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SUMMARY

In this paper we study discrete-time linear systems with full or partial constraints on both input and state.
It is shown that the solvability conditions of stabilization problems are closely related to important
concepts, such as the right-invertibility of the constraints, the location of constraint invariant zeros and the
order of constraint infinite zeros. The main results show that for right-invertible constraints the order of
constrained infinite zeros cannot be greater than one in order to achieve global or semi-global stabilization.
This is in contrast to the continuous-time case. Controllers for both state feedback and measurement
feedback are constructed in detail. Issues regarding non-right invertible constraints are discussed as well.
Copyright © 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Two of the most commonly encountered constraints in control engineering are actuator
constraints and state constraints. References [1] and [2] capture some recent research activities
regarding constraints on actuators, i.c. on inputs. Besides actuator constraints, state constraints
are a major concern in control engineering. However, the state constraints, unlike the actuator
constraints, have not received much attention from a structural point of view. There have been
some efforts on dealing with state and input constraints utilizing the concept of positive
invariant sets [3] and techniques of model predictive control [4-6]. However, the available tools
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along these lines are computationally very demanding and the resulting controllers are highly
complicated.

During the last decade several aspects of control design problems for linear systems with
magnitude and rate constraints on control variables have been studied among others by the first
and third author and their students and collaborators. A number of powerful analysis and
design methods such as low gain, low-high gain, scheduled low gain, scheduled low-high
gain and many variations of them have been developed for several core control design
problems including global and semi-global internal stabilization, external stabilization, output
regulation, and disturbance rejection. We have studied stabilization (continuous-time in
Reference [7] and discrete-time in Reference [8]) and output regulation problems (continuous-
time in Reference [9] and discrete-time in Reference [10]) associated with magnitude and rate
constraints on control variables. Many of these issues have also been addressed in Refeence [11].
The research thrust of the first and third author and their students has broadened to include
additionally magnitude constraints on state variables. In connection with stabilization,
whenever amplitude and rate constraints on both state as well as input variables exist, a
taxonomy of all possible constraints is introduced, and several fundamental results on global,
semi-global and regional stabilization are developed in a recent paper [12]. The work of Saberi
et al. [12] focuses on continuous-time systems and generalizes, extends and covers all existing
results including those developed in Reference [13]. The focus of this paper is to address the
same issues for discrete-time systems. Output regulation for systems with both input and state
constraints has in the mean time also been studied in Reference [14] (continuous-time) and [15]
(discrete-time).

It is becoming evident that the taxonomy of constraints developed in Reference [12] plays
dominant roles in every type of control design problem, not only for continuous-time systems
but also for discrete-time systems. The taxonomy of constraints is developed by appropriately
modelling the constraints in terms of what is called a constraint output (of the given system)
with its magnitude and rate subject to some prescribed constraint sets. It turns out that the
structural properties of the mapping from the input to the constrained output vector play
dominant roles in dictating what is feasible and what is not feasible. Such structural properties
have been categorized in three directions. The first direction of categorization is based on the
right invertibility of the mapping from the input to the constraint output vector. This direction
of categorization delineates the constraints into two mutually exclusive categories: (1) right
invertible constraints representing the case when the mapping from the input to the constraint
output vector is right invertible and (2) non-right invertible constraints representing the case
when the mapping from the input to the constraint output vector is not right invertible. The
second direction of categorization is based on the so called constraint invariant zeros of the
plant, i.e. the invariant zeros of the mapping from the input to the constrained output vector.
Like in the first categorization, this second categorization also delineates the constraints into
two mutually exclusive main categories: (1) at most weakly non-minimum phase constraints
representing the case when the constraint invariant zeros are in the closed left-half complex
plane for continuous-time systems or in the closed unit disc for discrete-time systems and (2)
strongly non-minimum phase constraints representing the case when one or more of the
constraint invariant zeros are in the open right half complex plane for continuous-time systems
or outside the unit disc for discrete-time systems. The third direction of categorization is based
on the order of constraint infinite zeros, i.e. the infinite zeros of the mapping from the input to
the constrained output.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:435-461
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Based on such a taxonomy of constraints, two main features emerge:

® Neither the constrained semi-global nor the constrained global stabilization problem is
solvable whenever the constraints are strongly non-minimum phase.

® There exists a perceptible demarkation line between the right and non-right invertible
constraints. In particular, the solvability conditions for the constrained semi-global and
global stabilization problems via state feedback do not depend on the shape of the
constraint sets for right invertible constraints, whereas for non-right invertible constraints
they indeed do so.

This paper, which deals with discrete-time systems, focuses on the above aspects. Although
the development for discrete-time systems parallels somewhat that in continuous-time systems,
there are several fundamental differences between continuous- and discrete-time systems: (1) the
solvability conditions for semi-global stabilization, unlike in continuous-time systems, requires
that the order of the constraint infinite zeros be less than or equal to one, (2) the methods of
constructing appropriate controllers need to be revised as needed and (3) some new issues arise,
which do not exist in continuous-time systems.

Following the problem formulation in the next section, a taxonomy of constraints is
presented in Section 3. This taxonomy facilitates the statements of the main results of global and
semi-global stabilization for right invertible constraints in Section 4. In this section control laws
are designed in detail for both state feedback and measurement feedbacks. Some new issues
regarding non-minimum phase constraints are discussed as well. Such issues were not observed
in the continuous-time case. Systems with non-right invertible constraints are studied in Section
5, where some necessary conditions for the global and semi-global stabilization are developed.
In the same section the shape dependence on the constraint sets is also carefully examined. This
paper concludes in Section 6.

2. PROBLEM FORMULATION

Consider a discrete-time linear system:
x(k+1) = Ax(k)+ Bu(k)
2 < (k) = C,x(k) + Dyu(k) (1
z(k) = C,x(k) + D.u(k)

where xe R",ue R",ye R",ze R’ are respectively state, input, measurement output and
constrained output. The constrained output z is subject to both amplitude and rate constraints
in that for two a priori given sets & < R and J < R” we require

k) e s, Vk=0

ztk+1)—z(kye T, VYk=0 (2

Figure 1 shows the basic structure of the system model.

Given the system described above, our goal is to obtain necessary and sufficient conditions for
the possibility of stabilization. Whenever it is possible, we will present design methodologies for
constrained stabilization.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:435-461
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U

Figure 1. Closed-loop system with constrained output.

Remark

Note that in (2) we only require the rate constraint to be satisfied for all k>0 by ignoring the
rate constraint on z(0) — z(—1). This avoids the technicality of requiring a non-abrupt transition
at the beginning. However, if we incorporate a deadbeat operator in the controller, this issue can
be easily resolved [16].

We make the following fundamental assumption on the structure of the constrained output
and the nature of the constraint sets .% and 7.

Assumption 2.1

(1) The sets ¥ and 7 are closed, convex, and contain 0 as an interior point.
(i) & N7 is bounded.
(iii) The matrices C, and D, satisfy CI'D, = 0 and moreover ¥ and 7 satisfy the following
decomposition:

S = nimC;)+ (¥ n im D.)
T =(7 nimC.)+(J n im D.)

Remark

We observe that im C, reflects the state constraints while im D, reflects the input constraints.
Therefore the decomposition of & and 7 as required in (iii) reflects the fact that the constraints
can be on states and/or inputs.

