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Growth of semigroups in discrete and continuous time
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Alexander Gomilko (Toruń), Hans Zwart (Enschede) and
Niels Besseling (Enschede)

Abstract. We show that the growth rates of solutions of the abstract differen-
tial equations ẋ(t) = Ax(t), ẋ(t) = A−1x(t), and the difference equation xd(n + 1) =
(A + I)(A − I)−1xd(n) are closely related. Assuming that A generates an exponentially
stable semigroup, we show that on a general Banach space the lowest growth rate of the

semigroup (eA−1t)t≥0 is O( 4
√

t), and for ((A + I)(A− I)−1)n it is O( 4
√

n). The similarity
in growth holds for all Banach spaces. In particular, for Hilbert spaces the best estimates
are O(log(t)) and O(log(n)), respectively. Furthermore, we give conditions on A such that
the growth rate of ((A + I)(A− I)−1)n is O(1), i.e., the operator is power bounded.

1. Introduction. Let X be a Banach space and let A be a closed,
densely defined operator on X. For this A we consider the abstract differ-
ential equation

(1.1) ẋ(t) = Ax(t), x(0) = x0.

Assuming that A generates a strongly continuous semigroup on X, for any
x0 ∈ X, this equation possesses a unique (mild) solution (see e.g. [8]). An
important property of the solutions, and thus of the corresponding semi-
group, is the boundedness of the trajectories. In this paper we study the
relation between the boundedness of the solutions of (1.1) and those of the
differential equation

(1.2) ẋ(t) = A−1x(t), x(0) = x0,

and of the difference equation

(1.3) x(n+ 1) = V (A)x(n), x(0) = x0.

Here V denotes the Cayley transform of A, i.e.,

(1.4) V = V (A) := (A+ I)(A− I)−1,

where I is the identity operator.
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If X is finite-dimensional, then (under the condition that A is invertible)
the solutions of (1.1)–(1.3) share the same stability properties. In particular,
if one of these equations has only bounded solutions, then so do the others. If
A is an injective linear operator on a Banach space X with dense range gen-
erating a uniformly bounded analytic C0-semigroup, then it is well known
that A−1 also generates such a semigroup [14]. On the other hand, it was
shown in [13] that there exists a Banach space X and an injective linear op-
erator on X with dense range generating a uniformly bounded C0-semigroup
whose inverse does not generate a C0-semigroup. In Hilbert spaces, if (1.1)
and (1.2) have only bounded solutions, so does (1.3) (see [2, 9, 11]). We ex-
tend this result by showing that if (1.1) and (1.2) have all solutions bounded,
then so does the difference equation x(n+1) = V (δA)x(n) for all δ > 0, and
the bound is independent of δ > 0. Furthermore, the converse holds. If (1.1)
and the difference equations x(n+1) = V (δA)x(n) have only bounded solu-
tions, and supn,δ>0 ‖V n(δA)‖ <∞, then the solutions of (1.2) are bounded.
For Banach spaces such positive results are not known. However, we show
that if there exists a generator of an exponentially stable semigroup for
which the solution of (1.2) grows as g(t), then on the same Banach space
there exists a generator of an exponentially stable semigroup for which the
solutions of (1.3) grow as g(n). The converse of this result also holds.

We end this section with some notation. E = E(X) denotes the set of
densely defined, closed linear operators on X and L = L(X) denotes the
algebra of bounded linear operators on X. By G = G(X) we denote the set
of generators of uniformly bounded C0-semigroups and by Gexp = Gexp(X)
the set of generators of exponentially stable C0-semigroups acting on X. If
A ∈ G, then (eAt)t≥0 is the strongly continuous semigroup generated by A.

2. Growth of the Cayley transform. In this section we investigate
the growth of the power of the Cayley transform, as defined in (1.4). We
study this growth for infinitesimal generators of uniformly bounded semi-
groups and of exponentially stable semigroups, i.e., for A ∈ G(X) and
A ∈ Gexp(X).

Lemma 2.1. For the Cayley transform (1.4) we have the following esti-
mates on the Banach space X. If A ∈ G(X), then

(2.1) sup
n∈N

‖V n(A)‖
n1/2

<∞.

If A ∈ Gexp(X), then

(2.2) sup
n∈N

‖V n(A)‖
n1/4

<∞.

