Fa ¼ ðFT

a0; FT
ad Þ

T and continue by writing out the first subsystem

xaðkþ 1Þ ¼AaaxaðkÞ þ Kaf ðxaðkÞÞ þ KavðkÞ

¼ ðAaa � KaFaÞxaðkÞ þ Ka

v0

vd

 !

¼ *AAaaxaðkÞ þ Ka

0

lkxdð0Þ � lkfdðxaðkÞÞ

 !

¼ *AAaaxaðkÞ þ lkKa

0

xdð0Þ

 !
þ lkKa

0

Fad

 !
xaðkÞ

This system is equivalent to the following dynamics

xaðkþ 1Þ

xðkþ 1Þ

 !
¼

*AAaa I

0 lI

 !
xaðkÞ

xðkÞ

 !
þ lkG

xaðkÞ

xðkÞ

 !

where

xð0Þ ¼ Ka

0

xdð0Þ

 !
and G ¼

Ka

0

Fad

 !
0

0 0

0
BB@

1
CCA

Applying Lemma B1, there exist k > 0 and k1 > 0 such that

jjxaðkÞjj4jjðxaðkÞ
T xðkÞTÞTjj4kjjðxað0Þ

T xð0ÞTÞTjj4k1ðjjxað0Þjj þ jjxdð0ÞjjÞ &
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