Clearly, the set of initial conditions has to be restricted, otherwise one can never avoid
constraint violation if the system starts from certain initial conditions. We introduce the concept
of admissible set of initial conditions in the next definition.

Definition 2.2
Let the system (1) and constraint sets ¥ and 7 be given. We define

A (S, T) = {x(0) e R"|Fu(0) such that C.x(0) + D.u(0) € &
and C.[Ax(0) + Bu(0)] — C.x(0) e 7}

as the admissible set of initial conditions.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:435-461
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Remark
In defining the admissible set, one might expect the rate constraint condition to be

2(1) — 2(0) = C.{[Ax(0) + Bu(0)] — x(0)} + D.[u(1) — u(0)] € T

However, we have omitted the second term because by the decomposition in item (iii) of
Assumption 2.1 these two constraints are equivalent if we can ensure D.[u(1) — u(0)] € . But
this can be done by design.

Remark

A concept related to the admissible set of initial conditions is the so called maximal output
admissible set, which was discussed extensively in Reference [17]. The definition of maximal
output admissible set was based on a given linear control law. However, our work in this paper
is mainly focused on characterizing solvability conditions under which appropriate control laws
can be synthesized so that the constraint violation is avoided during the whole control process.

The following problems are formulated either in global or in semi-global setting.

Problem 2.3 (Global constrained stabilization via state feedback)
Consider the system (1) with constraint sets & < R” and J < R’. Find, if possible, a state
feedback (possibly nonlinear) u(k) = f(x(k), k) such that the following conditions hold:

(1) The equilibrium point x = 0 of the closed-loop system is asymptotically stable with
(S, T) contained in its domain of attraction.
(i1) For any x(0) € A4 (¥,.7), we have z(k) e & and z(k + 1) — z(k) € 7 for all k=0.

Problem 2.4 (Semi-global constrained stabilization via state feedback)

Consider the system (1) with constraint sets ¥ < R” and 7 < R’. For any a priori given
compact set .7 contained in the interior of «/(&, ) find, if possible, a state feedback (possibly
nonlinear) u(k) = f(x(k), k) such that the following conditions hold:

(1) The equilibrium point x = 0 of the closed-loop system is asymptotically stable with .«
contained in its domain of attraction.
(i) For any x(0) € <7, we have z(k) € & and z(k + 1) — z(k) € 7 for all k=0.

Problem 2.5 (Global constrained stabilization via measurement)
Consider the system (1) with constraint sets & < R’ and 7 < R’. Find, if possible, a
measurement feedback (possibly nonlinear and time-varying) of the form,

vk + 1) = g(v(k), y(k), k), veR
u(k) = h(v(k), y(k), k)
such that the following conditions hold:

(1) The equilibrium point (x,v) = (0,0) of the closed-loop system is asymptotically stable
with .oZ(&, 7)) x R? contained in its domain of attraction.

(ii) For any (x(0), W0)) € «/(,7) x R?, we have z(k) € & and z(k + 1) — z(k) € 7 for all
k=0.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:435-461
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Problem 2.6 (Semi-global constrained stabilization via measurement)
Consider the system (1) with constraint sets ¥ <= R” and 7 < RP. Find (if possible) a family of
measurement feedbacks (possibly nonlinear and time-varying) of the form

vk + 1) = gv(k), y(k), k), veR?
u(k) = h(v(k), y(k), k)

such that for any compact set .o7 contained in the interior of the set .«/(%,.7") and any compact
set ¥ < R? there exists a measurement feedback in this family such that the following
conditions hold:

(1) The equilibrium point (x,v) = (0,0) of the closed-loop system is asymptotically stable
with .oy X "o contained in its domain of attraction.
(i) For any (x(0), w(0)) € .7y x ¥, we have z(k) € & and z(k + 1) — z(k) € 7 for all k=0.

3. TAXONOMY OF CONSTRAINTS

We let C, C®, C° and C© denote respectively the set of complex numbers in the entire complex
plane, outside the unit circle, inside the unit circle and on the unit circle.
The following notions are fundamental to the taxonomy of constraints given below.

Definition 3.1
The system:

x(k+ 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)
is said to be right invertible if for any sequence y.r(k) defined for k>0 there exists an input u and

a choice of x(0) such that y(k) = yr(k) for all k=0.

Definition 3.2
The invariant zeros of a linear system with a realization (4, B, C, D) are those points 4 € C for

which
MM—A —B sl — 4 —B
rank <normrank
C D C D

where ‘normrank’ denotes normal rank.

The first categorization is based on whether the subsystem from u to z is right invertible or
not. We have the following definition:

Definition 3.3
The constraints are said to be
® right invertible constraints if the subsystem X.,: (4, B, C., D.) is right invertible.
® non-right invertible constraints if the subsystem X, : (4, B, C., D.) is not right invertible.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:435-461
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It turns out that the location of the invariant zeros of the subsystem X, is also important in
characterizing the solvability of stabilization problems. We refer to these invariant zeros as
constraint invariant zeros:

Definition 3.4
The invariant zeros of the subsystem characterized by the quadruple (4, B, C., D) are called
constraint invariant zeros of the given system X.

The second categorization of constraints is based on the location of the constraint invariant
zeros. We have the following definition:

Definition 3.5
The constraints are said to be

® minimum phase constraints if all the constraint invariant zeros are in C°.

® weakly minimum phase constraints if all the constraint invariant zeros are in C® U C©
with the restriction that any invariant zero in C© is simple,

® \weakly non-minimum phase constraints if all the constraint invariant zeros are in C° U C©
with at least one non-simple invariant zero in C©.

® at most weakly non-minimum phase constraints if all the constraint invariant zeros are in
C® u CP.

® strongly non-minimum phase constraints if at least one constraint invariant zeros is in C®.

The third categorization is based on the order of the infinite zeros of the subsystem X.,. See
Reference [18] for a definition of infinite zeros of a system. Because of their importance, we
specifically label the infinite zeros of the subsystem X, as the constraint infinite zeros of the
plant.

Definition 3.6
The infinite zeros of the subsystem X, are called the constraint infinite zeros of the plant
associated with the constrained output z.

We have the following definition regarding the third categorization of constraints.

Definition 3.7
The constraints are said to be type one constraints if the order of all constraint infinite zeros is
less than or equal to one.

4. RIGHT INVERTIBLE CONSTRAINTS

In this section we provide necessary and sufficient conditions for the solvability of Problems
2.3-2.6, under the assumption that the subsystem (A4, B, C., D.) is right invertible, i.e. system (1)
has right invertible constraints. We leave the case that (4, B, C., D.) is non-right invertible to
Section 5, where we clarify some extra difficulties involved in the general case.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:435-461
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It is worth pointing out that for the discrete-time systems the solvability conditions for the
global and semi-global constrained stabilization are the same. This is in contrast to the
continuous-time case [12]. For an easy presentation, we separate this section in three
subsections. In the first subsection we present the main results for constrained global and
semi-global stabilization via state and measurement feedback. In the second subsection we
introduce the special coordinate basis [18,19], which is a tool for the later development and
present results for systems with non-minimum phase constraints. In the third subsection we
prove the results appeared in the first two subsections.