Furthermore, the estimates are sharp: there exists a Banach space X and
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an operator A ∈ G(X) such that

(2.3) lim inf
n∈N

‖V n(A)‖
n1/2

> 0,

and there exists a Banach space X and an Aexp ∈ Gexp(X) such that

(2.4) lim inf
n∈N

‖V n(Aexp)‖
n1/4

> 0.

Proof. For A ∈ G the powers of V = V (A) are given by the expression
(see e.g. [9])

(2.5) V n = I −
∞�

0

e−t/2L
(1)
n−1(t)eAt/2 dt, n = 1, 2, . . . ,

where L(1)
n are the first generalized Laguerre polynomials, i.e.,

L(1)
n (t) =

n∑
k=0

(n+ 1)!
(k + 1)!

· (−t)k

k!(n− k)!
.

From (2.5), we obtain

(2.6) ‖V n‖ ≤ 1 +M

∞�

0

e−t/2|L(1)
n−1(t)| dt, n ∈ N,

where M = supt>0 ‖etA‖. On the other hand, the well-known estimates [1]
for the Laguerre polynomials give

∞�

0

e−t/2|L(1)
n−1(t)| dt ≤ cn1/2, n ∈ N.

Combining this with (2.6), we obtain the inequality (2.1).
Next, let A ∈ Gexp(X). Then there exist M,ω > 0 such that

(2.7) ‖eAt‖ ≤Me−ωt, t ≥ 0.

From (2.5) and (2.7) we find that

‖V n‖ ≤ 1 +M

∞�

0

e−(1+ω)t/2|L(1)
n−1(t)| dt, n ∈ N.

Then using the estimate (see [16, Ch. 6, §3])

|L(1)
n (t)| ≤ cet/2t−3/4(n1/4 + t5/4), n ∈ N, t > 0,

we have

‖V n‖ ≤ 1 +Mcn1/4
∞�

0

e−ωt/2(t−3/4 + t1/2) dt ≤ 1 + cωMn1/4,

where the constant cω > 0 depends only on ω > 0. This proves (2.2).
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It remains to show that the estimates are sharp. We follow a reason-
ing similar to the one in [5]. For (2.1), we choose the Banach space X =
L1(R) and the differentiation operator D, i.e., (Df)(s) = f ′(s), with do-
main D(D) = W 1

1 (R), the Sobolev space. It is well-known that D is the
infinitesimal generator of the unitary shift, i.e.,

(etDf)(s) = f(s+ t), s, t ∈ R.
Then, by (2.5),

(V n(D)f)(s) = f(s)−
∞�

0

e−t/2L
(1)
n−1(t)f(s+ t/2) dt, s ∈ R, n ∈ N.

From this, using the appropriate formula for the norm of an integral operator
on L1 (see [12, Th. XI.1.4]), we obtain

(2.8) 1 + ‖V n(D)‖L1(R) ≥
∞�

0

e−t/2|L(1)
n−1(t)| dt, n ∈ N.

On the other hand, according to [1], there exists a constant c > 0 such that

(2.9)
∞�

0

e−t/2|Ln(t)| dt ≥ cn1/2, n ∈ N,

where Ln(t) are the usual Laguerre polynomials. Next, using the relations
dLn+1

dt
(t) = −L(1)

n (t), Ln(0) = 1,

we obtain
∞�

0

e−t/2|Ln(t)| dt ≤
∞�

0

e−t/2
( t�

0

|L(1)
n−1(s)| ds+ 1

)
dt(2.10)

≤ 2
∞�

0

e−s/2|L(1)
n−1(s)| ds+ 2, n ∈ N.

From (2.8)–(2.11) we have the estimate

‖V n(D)‖L1(R) ≥ c1n1/2, n ∈ N,
for some constant c1 > 0. Hence the estimate (2.1) is sharp.

Now we show that (2.2) is sharp. We choose A to be minus the differen-
tiation operator on X = L1(0, 1), i.e.,

(Af)(y) = −f ′(y), D(A) = {f ∈W 1
1 (0, 1) | f(0) = 0}.

Furthermore, we define A0 = 2A−I. Then A0 is the generator of a nilpotent
C0-semigroup, and thus in particular A0 ∈ Gexp(X). The Cayley transform
of A0 equals

(2.11) V (A0) = (A0 + I)(A0 − I)−1 = A(A− I)−1 = (I + J)−1,
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where J the classical Volterra operator,

(Jf)(y) =
y�

0

f(s) ds.