4.1. Main results for global and semi-global stabilization

The first result is about the solvability conditions for the constrained global or semi-global
stabilization via state feedback.

Theorem 4.1

Consider the plant X as given by (1) with the constraint sets . and 7 satisfying Assumption 2.1.
Assume that the constraints are right-invertible and the set . is bounded. Then the global or
semi-global constrained stabilization problem via state feedback as defined in Problem 2.3 or
Problem 2.4 is solvable if and only if:

(1) (4, B) is stabilizable.
(i) The constraints are at most weakly non-minimum phase.
(iii) The constraints are of type one.

Remark
A fundamental consequence of Theorem 4.1 is that the conditions are independent of any
specific shapes of the given constraint set. That is, for the case of a right invertible system X, if
the semi-global or global constrained stabilization problems are solvable for some given
constraint set satisfying Assumption 2.1, then these problems are also solvable for any other
constraint sets satisfying Assumption 2.1.

Note that the controller needs in general to be nonlinear. However, in the semi-global case,
the controller can be chosen either as a time-invariant nonlinear controller or as a time-varying
linear controller.

For the case of measurement feedback, we have the following theorem.

Theorem 4.2

Consider the plant £ as given by (1) with the constraint sets ¥ and 7 satisfying 2.1. Assume
that the constraints are right-invertible. Then, the global and semi-global constrained
stabilization problem via measurement feedback as defined in Problems 2.5 and 2.6 are
solvable if the following conditions hold:

(1) (A4, B) is stabilizable.
(i) The constraints are at most weakly non-minimum phase.

(iii) The constraints are of type one.
(iv) The pair (C,, 4) is observable.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:435-461
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(v) ker C, < ker C.A.
(vi) ker (C, D)) < ker(C. D.).

Moreover, conditions (i) to (iii) are necessary.

Remark

Note that condition (vi) states that the constrained output is part of the measurements. The
following example shows that conditions (v) and (vi) in Theorem 4.2 are needed for discrete-
time systems. Consider the system

xi(k + 1) = x1(k) + x2(k)
xo(k + 1) =u(k) + x,(k)
Y(k) = x1(k) + 2x,(k)
2(k) = x2(k)
It is easy to see that all the conditions except (v) and (vi) in the theorem are satisfied. Suppose we
have a constraint z(k) e [—1, 1] for all k>0. There exists a deadbeat observer which gives an
exact state estimate for xy(k) and x,(k) for k>1.
The set of admissible initial conditions is characterized by the set of all initial conditions

satisfying |x,(0)|<1. Using this information together with the first measurement y(0) we can
only conclude that

x1(0) € [y1(0) — 2, y1(0) + 2] 3)
But then there is no choice for u(0) to ensure that
xa(1) = x1(0) + u(0) e [-1, 1]

for all possible values of x;(0) satisfying (3), i.e. there is no guarantee that at time k = 1 the
constraint is not violated. Hence, the semi-global constrained stabilization via measurement
feedback is in general not possible without conditions (v) and (vi).

Remark

The solvability conditions as given by Theorems 4.2 are independent of any specific features of
the given constraint sets. But the solvability of the semi-global or global constrained
stabilization problems in the measurement feedback case is in general dependent on the shape
of the constraint sets even for the case of right-invertible constraints. But, this is not in
contradiction with the above theorem since we only obtained sufficient conditions for
solvability. For example, consider the system

xi(k+1) = ui (k)

xa(k + 1) =uz(k) + x1(k)
y(k) = x2(k)
z1(k) = x1(k)
22(k) = xa(k)

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:435-461
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Semi-global and global constrained stabilization problems are trivially solved by the state
feedback u; =0 and u, = —x;. But in the measurement case we can only implement this
feedback for k>=1. At time k = 0 we have no information available about x;(0) except for the
fact that the state must be in the admissible set of initial conditions.

® For the constraint set |z;|<1 and |z;| <2 the controller u; = 0 and u; = 0 trivially solves
the global stabilization problem.

® For the constraint set |z;|<1 and |z;|<1/2, no measurement based feedback can
guarantee that the constraint is not violated at time k = 1, because the controller lacks
information about x(0).

Note that the above is in contrast with continuous time where the solvability is always
independent of the constraint set for right-invertible systems.

4.2. Main results for non-minimum phase constraints

From Theorems 4.1 and 4.2 we see that the global and semi-global constrained stabilization
problems are solvable only for a system X which has at most weakly non-minimum phase
constraints. If the given system X has strictly non-minimum phase constraints, the domain of
attraction cannot be enlarged arbitrarily, that is, the domain of attraction is bounded at least in
some directions of the state space. Our next goal is to characterize a maximally achievable
domain of attraction, in the sense that the given system cannot be stabilized for those initial
conditions outside of such a set.

To present such a characterization we need to introduce special coordinate basis for the
subsystem represented by the quadruple (4, B, C., D.) which is related to the mapping from the
input u to the constrained output z. For simplicity, we denote this subsystem as X, (4, B, C.,
D.). The special coordinate basis as developed in References [18,19] clearly reveal most of the
system properties involving invariant zeros and infinite zeros.

Under the assumption that the subsystem X., (4, B, C., D.) is right invertible, we can choose
coordinate basis in the state space, input space and output space such that the subsystem X, can
be rewritten in term of scb in the following form:

Xa(k + 1) = AgaXa(k) + Kuz(k)

Xk + 1) = Apexc(k) + Beluck) + Jox.(k)] + K.z(k)

Xa(k + 1) = Agaxa(k) + Balua(k) + E xq(k) + E.x (k) + Egxq (k)] + Kqz(k)
9(k) = Cyaxa(k) + Cyexe(k) + Cyaxa(k) + Dyit(k)
zo(k) = uo(k)

zq(k) = Caxa(k) 4)
where
X4 20)
20
e | =%=T"x, |u |=a=T,"4 =Tz
Zd
X4 uq

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:435-461
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and x,, X., X4, Ug, U, Uy are of appropriate dimensions, while I'y, T, and I, are
transformation matrices. This decomposition renders the subsystem characterized by the state
variables x, and x; strongly controllable without finite zeros (see Reference [18]). Moreover, the
pair (Au, K,) is stabilizable.

The zero dynamics of the subsystem X, are the dynamics of x, in (9) and given by

{ xa(k + 1) = Aaaxu(k) + Kaz(k)

5
= Agaxa(k) + KaOZO(k) + Kadzd(k) ( )

1 -

where K, = (K4, K.q). By viewing z as the input to this subsystem, we have a system with input
constraints in the sense that z(k) € & and z(k + 1) — z(k) €  for all k=0. Since & and J
satisfy Assumption 2.1 there exist appropriate sets %y, Y4, 7 ¢, and J 4 such that

ze % if and only if zp € ¥y and z; € Sy (6a)
zeJ if and only if Zo € Iy and z;, € T4 (6b)

Next we introduce the second subsystem:
Xk +1) = Aeexc (k) + Beluc(k) + Jaxa(k)] + K z(k)
xq(k+1) = Agaxa(k) + Balug(k) + Ex,(k) + Ec.x.(k) + Eqxq(k)] + Kqz(k)
zo(k) = uo(k)

Z(l(k) = led(k)
The decomposition of the original system into two subsystems makes it possible to design a
controller in two layers.
Now we are at a position to characterize the maximal domain of attraction of the closed-loop

system with constraints in terms of the two subsystems obtained above. We define the admissible
set for the subsystem X, as

Xe
M(Zz,y,g_):{)@:< )ER”Z
Xd

U
Agaxq + Baug + Kd( ) — X4

Cyxy ey and Juy € ¥y and uy such that

69.,1}

where x; = (xf, x})T and n; is the dimension of x,. Note that x, has no effect on .«7(Z,,.%, 7))
as can be seen from the scb structure.

Next we introduce the notion of null-controllability region of a linear system with constrained
input. Given any two sets & < R" and 7 < R”, we define the set

UL, T) = {i: u(k) e & and u(k + 1) — k) € T, Yk=0}.

Ca
Czl Xd

Definition 4.3
Consider the system:

T { x(k + 1) = Ax(k) + Bii(k) (®)

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:435-461
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subject to constraint it € %(¥, ), where 5_”_and T are two closed convex sets containing zero as
an interior point and satisfying that & n  is bounded. The set

RE, S, T) = {)E(O) eR" Jae U, T) such that lim (k) = 0}
«—00
is said to be the region of asymptotic null-controllability with input constraint sets & and T .

We will connect the domain of attraction of the first subsystem to the domain of attraction of
the full system but only for the case without rate constraints. The general case is not much more
difficult but involves some additional techniqualities. Note that if we want to control the state x,
of the first subsystem then we can do so through uy and z;. However, we cannot choose z
arbitrarily. We can control z; arbitrarily after a delay of at most k steps where k is the maximal
order of the constraint infinite zeros. Therefore we need to able to make sure that in the first k
steps the system dynamics behave appropriately. We define:

X1
Vo =
X2
and recursively:

¥i1 = {% € R"|3 i such thatAx + Bie ¥; and Cx + Diie &)

xl € %(Zl,gy, Rp)sXZ € Jy(225‘§ﬂ5 Rp) }

where (fi,~ B, C, D) are the system matrices of the system (4, B, C, D) after transforming it to the
scb,ie. A=T'4r,, B=T_'Bl,,C=T.'C.TT, and D=T.'D.T,.
If the order of the infinite zeros is less than or equal to k then we have for i>k:

Vier=7i
We define:
RE, S R =]

where i > k.

The following theorem characterizes the maximum domain of attraction of a system X when
the constraints are non-minimum phase. Let u = f(x) be any stabilizing control law for system X
subject to constraints (2) and let #,(%,.%,7 ) denote the domain of attraction of the zero
equilibrium of the closed-loop system with no violation of the constraints.

Theorem 4.4

Consider the plant X as given by (1) with constraint sets %’ and 7 satisfying Assumption 2.1.
Let the constraints be right invertible and non-minimum phase. Then, for any given stabilizing
controller u = f(x), the domain of attraction #,(X,.%,7) of the zero equilibrium under this
control law satisfies

‘%f(zﬂyaf) g ‘@(Ehyagv) X &/(Zz,y;y)
For the case without rate constraints we can strengthen the above inclusion and obtain:

R(Z, S, R) € RE, S, RP)
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For the case without rate constraints, we call the set
M= R, S, RP)

the maximum achievable domain of attraction. In the original coordinate system .# becomes
M =T M. Following the similar philosophy of the semi-global stabilization inside the
admissible set «/(¥,7) as defined in Problem 2.4, we can define a semi-global stabilization
problems inside the maximum achievable domain of attraction .Z.

Problem 4.5 (Semi-global stabilization for non-minimum phase constraints via state feedback)
Consider the system (1) with constraint sets ¥ < R’ and = R’. For any a priori given
compact set #” contained in the interior of the maximum achievable domain of attraction .#
find, if possible, a state feedback (possibly nonlinear) u(k) = f(x(k), k) such that the following
conditions hold:

(1) The equilibrium point x = 0 of the closed-loop system is asymptotically stable with %~
contained in its domain of attraction.
(i1) For any x(0) € #°, we have z(k) € & for all k=0.

Remark

Note that the above semi-global stabilization problem reduces to Problem 2.4 whenever the
constraints are at most weakly non-minimum phase. In this case the maximum achievable
domain of attraction .# is equal to the admissible set .o (%, RP).

Note that Problem 4.5 can also be defined for the case of rate constraints but this requires the
appropriate definition of the set M. The next theorem provides solvability conditions for the
semi-global stabilization with non-minimum phase constrains.

Theorem 4.6

Consider the plant X as given by (1) with constraint sets . and .7 = R” satisfying Assumption
2.1. Let the constraints be right invertible. The semi-global stabilization problem as defined in
Problem 4.5 is solvable. More specifically, for any compact set 4" contained in the interior of the
maximal achievable domain of attraction .#, there exists a stabilizing controller # = g(x) for the
whole system X such that

H S RS, S, R

where %,(%, ¥, RF) denotes the domain of attraction of the zero equilibrium of the closed-loop
system with the constraints enforced.

4.3. Proofs and construction of controllers

The solvability conditions in Theorems 4.1 and 4.2 both require that the constraints be at most
weakly nonminimum phase and of type one. Once the constraints are of type one, the scb
representation of system X in (4) can be simplified. More specifically, the equations for x; and z,
have a simpler structure because of the first order relative degree. To facilitate the proofs of

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:435-461



448 A. SABERI ET AL.

Theorems 4.1 and 4.2, we rewrite (4) after simplification as
Xo(k+ 1) = Agyx,(k) + K,z(k)
Xe(k + 1) = Aeexo(k) + Beluc(k) + Joxq(k)] + K z(k)
x4k + 1) =uy(k) + Goxa(k) + Gexo(k) + Gaxq(k)
y(k) = Cyaxa(k) + Cyexc(k) + Cyaxa(k) + D,ii(k)
zo(k) = uo(k)
za(k) = xq(k) 9)

where G,, G. and G; are matrices with appropriate dimensions.

Proof of Theorem 4.1
Necessity: The necessity of conditions (i) and (ii) is obvious. By the decomposition obtained
above, the constrained variable z becomes the input to the zero dynamics (5), hence the system
has to be at most weakly non-minimum phase, i.e. the poles of the zero dynamics must be in the
closed unit disc. Next, we show the necessity of condition (iii).

We consider the global case first. Since the system is right invertible, having no infinite zeros
of order greater than one is equivalent to (C.B D.) being surjective. Therefore, if the system has
infinite zeros of order greater than one, then there exists a vector ¢#0 such that

¢'™D.=0 and 'C.B=0 (10)

Moreover, since J contains zero in its interior, we can guarantee that c € 7. Let {; € & be such
that

<Zv C> < <C0a C>

for all z € &. Since & is a compact and convex set, such a {, always exists at the boundary of &.
Next, because (4, B, C., D) is right invertible there exist an initial condition x(0) = &, and an
input u(0) =y, such that the output z satisfies z(0) = {y and z(1) — z(0) = ¢. Clearly ¢, €
(&, 7). But if the system starts at time 0 from &, then we have

6,2(0)) =<, C:oy = (¢, (o> and (¢, z(1) — 2(0)) = <¢,¢) >0

for any input signal u because of property (10). Hence, <{c,z(1))> > {c,{,)» for any input u. By
definition of {, this implies z(1) ¢ & for any input u. Therefore, there exist initial conditions in
o (S,7) which cannot be stabilized without violating the constraints. This yields a
contradiction.