From [15] we have

(2.12) ‖(I + J)−n‖L1(0,1) � n1/4, n→∞.
Combining (2.11) with (2.12) shows the sharpness of the estimate (2.2).

If A ∈ E(X) is such that A−1 ∈ E(X) and (A− I)−1 ∈ L(X), then it is
easy to see that V (A) = −V (A−1). We end this section with an extension
of this result.

Lemma 2.2. Let A ∈ E with spectrum σ(A) contained in the half-plane
{λ ∈ C | Reλ ≤ 0}. Let V := V (A) be the Cayley transform of A. Suppose
that for some s ∈ R the inverse of A − isI exists as a densely defined
operator, i.e., (A− isI)−1 ∈ E. Define

(2.13) As := (−isA+ I)(A− isI)−1, D(As) = ran(A− isI).

Then

(2.14) As = −isI + (s2 + 1)(A− isI)−1 ∈ E ,
and the Cayley transform of As satisfies

(2.15) Vs := V (As) = α(s)V, α(s) = (is− 1)(is+ 1)−1,

where |α(s)| = 1, and hence the growth rates of V n and V n
s are the same.

Proof. From the assumptions on A and the definition of As, it follows
that As ∈ E and σ(As) lies in the half-plane Reλ ≤ 0.

Equality (2.14) is easy to show, and so we concentrate on the other one.
Using the equality

As − I = −(is+ 1)(A− I)(A− isI)−1,

we find that

(As − I)−1 = −(is+ 1)−1(A− isI)(A− I)−1

= −(is+ 1)−1I + α(s)(A− I)−1.

Thus

V (As) = I + 2(As − I)−1 = α(s)I + 2α(s)(A− I)−1 = α(s)V.

Remark 2.3. From (2.14) we conclude that (A− isI)−1 is the generator
of a C0-semigroup if and only if As is. Moreover,

(2.16) ‖eAst‖ = ‖e(s2+1)(A−isI)−1t‖, t ≥ 0.

The following is easily proved by using the definition of As (see (2.13)).
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Remark 2.4. If for some s ∈ R, s 6= 0, the operators (A − isI)−1 and
(A+ is−1I)−1 are in E , then A−1

s = A−s−1 .

3. Relation between the Cayley transform and eA
−1t, general

case. As stated in the introduction, we relate the stability properties of
the differential equations (1.1) and (1.2), and the difference equation (1.3).
In this section we show that if there exists an A such that all solutions
of (1.1) are exponentially stable, but for some x0 ∈ X the solution of (1.2)
is unbounded, then it is possible to construct an infinitesimal generator A0

such that with this new operator all solutions of (1.1) are exponentially
stable, but for some x0 ∈ X the solution of (1.3) is unbounded. The proof
is based on the following observation.

Let A ∈ G(X) and let V be its Cayley transform. Then using the equality
V = I + 2(A− I)−1 we have

(3.1) eV z = eze2z(A−I)
−1
, z ∈ C.

Hence if V is power bounded, then

‖ez(A−I)−1‖ ≤Me(|z|−Re z)/2 = MeR sin2(θ/2), z = Reiθ ∈ C.

Thus in particular, ‖et(A−I)−1‖ ≤M , t ≥ 0. So if V is power bounded, then
the operator (A− I)−1 lies in G.

The following theorem shows that growth bounds on V n(A) for A ∈
Gexp(X) yield similar growth bounds for (eA

−1t)t≥0.

Theorem 3.1. Let X be a Banach space and assume that for every
A ∈ Gexp(X),

(3.2) ‖V n(A)‖ ≤MAg(n), n ∈ N,

where g is a non-decreasing function, not depending on A, i.e. 0 < g(α) ≤
g(β) for all 0 ≤ α ≤ β, and MA is a constant not depending on n. Then for
any A ∈ Gexp(X) the semigroup (eA

−1t)t≥0 satisfies a similar estimate:

(3.3) ‖eA−1t‖ ≤ M̃Ag(2et/ω), t ≥ 0.

Here the (positive) constant ω is such that −ω is larger than the growth
bound of A, i.e., there exists an M > 0 such that ‖eAt‖ ≤Me−ωt, t ≥ 0.

Proof. By Lemma 2.1 we may assume that g(n) ≤ c0(1 + 4
√
n). For ω as

in the statement, it is easy to see that

A0 = 2ω−1A+ I ∈ Gexp(X).