The necessity of condition (iii) for the semi-global case follows by a mild modification of the
above argument. Choose a 4 close to 1 from below such that {c,c) > (1 — 1)<c, {y>, where {, is
chosen as before. Let z(0) = A{y,. By the right invertibility as above, there exist an initial
condition &; and an input u(0) = u, such that the output z satisfies z(0) = A{y, and z(1) — z x
(0) = ¢. Then we can choose a compact set .7 in the interior of .«/(, 7") so that &, € .&/,. Since
{c,z(1) — z(0)) =<, ¢y >0, we get {c,z(1)) = {c,z(0))> + {c,c) > ¢, {y». By the same argu-
ment as in the global case, this implies that z(1) ¢ % for any input u, which is a contradiction.

Sufficiency: The proof of sufficiency is constructive. It follows from two steps.
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Step 1: We first design for the first subsystem Z; in (5) while viewing z as an input variable.
Let v = z — ¢, where the functions v and ¢ will become clear shortly. Then, (5) becomes

xu(k + 1) = Aaaxa(k) + K(t¢(k) + Kav(k) (1 1)

Note that the conditions of the theorem require that all eigenvalues of A4,, be in the closed unit
disc. Viewing ¢ as an input to this subsystem, we can construct a state feedback law
¢(k) = f(x,(k)) for the system (11), which has the following properties:

(a) It satisfies the constraints:
J(xak) e S, f(xalk+1) = f(xa(k)) € T, k=0

(b) It renders the zero equilibrium point of the closed-loop system of (11) globally or semi-
globally attractive in the presence of any signal satisfying

()< MA*, 7€ (0,1) (12)

for some M >0, i.e. x,(k) —» 0 as k — oo.
(c) It renders the zero equilibrium point of the closed-loop system with v =0 locally
exponentially stable.

Note that the two parameters M and A in (12) only depend on the size of the constraint sets &
and 7. Whenever . and 7 are known, M and A can be chosen a priori following the way
specified in the design of Step 2. Knowing these facts, we are assured that the £, norm of v signal
is uniformly upper bounded. For completeness the details of designing such a state feedback for
the first subsystem in the global or semi-global sense are presented in Appendix A. Note that in
the global case the function f(x,) must be nonlinear; however, in the semi-global case f(x,) can
be linear.

Step 2: In this step we design a control law for the second subsystem X, given in (7), so that
the closed-loop system of the interconnection of the two subsystems with the control law is
asymptotically stable and without constraint violation.

Choose 4 € (0, 1) such that

(1= < 7, (13)

where &, = {¢ — n:éePq, neFq}. The control law is designed as follows. Partition f and v
compatibly with the decomposition of z as

ﬁ)(xa) Vo
. o
s (fd(xa)> mer <vd>

Then choose

uo(k) = Foxo(k) — Juxa(k) (14)
where F, is such that A, + B.F, is Schur-stable. Choose
ug(k) = fo(xa(k)) (15)
uq(k) = Mxa(k) = fa(xa(N] + fa(xa(k + 1)) — A fa(xalk + 1) = falxq(k)]
— GaxXa(k) — Gexo(k) — Gaxa(k) (16)
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where x,(k + 1) = Ag.x,(k) + K,z(k). Note that the control law for u, is time-varying, and is
nonlinear in the global case and linear in the semi-global case. It remains to show that for the
control law given above we have z(k) e & and z(k+ 1) — z(k) e 7 for all k=0, moreover,
(k) = z(k) — f(x,(k)) satisfies (12) for a suitably chosen M > 0.

Given the feedback for u,, we obtain

Xa(k + 1) = fa(xalk + 1) = [xa(k) = fa(xa(k)] — A [fulxa(k + 1) = fuxa())]  (17)
Solving this difference equation yields that
Xa(k) = 2540 + (1 = Z2fa(xa(K)) (18)

Since both x4(0) and f;(x,(k)) are in the convex set ¥, we have z4(k) = x4(k) € 4. On the
other hand,

xalk + 1) — xa(k) = 21 = Dfa(xalk + 1)) — x4(0)]}
+ (1 = 29 a(xalk + 1)) = fulxa(k))]

Hence, by (13) we get
za(k +1) = zg(k) = xg(k + 1) — xq(k) € T4

From (18) we see that

va(k) = xa(k) = fu(xa(k)) = A[xa(0) = fu(xa(K))] (19)

Noting that both x,4(0) and f;(x,(k)) are in the bounded set &, and that zy = uy = fo(x,), we
find that there exists M > 0 such that (12) holds.

So far we have shown that the equilibrium point x = 0 of the overall closed-loop system is
globally attractive. Since we have used a time-varying control law and the control law is
nonlinear in the global case, the asymptotical stability of the equilibrium point x = 0 needs a
careful verification. First note that, according to the design of f(x,) presented in Appendix A,
the feedback f(x,) is globally Lipschitz and locally linear in terms of x,. Then, it can be shown
that for sufficiently small initial conditions x,) = x,(0), x.0 = x.(0), and x40 = x4(0) we have
[[x.(F)|| <rc1(||1xa0ll + |1xa0]]) for some constant x; > 0 and all £>0. This part of proof is presented
in Appendix B. From (18) we see that ||v(k)|| <r2(||xq0l| + [|x40l]) for some constant k, > 0 and all
k=0. From (17) it is straightforward that ||x;(k)|| <r3(||xa0l| + ||xa0l]) for some constant x3 >0
and all £>0. Finally, viewing the dynamics of x, as a Schur stable system with disturbance
K.z(k) = K [f(xa(k)) + v(k)] we obtain that |Ix.(k)ll<ra(llxaoll + llxcoll + [IXa0l) for some
constant k4 > 0 and all k> 0. In conclusion, we have shown the local stability of the equilibrium
point x = 0. This completes the proof. []

Proof of Theorem 4.2
Note that condition (v) ker C, < ker C.A4 implies that G, = G, = 0 in (7). Moreover, condition
(vi) ker (C, D,) < ker (C. D.) ensures that we can decompose y in a suitable basis such that

~ ~ Xa ~
7 Cra Cre 0 D\
y= = Xe | + u
Xd 0 0 I 0
Xd

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:435-461



CONSTRAINED STABILIZATION PROBLEMS FOR DISCRETE-TIME LINEAR PLANTS 451

which clearly indicates that the state x, is directly determined by y. We get the following system
Xo(k+ 1) = Agaxy(k) + K,z(k)
Xe(k + 1) = Aeexo(k) + Koz(k) + Belu (k) + Joxq4(k)]
xa(k + 1) = uq(k) + Gaxq(k)
y= CN'ygxa + CN'nyC + ljyuft
zo(k) = uo(k)
za(k) = xa(k) (20)

Since (C), A) is an observable pair, the scb decomposition guarantees that the pair

Aaa 0 ~ ~
> C va C 4
BL'J a Acc ( ’ ’ )

is also observable. That is, there exist matrices L, and L. such that

~ Aaa - Laéya _Luéy(?
A= . .
B(,’Ja - L(?Cya Acc‘ - Lccyc‘

is Schur-stable. For the above system, we use a reduced-order observer for the state variables
(xaa x(?):

Falk + 1) = AgaXa(k) + Kuz(k) + Lo[3(k) — Craxalk) — Cpefe(k) — Dyyii(k)]
)Acr(k + 1) = Arc)ec(k) + K,,Z(k) + Bc[uc(k) + Jajea(k)]
+ LrW(k) - CNya)ACa(k) - éyc’fcc(k) - D_ma(k)]

Note that the measurement error is exponentially decaying.