Furthermore, V (A0) = I + ωA−1. Hence
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(3.4) ‖eωA−1t‖ = e−t‖eV (A0)t‖, t ≥ 0.

Since A0 ∈ Gexp(X), the powers of V (A0) satisfy the estimate (3.2). From
this and Stirling’s estimate, we have, for t ≥ 1,

‖eV (A0)t‖ ≤
∞∑
n=0

tn‖V n(A0)‖
n!

≤MA0

∞∑
n=0

g(n)tn

n!
(3.5)

≤ c1
[ ∑
n≥2et

(
et

n

)n g(n)√
n

+
∑
n≤2et

g(n)tn

n!

]

≤ c1
[ ∞∑
n=1

g(n)
2n
√
n

+ g(2et)
∞∑
n=0

tn

n!

]
= c2 + c1g(2et)et.

Here we have used the assumption g(n) ≤ c0(1 + 4
√
n). From (3.5) and (3.4)

we obtain the estimate (3.3).

There are several consequences of this result. We start with the rela-
tion between power boundedness of V (A) and the uniform boundedness of
(eA

−1t)t≥0.

Corollary 3.2. Suppose that on the Banach space X there exists A ∈
Gexp(X) such that A−1 6∈ G(X). Then there exists A0 ∈ Gexp(X) such that
V (A0) is not power bounded.

Proof. If V (A0) is power bounded for every A0 ∈ Gexp(X), then we can
choose g(n) ≡ 1 (see (3.2)). Thus by Theorem 3.1, A−1 ∈ G(X) whenever
A ∈ Gexp(X). This contradicts the assumptions.

If X is finite-dimensional, then the function g in Theorem 3.1 can always
be chosen to be a constant. However, this constant may depend on the
dimension of X: see e.g. equation (35) in [10]. Hence from the theorem we
see that the dependence on the dimension of the supremum of ‖eA−1t‖, t ≥ 0,
and ‖V n(A)‖, n ∈ N, is the same.

Using this theorem, we obtain different proofs for some estimates found
in the literature. The first result, which can be found in [17], follows from
the previous theorem and Lemma 2.1.

Corollary 3.3. Let X be a Banach space and A ∈ Gexp(X). Then

‖eA−1t‖ ≤ 1 +M0t
1/4, t ≥ 0,

where M0 does not depend on t.

For Hilbert spaces it was shown by Gomilko [9] that g in (3.2) can be
chosen to be log(n+2). Combining this with the theorem gives the estimate
found in [18].
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Corollary 3.4. Let X be a Hilbert space and A ∈ Gexp(X). Then

‖eA−1t‖ ≤M0 log(t+ 2), t ≥ 0,

with M0 independent of t.

The following theorem can be seen as the converse of Theorem 3.1.

Theorem 3.5. Assume that for every A ∈ Gexp(X),

‖eA−1t‖ ≤ M̃Ag(t),

where g is a non-decreasing function, not depending on A, i.e., 0 < g(α) ≤
g(β) for all 0 ≤ α ≤ β, and M̃A is a constant not depending on t. Then for
every A ∈ Gexp(X) satisfying ‖eAt‖ ≤ Me−ωt for ω > 1, there exists for all
α > 1 an Mα,A such that

‖V n(A)‖ ≤Mα,Ag(αn).

Proof. By Corollary 3.3 we may assume that g(t) ≤ c0(1 + t1/4). Let
α > 1. Since α− 1− log(α) > 0, there exists an ε ∈ (0, 1) such that

(3.6) αε < α− 1− log(α).

Secondly, the function e−(1−ε)ttn−1, t > 0, has a maximum at τ = n−1
1−ε and

is decreasing for t > τ . We now choose

(3.7) t1 = α(1− ε)τ = α(n− 1).

Since α > 1, and since (3.6) holds, we have t1 > τ for n ≥ 2.
We define A1 = 1

2(A + I). By the assumption on A, we have A1 ∈
Gexp(X). Furthermore,

V (A) = (A+ I)(A− I)−1 = 2A1(2A1 − 2I)−1 = (I −A−1
1 )−1.

Hence

‖V n(A)‖ = ‖(I −A−1
1 )−n‖ ≤ 1

(n− 1)!

∞�

0

e−t‖eA
−1
1 t‖tn−1 dt(3.8)

≤ M̃A1

(n− 1)!

∞�

0

e−tg(t)tn−1 dt

=
M̃A1

(n− 1)!

t1�

0

e−tg(t)tn−1 dt+
M̃A1

(n− 1)!