The remaining design procedure follows the state feedback controller design presented in the
proof of Theorem 4.1 with (x,, x.) replaced by (X,, X.) in the controller, except that we have an
additional exponentially decaying error perturbation as a result of the replacement. Note that
this additional error disturbance can be accommodated in the error signal v in the state feedback
design, which is taken care of by a properly designed feedback zy = f(X,) for the first subsystem.
From the construction of state feedback, it can be verified that with the states (x,, x.) replaced
by their measurements (%,,X.) the constraints remain not violated. This completes the
proof. [

Proof of Theorem 4.4

Let x(0) = (x1(0), x}(O))T be any an initial condition in the domain of attraction #,(X,.%,7)
where x] = (x[, x}). It is clear that x,(0) € </(X,, ¥, ) because x,(0) must be in the admissible
set of initial conditions for subsystem X,. On the other hand the first subsystem X; can be
viewed as being controlled by z with initial condition x,(0). Since x(0) is in the domain of
attraction, we know that x(k) — 0 as £ — oo, which implies that the state x,(k) converges to
zero as k — oo while z satisfies the constraints. This means that x,(0) € Z(X,,%,.7). [
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Proof of Theorem 4.6

Since 4~ < ./, by the definition of .#, we can find an input u which guarantees that at time k,
x.(k) = x, € AX, S, RP). Clearly, there exists a feedback z = f(x,) from time k onward which
guarantees stability of the first subsystem when starting inside the set Z(Z, &, R”). On the other
hand, we can find an input from time 0 onward that guarantees that we still have x,(k) = x,(k)
but additionally z(i) = f(x,(i)) for i=k. Choosing u such that z(i) has the desired value is
initially a noncausal feedback since the subsystem from u to z contains delays. But since this
system does not contain external disturbances we can implement this feedback in a causal way
since the trajectory from time i onward is completely determined by x(i). []

5. NON-RIGHT INVERTIBLE CONSTRAINTS

For a system with non-right invertible constraints, according to scb, there exists a
transformation matrix I'; such that Z =T Z_lz yields the following decomposition

20 0 0 Inn
Z=zp | = Cxh [xs+] 0 |xa+ ]| 0 Juo (21)
Zd 0 Ind 0

The decomposition of state has to be modified as ¥ = T'_'x = (xI, xI, xI, x1)". Then system X in
scb becomes (see References [18,19] for details):

Xa(k + 1) = AgaXa(k) + KaZ(k)
xp(k + 1) = Appxp(k) + KpZ(k)
Xc(k + 1) = Aeex (k) + K 2(k) + Be[uc(k) + Juxq(k)]
Xa(k + 1) = uq(k) + Gaxa(k) + Gpxp(k) + Gexe(k) + Gaxa(k)
(k) = Cyaxa(k) + Cypxp(k) + Cyexe(k) + Craxa(k) + Dyii(k)
z0(k) = uo(k)
zp(k) = Copxp(k)
za(k) = xa(k) (22)
Note that choosing a basis in the output space affects our sets . and 7. Therefore, we obtain
new constraint sets & = ['71.% and 4 = I'7'.7. Since CT D, = 0, it is guaranteed that these new
constraint sets still satisfy Assumption 2.1.

Consider our original system in the special coordinate basis as given in (9) together with the
extra output transformation in (21). Defining

~ Aaa O ~ Ka Xg
A= , B = , X1 =
0 App K Xb
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C’l = Cy, V1 = Z, and Z| = z;, we obtain for i = 1 the following system:

. { Xilk 4 1) = 4;%(k) + Bivi(k)
I (23)

(k) = C;%i(k)

where both ¥, and Z; are constrained. Temporarily dropping the constraint on ¥;, we can repeat
the same procedure to obtain 2, from 2; and so on. At each step of the construction we should
make sure that the matrix B; has full column rank and the matrix C; has full row rank. This can
be done without loss of generality. This chain ends if we obtain a subsystem X; which is right
invertible in the sense that %, satisfies Ci;; = 0. Another possibility of termination is that at
some step we get B; = 0, which obviously implies that we can end the chain. It can be shown
easily that if the pair (4, B) of the given system X is stabilizable, then all the systems ; as defined
in (23) are stabilizable.

The following theorem contains some necessary conditions for constrained global or semi-
global stabilization when the system is not right invertible.

Theorem 5.1

Consider the system X as given by (1) . Let the sets & and J satisfy Assumption 2.1. Moreover,
let the chain of systems £; (i = 1,...,s) be as described above. Then the global and semi-global
constrained stabilization problems formulated in Problems 2.3 and 2.4 are solvable only if the
following conditions are satisfied:

(1) (4, B) is stabilizable.
(i1) The constraints of system X are at most weakly non-minimum phase.
(iii) The constraints of system X are of type one.
(iv) All the subsystems £; (i = 1,...s) have at most weakly non-minimum phase constraints.
(v) The subsystems %; (i = 1,...,s) with realization (23) satisfy:

ker C; = ker C;4; (24)

Proof

The necessity of these conditions except (v) is self-evident by considering each subsystem as an
independent system with input and output constraints and recalling the necessary conditions in
Theorem 4.1 for systems with output constraints. To see that the condition (v) is also necessary,
we go back to the scb decomposition used earlier in the proof of Theorem 4.1. As an illustration,
let us look at the x; equation in (7) at time 0. We must have

xd(l) = ud(o) + Guxa(o) + chc(o) + ded(o) €S (25)

for all possible initial conditions, but keep in mind that now u, is constrained following the way
we obtain the decomposition of 3. Since x, and x, are completely unconstrained whereas u;(0)
and x4(0) are constrained, condition (25) can be guaranteed only if G, and G, both equal 0. This
is a condition equivalent to condition (v). []

The following example indicates that the conditions given in Theorem 5.1 are just necessary
but not sufficient conditions for solving the constrained stabilization problems. Also, this

example shows that the solvability conditions for global and semi-global stabilization in the case
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of non-right invertible constraints in general depend on the particular choice of constraint sets
& and 7, unlike the case of right invertible constraints.

Example 5.2
Consider the system:

xi(k + 1) = xa(k)
xa(k + 1) =u(k)
z1(k) = x1(k)
22(k) = x2(k) (20)

Note that the transfer matrix from u to z is non-right invertible and all the conditions in
Theorem 5.1 are satisfied. If the constraint set is defined as

S ={z:|z1|<1,|z|<2} and 7 =R’
Then for any initial condition with x;(0) = 0 and x,(0) > 1, we find that x;(1) will violate the

constraints. Therefore constrained stabilization is not possible.
However, for the constraint set defined by

S ={z:]z1|<1,|z|<1} and 7 =R’

it is easily seen that the feedback u = 0 achieves constrained stabilization.

The shape dependence on the constraint sets causes trouble in developing solvability
conditions for non-right invertible systems. Hence, it is meaningful to ask under what conditions
the solvability conditions for the non-right invertible constraints will not depend on the specific
shape of constraint sets. The following theorem provides an answer to this question.

Theorem 5.3
Consider the system (1). The following two statements are equivalent:

(i) The global or semi-global constrained stabilization is possible for all constraint sets %’
and J satisfying Assumption 2.1.

(i) The constraints of system X are at most weakly non-minimum phase and of type one.
Moreover, the subsystem 2, defined in (23) takes the following form:

<xa(k+ 1)) (Aaa Aab) (xa(k)> (ka> B
= + z(k)
xp(k+1) 0 ol xp(k) 0

k)=(0 C *a(k) 27
zp(k) = ( b) ) (27)

where zT = (z], z}), the matrix C. is injective, and o € [0, 1).

Proof
The proof of (ii) = (i) is obvious. It remains to prove (i) = (ii).
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N We decompose K, = (K, Ko Kuq) and K, = (Kpg Kpp Kpg). Then we rewrite the subsystem
2 defined in (23) as

(xa(k+ 1)) (Aaa Aab) (xa(k)> <K>
= B} )
xb(k + 1) 0 App Xb(k) Ky

24(k) = (0 czb><x“(k)> (28)
xp(k)

where Ay = Ky Cepy Apy = App + Kipp Copy Ko = (Koo Kaa), K, = (Ku0 Kauq), and the partial state
x, represents the zero dynamics. Viewing Z as input to the zero dynamics and noting that z, is
constrained, the necessary condition for global or semi-global constrained stabilization as stated
in condition (v) of Theorem 5.1 requires that

ker C.p, < ker Cop Ay

This means that ker C.;, is part of the zero dynamics. But all of the zero dynamics of the original
system has been included in the dynamics of x,. Hence, ker C,;, = {0}, i.e. C,; is injective.

Knowing that C.; is injective, we can choose a constraint set on z, so that x; is constrained to
be arbitrarily small. However, z(0) can be anywhere in the constraint set for z which can be
arbitrarily large. If K,#0 then we cannot guarantee that x, is small enough to be in its
constraint set and we get a constraint violation. Hence, we must have K, = 0.

With K, =0, the subsystem of x; becomes completely uncontrollable. For asymptotic
stabilization of the whole system we need |x|<1. However, if the constraint set on x;, is not
symmetric, to avoid constraint violation we must have o € [0,1). []

6. CONCLUSION

This paper has considered the semi-global and global stabilization problems of discrete-time
linear systems in the presence of magnitude and rate constraints on both state and input
variables. It turns out that the solvability conditions are largely dependent on the structural
properties of linear plants such as the right invertibility, the location of the constraint invariant
zeros, and the order of infinite zeros (or relative degree). New notions like constraint invariant
zeros, constraint infinite zeros, right invertible constraints, and non-right invertible constraints
have been introduced to characterize the conditions under which the global and semi-global
stabilization problems are solvable. The general results presented here include the stabilization
problems of linear systems with input constraints as a special case.

APPENDIX A: GLOBAL AND SEMI-GLOBAL STABILIZATION WITH
AMPLITUDE AND RATE CONSTRAINTS AND ¢, DISTURBANCE
In this section we first develop a nonlinear control law satisfying the amplitude and rate
constraints that achieves globally asymptotic stabilization for an asymptotically null

controllable system without disturbance, meanwhile it achieves global attractivity of the origin
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when an ¢, disturbance is in presence. Then we develop a linear control for the semi-global case
which achieves a similar result.

Theorem Al
Consider the system

x(k 4+ 1) = Ax(k) + Bu(k) + Bw(k) (A1)
with input subject to the amplitude and rate constraints:
lutllo <o, Nulk + 1) —u(R)ll <p,  Vk=0 (A2)

for some o >0 and f > 0. The sequence w(k) is any disturbance in £,. Assume that (4, B) is
stabilizable with all eigenvalues of 4 in the closed unit disc. Then, there exists a static nonlinear
state feedback which has the following properties:

® The constraints in (A2) are not violated.

® In the absence of disturbance the equilibrium point x = 0 of the closed-loop system is
globally asymptotically stable and locally exponentially stable.

® [n the presence of any ¢, disturbance the state x = 0 remains globally attractive.

Proof

We first recall the following fact. Let Q(¢) be any parameterized positive definite matrix
satisfying: Q(e) >0 for ¢>0, Q(¢) > 0 as ¢ > 0, and (d/de)Q(¢) > 0. Then the discrete-time
algebraic Riccati equation (DARE)

A"PA—P— ATPB(B"PB+1)"'B"PA+ Q(s) =0
has a unique positive definite solution P(¢) for any ¢ € (0, 1]. Moreover, this positive definite
solution P(¢) has the following properties:

(i) The matrix [4 — B(B"PB + I)"' BT P(¢)A] is Schur-stable for all &> 0.
(i1) lim,_¢ P(e) = 0.
(iii) P(e) is continuously differentiable with dP(g)/de > 0 for any ¢ € (0, 1].
(iv) There exists a constant M > 0 such that

P2 (e) AP~ (e)| < M (A3)
for any ¢ € (0, 1].

For simplicity, we choose Q(¢) = &l.
The idea of scheduling is to choose the parameter ¢ to be state dependent, that is, we define

e(x(k)) = max{e € (0, 1]: xT(k)P(e)x(k)tr[P(e)] <5*2} (Ad)

so that when Q(e) in the above Riccati equation is replaced by Q(e(x(k))), it yields a unique
solution P(e(x(k))). Note that, because of the properties possessed by P(e), e(x(k)) is well defined.
To simplify notation, we denote &(k) = &(x(k)), Or = O(e(x(k))) = e(k)I and P = P(e(x(k))).
Following this, we define a nonlinear static control law as

u(k) = —(B"PyB + I) ' BT P Ax(k) (AS)
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and show that there exists a sufficiently small 6* >0 such that the control law satisfies the
amplitude and rate constraints (A2) and achieves global asymptotic stabilization of system (A1)
when w = 0.