∞�

t1

e−tg(t)tn−1 dt.

On the time interval from 0 to t1, since g is non-decreasing, we have

(3.9)
M̃A1

(n− 1)!

t1�

0

e−tg(t)tn−1 dt ≤ M̃A1g(t1)
(n− 1)!

∞�

0

e−ttn−1 dt = M̃A1g(t1).

On the time interval from t1 to ∞ we use two observations. First,

n! ≥ (n/e)n, n ∈ N,
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and secondly, by the choice of t1 (see (3.7)),

e−(1−ε)ttn−1 ≤ e−(1−ε)α(n−1)(α(n− 1))n−1 for t ≥ t1, n ≥ 2.

Combining these, we find that for n ≥ 2,

M̃A1

(n− 1)!

∞�

t1

e−tg(t)tn−1 dt

≤ M̃A1

(
e

n− 1

)n−1∞�

t1

e−(1−ε)ttn−1e−εtg(t) dt

≤ M̃A1

(
e

n− 1

)n−1

e−(1−ε)α(n−1)(α(n− 1))n−1
∞�

t1

e−εtg(t) dt

= M̃A1(e−(1−ε)α+1α)n−1
∞�

t1

e−εtg(t) dt.

Using (3.6) we see that e−(1−ε)α+1α < 1. Thus

(3.10)
M̃A1

(n− 1)!

∞�

t1

e−tg(t)tn−1 dt ≤ M̃A1

∞�

t1

e−εtg(t) dt = Mα

with Mα independent of n. Combining (3.8)–(3.10) gives

‖V n(A)‖ ≤ M̃A1g(t1) +Mα.

Since t1 = α(n − 1) and since g is non-decreasing, we can find a constant
Mα,A such that ‖V n(A)‖ ≤ M̃α,Ag(αn), which proves the result.

4. Growth of V n(A) and (eA
−1t)t≥0 in Hilbert spaces. In the previ-

ous section, we have investigated the growth of V (A) and (eA
−1t)t≥0 under

the condition that A ∈ G(X), with X a Banach space. In the following, we
take for X a Hilbert space with the inner product 〈·, ·〉, and to clearly dis-
tinguish the results from those of the previous sections we denote our space
by H.

It is known (see [11], [9], [2]) that if a bounded operator on a Hilbert
space is the generator of a uniformly bounded semigroup, then its Cayley
transform is a power bounded operator. We state this in a lemma for future
references.

Lemma 4.1. Let A ∈ L(H) be the generator of a uniformly bounded
semigroup. Then V (A) is power bounded.

If A generates a uniformly bounded semigroup, but A is unbounded, then
it is unknown whether the above result holds. However, if A and A−1 each
generate a uniformly bounded semigroup, i.e., A ∈ G(H) and A−1 ∈ G(H),
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then V (A) is power bounded. We present a new proof of this theorem; for
that we need some facts on Lyapunov equations. For the proof we refer to
[6, Exercise 4.29] or [7, Section II.6].

Lemma 4.2. Let Q be a bounded operator on H. If there exists a non-
negative P ∈ L(H) which is a solution of the Lyapunov equation

(4.1) Q∗PQ− P = −I,
then

∑∞
n=0 ‖Qnx‖2 is finite for all x ∈ H.

Conversely, if
∑∞

n=0 ‖Qnx‖2 is finite for every x ∈ H, then there exists
a unique solution of (4.1). Furthermore, this solution is positive, and

(4.2) 〈Px, x〉 =
∞∑
n=0

‖Qnx‖2.

Under the assumption that λ ≥ 1 and λ, λ−1 are in the resolvent set
ρ(A) of A, we consider the following two Lyapunov equations:

(λ2 − 1)(λI −A∗)−1P1(λI −A)−1 − P1 = −I,(4.3)

(λ2 − 1)(λI −A−1)−∗P2(λI −A−1)−1 − P2 = −I,(4.4)

where Q−∗ indicates (Q∗)−1, or equivalently (Q−1)∗.
For the Cayley transform we consider the following Lyapunov equation:

(4.5)
λ− 1
λ+ 1

V (A)∗PV V (A)− PV = −I.

In the following lemma we will manipulate these Lyapunov equations.
Every Lyapunov equation can be written using the inner product. For in-
stance, (4.3) is the same as

(λ2−1)〈P1(λI−A)−1x1, (λI−A)−1x2〉−〈P1x1, x2〉 = −〈x1, x2〉, x1, x2 ∈ H.
Choosing zk = (λI −A)−1xk ∈ D(A), k = 1, 2, we rewrite this as

(λ2−1)〈P1z1, z2〉− 〈P1(λI−A)z1, (λI−A)z2〉 = −〈(λI−A)z1, (λI−A)z2〉.
Simple algebraic manipulations imply that this is the same as

− 〈P1Az1, Az2〉+ λ〈P1z1, Az2〉+ λ〈P1Az1, z2〉 − 〈P1z1, z2〉
= −〈(λI −A)z1, (λI −A)z2〉.

To simplify notation, we introduce for A ∈ E(H) and P ∈ L(H) the bilinear
form Bλ[A,P ] on D(A) as

Bλ[A,P ](z1, z2) := λ〈PAz1, z2〉+ λ〈Pz1, Az2〉(4.6)
− 〈PAz1, Az2〉 − 〈Pz1, z2〉, z1, z2 ∈ D(A).

Using it, we see that (4.3) reads

(4.7) Bλ[A,P1](z1, z2) = −〈(λI −A)z1, (λI −A)z2〉, ∀z1, z2 ∈ D(A).
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In an analogous way, (4.4) is equivalent to

(4.8) Bλ[A,P2](z1, z2) = −〈(I − λA)z1, (I − λA)z2〉, ∀z1, z2 ∈ D(A),

and (4.5) is equivalent to
(4.9)

Bλ[A,PV ](z1, z2) = −λ+ 1
2
〈(A− I)z1, (A− I)z2〉, ∀z1, z2 ∈ D(A).

In the rest of this section we use the notation R(A, λ) = (λI −A)−1.

Lemma 4.3. Let λ ∈ (1,∞) be such that λ, λ−1 are in the resolvent set
ρ(A). Furthermore, assume that 1 ∈ ρ(A).

(1) The Lyapunov equation (4.3) has a bounded solution if and only if
(4.4) has a bounded solution. Furthermore, the solutions are related
via

(4.10) P2 = (I − λA)∗(λI −A)−∗P1(I − λA)(λI −A)−1.

(2) If (4.3) has a bounded solution, then a bounded solution of (4.5) is
given by

(4.11) PV =
1

2λ
(P1 + P2 + λI − I).

Proof. (1) Let P1 ∈ L(H) be the solution of (4.3) (or (4.7)) and let Q
denote the bounded operator

(4.12) Q := (I − λA∗)R∗(A, λ)P1(I − λA)R(A, λ).

Then, using the relations

[(I − λA∗)R(A∗, λ)]∗ = (I − λA)R(A, λ),

and
(I − λA)R(A, λ)Az = AR(A, λ)(I − λA)z, z ∈ D(A),

we find that

Bλ[A,Q](z1, z2) = Bλ[A,P1](R(A, λ)(I − λA)z1, R(A, λ)(I − λA)z2)

= − 〈(λI −A)R(A, λ)(I − λA)z1, (λ−A)R(A, λ)(I − λA)z2〉
= − 〈(I − λA)z1, (I − λA)z2〉, ∀z1, z2 ∈ D(A).

So, the operator P2 = Q is the solution of (4.4) and (4.8).
(2) Let P1 and P2 be the solutions of (4.7) and (4.8), respectively, and

let Q̃ ∈ L(H) be defined as

Q̃ = P1 + P2 + (λ− 1)I.
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Then

Bλ[A, Q̃](z1, z2) = Bλ[A,P1](z1, z2) +Bλ[A,P2](z1, z2)
+ (λ− 1)Bλ[A, I](z1, z2)

= − 〈(λI −A)z1, (λI −A)z2〉 − 〈(I − λA)z1, (I − λA)z2〉
+ (λ− 1)[λ〈Az1, z2〉+ λ〈z1, Az2〉−〈Az1, Az2〉 − 〈z1, z2〉]

= λ(λ+ 1)[〈Az1, z2〉+ 〈z1, Az2〉 − 〈Az1, Az2〉 − 〈z1, z2〉]
= − λ(λ+ 1)〈(A− I)z1, (A− I)z2〉, ∀z1, z2 ∈ D(A).