Let p = min{a, $/2} and choose 6* > 0 small enough so that

M2 imix(BB1)S*2 < p?
where M is the constant defined in (A3). Then,
llu(k)||* = xT(k)A" Py B(B" Pi.B + I)"> B" P Ax(k)
< 1P AP i (BB {xT (k) Prox(l) tr Py}
< M imux(BB")5°
< pP<a?
which implies that ||u(k)||, <[||u(k)||<a for all k, i.e. the control law (AS5) does not violate the

amplitude constraint. On the other hand, the above also yields that ||u(k)||, <p/2 for all k.
Hence,

lluk + 1) — u(k)l| <llulk + Dl + llu()ll < B

for all k£ which shows that the control law also does not violate the rate constraint.
Next we show that the closed-loop system is globally asymptotically stable when w = 0.
Choose a Lyapunov function

V(k) = V(x(k)) = x" (k) Pyx(k)
The variation of V (k) along the state trajectory of the closed-loop system is
Vik+1)— V(k)
= X" (k + D[Pry1 — Pilx(k + 1) — e(k)x" (k)x(k) — u" (kyu(k)

+ wl(k)B' P Bw(k) — 2u' (k)w(k) (A6)
= X" (k + D[Pry1 — Pilx(k + 1) — e(O)lIx(OI* — [lu(k) + w(k)| (AT)
+wl (k)BT PiB + Iw(k) (A8)
When w = 0, we get
V(x(k + 1) = V(x(k) < — a(k)|Ix(R)I* + x" (k + D[Pry1 — Pilx(k + 1) (A9)

Consider the following two cases:

Case 1: If e(k + 1)<e(k), we find by the monotonicity of P(e) that Py, < P, and using (A9)
that V(x(k 4+ 1)) — V(x(k)) <0 for x(k)#0.
Case 2: If 1 =¢(k + 1) > ¢(k), then Piyq > Py and

V(x(k)) trPy = 6** = V(x(k + 1)) tr Py

which yields V(x(k + 1)) — V(x(k)) <0 for x(k)#0.
In conclusion, the control law (A5) guarantees that V(x(k + 1)) — V(x(k)) <0 for x(k)+#0,
which implies the global asymptotic stability. The local exponential stability follows easily by
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noting that &(x(k)) = 1 if the system starts sufficiently close to the origin and the control law is
linear and the input saturation is never overloaded.

The global attractivity of the origin in the presence of ¢, disturbance follows from the
following argument. From (A8) we claim that if V(k 4+ 1) > V' (k) then

Vik+1) = V)< = e(k)llx(I? + nllw)] (A10)

where 1 = Amax[BTP(1)B + I]. This is because the scheduling defined in (A4) guarantees that
Piy1 < P whenever V(k + 1)= V (k). This yields

Vik+1) = V) <nlw(k)|® (A1)

for all £>0. This inequality guarantees that, given an ¢, disturbance w, the state starting from
anywhere in R” is bounded. This implies that ¢(k) has a lower bound &y, > 0. It remains to show
that the state x starting from any point in R" is also in ¢, hence it approaches to the origin.

First, note that if the initial state is sufficiently close to the origin, say |[|x(0)||<ry for some
ro > 0 small enough, and the disturbance is bounded by ||w(k)|| < dj, then for sufficiently small d
the amplitude and rate constraints (A2) will not be violated, and the closed-loop system is linear
and exponentially stable. Hence, x(k) € ¢,.

Now, let d3 <éminro/n. We show that for any initial state x(0) € R” and any disturbance w € ¢
there exists K > 0 such that [|x(K)||<ro and ||w(k)||<d, for all k > K. Since w is vanishing, there
exists Kj >0 such that ||w(k)||<d for all k= K;. On the other hand, if ||x(k)||>ry and V X
(k+ 1)=V(k) for some k> K, then from (A10) we have

Vik+1) = V)< = elo)llxI + nlwIP < = eminro + ndo <0

for k=K. This contradiction yields that either ||x(k)||<r¢ or V(k + 1)<V (k). For the former
case, we are done. For the later case, there exists K > K| such that ||x(K)||<ry. In conclusion,
there exists K > 0 such that [|x(K)||<ry. This shows the global attractivity. []

Theorem A2

Consider the system (A1) with input subject to the amplitude and rate constraints (A2). Assume
the same condition as stated in Theorem A1l. Then, given any compact set %" in the state space
and any D > 0 there exists a linear state feedback which has the following properties:

® The constraints in (A2) are not violated.

® In the absence of disturbance the equilibrium point x = 0 of the closed-loop system is
asymptotically stable with 2#" contained in the region of attraction.

® In the presence of any ¢, disturbance satisfying ||w|l,, <D the state x =0 remains
attractive.

Proof

The proof of this theorem is easily adapted from the proof of Theorem Al. Since we are dealing
with semi-global stabilization, we can fix ¢ to be a constant, instead of being state dependent. Let
V(x) = xTP(¢)x be the Lyapunov function and Ly(c) == {x:xTP(e)x<c} be the level set.
Choose a sufficiently small ¢ € (0, 1] so that

2qD* tr P(e)<0** and A < Ly(nD?)
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where the constants 5 and 0* are defined in the proof of Theorem A1. Following this choice of ¢,
we claim that the level set L;(2yD?) is an invariant set for trajectories starting from any point in
A" and any disturbance w satisfying [|wl||,, <D. This claim follows easily from the inequality
(A10) which holds for all k=0 when ¢ is fixed. The rest of the proof follows similarly as the
global case. []

APPENDIX B: COMPLETION TO THE PROOF OF THEOREM 4.1

Lemma Bl
Consider the following system

x(k + 1) = Ax(k) + 1*Gx(k)
where A4 is Schur stable and || < 1. Then, for all x(0) € R" there exists x > 0 such that
lIx(R) I < xlx(O)]
for all k>0.
Proof

Since A is Schur stable, there exists a positive definite matrix P > 0 such that ATPA — P = —1.
Let V(x) = xTPx and denote V;, = V(x(k)). Then

Vit — Vie = — x (k)x(k) + 225xT () GT PAx(k) + 12 X" (k)GT PGx(k)
< 2T () AT PAx(K)) (X" (k)G PGx(k))'/? + |42 xT (k)G PGx(k)
< QB+ BIAP Vi
< col Vi

where we have used xT(k)AT PAx(k) < xT(k)Px(k), B = Amax(GT PG)/Imin(P), and ¢o = 28" + .
It follows that

Vit <(1+ col M) Vi <expleolil'} Vi
Thus,

k—1 V. | 00
I Y <o 3= e

i—0 i k=0

ie.

o0

Vi <exp{z c0|z|k} Vo

k=0
for all k>0. Hence the lemma follows. []
Completion to the Proof of Theorem 4.1
Note that the feedback f(x,) as constructed in Appendix A is globally Lipschitz and locally

linear. Let r > 0 be sufficiently small and let f(x,) = —F,x, for [|x,||<r. As we shall see later, we
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can choose the initial conditions sufficiently small to guarantee that the trajectory of x, remains
in this ball. The construction of f(x,) guarantees that A,, = 4,, — K,F, is Schur stable. We
decompose F, = (FJ, FaTa,)T and continue by writing out the first subsystem

xa(k + 1) = Aaaxa(k) + Kaf(xa(k)) + Kav(k)

= (Aaa — KoFp)x,(k) + K,
Va

0

= Iaauxu(k) + K,
25 x40) — 2 fa(xa(k))

5 k 0 k 0
= Aaaxa(k) + 4 Ka + ;“(Ka xa(k)

xd(o) Fua
This system is equivalent to the following dynamics
Xo(k + 1) Awa 1 [ Xa(k) xq(K)
+ G
Sk+1) 0 M)\ &k (k)
where
0
0 K, 0
&0) =K, and G = Faa
Xd 0)
0 0

Applying Lemma Bl1, there exist ¥ > 0 and x; > 0 such that
I ()< I(xa(k) DTSN EODTI<r1Ix O + [IxaO)) T
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