Thus if we choose PV = (2λ)−1Q̃, then we obtain

Bλ[A,PV ](z1, z2) = −λ+ 1
2
〈(A− I)z1, (A− I)z2〉, ∀z1, z2 ∈ D(A)

and we see that PV is the solution of (4.9) and thus of (4.5).

Remark 4.4. Looking at the proof of the above lemma we can make
some remarks.

(1) In the above proof we did not use the fact that λ > 1, and so
Lemma 4.3 holds for all λ ∈ R such that λ, λ−1 ∈ ρ(A). For λ2 − 1 < 0
the equations (4.3) and (4.4) will no longer be Lyapunov equations, but
Sylvester equations. Since we only need the relations for λ > 1, we have
presented the proof for this case only.

(2) The equality (4.10) can be written in a different form. First of all,
for all z1, z2 ∈ D(A) it can be equivalently written as

〈P2(λI −A)z1, (λI −A)z2〉 = 〈P1(I − λA)z1, (I − λA)z2〉,
or

(4.13) (λ2 − 1)〈P2z1, z2〉 −Bλ[A,P2](z1, z2)

= (λ2 − 1)〈P1Az1, Az2〉 −Bλ[A,P1](z1, z2).

Substituting the Lyapunov equations (4.7) and (4.8) in (4.13), we find, after
simple calculations, that

(4.14) 〈(P2 − I)z1, z2〉 = 〈(P1 − I)Az1, Az2〉, ∀z1, z2 ∈ D(A).

Assuming that P1 or P2 is non-negative, we find by Lemma 4.2 and equations
(4.3), (4.4) and (4.10) that
∞∑
n=0

(λ2 − 1)n‖(λI −A−1)−n(I − λA)−1x‖2 = 〈P2(I − λA)−1x, (I − λA)−1x〉

= 〈P1(λI −A)−1x, (λI −A)−1x〉 =
∞∑
n=0

(λ2− 1)n‖(λI −A)−n(λI −A)−1x‖2

for all x ∈ H.
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From [11, Theorem 8.3] we have the following result.

Lemma 4.5. Let X be a Banach space and let T ∈ L(X). Denote the
dual space by X∗ and the dual operator of T by T ∗. Suppose that for all
x ∈ X and z ∈ X∗,

sup
r∈[0,1)

(1− r)
∞∑
n=0

‖Tnx‖2r2n ≤M(T )‖x‖2,(4.15)

sup
r∈[0,1)

(1− r)
∞∑
n=0

‖(T ∗)nz‖2r2n ≤M(T ∗)‖z‖2.(4.16)

Then
‖Tn‖ ≤ e

√
M(T )M(T ∗), n ∈ N.

Theorem 4.6. Let A ∈ E(H) with σ(A) ⊂ {λ ∈ C | Re(λ) ≤ 0}, and let
V = V (A). Suppose that the inverse of A exists and A−1 ∈ E.

(1) For x ∈ H and λ > 1 define

(4.17) GA(x;λ) :=
1
λ2

∞∑
n=0

(λ2 − 1)n[‖Rn(A, λ)x‖2 + ‖Rn(A−1, λ)x‖2].

Then

(4.18) GA(x;λ) +
λ− 1
λ2
‖x‖2 =

2(1− r2)
1 + r2

∞∑
n=0

‖V nx‖2r2n, x ∈ H,

where λ = (1 + r2)/(1− r2), r ∈ (0, 1).
(2) If A,A−1 ∈ G, then V (A) is power bounded and

(4.19) ‖V n(A)‖ ≤ e

2

(
1
4

+M2 +M2
1

)
,

where M = supt>0 ‖eAt‖ and M1 = supt>0 ‖eA
−1t‖.

Proof. The proof of the first item can be found in [9, Theorem 2]. How-
ever, we present a new proof using Lyapunov equations. Note that there is
a typo in the corresponding theorem of [9].

Proof of (1). Note that GA(x;λ) is finite for any x ∈ H, because for
λ > 0 the spectra of λR(A, λ) and λR(A−1, λ) are outside the disk |µ| ≤ 1.
Thus by Lemma 4.2 there exists a unique solution of the Lyapunov equation
(4.3). Furthermore, this solution satisfies

(4.20) 〈P1x, x〉 =
∞∑
n=0

(λ2 − 1)n‖R(A, λ)nx‖2.
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Similarly there exists P2 ∈ L(H), the unique solution of (4.4), satisfying

(4.21) 〈P2x, x〉 =
∞∑
n=0

(λ2 − 1)n‖R(A−1, λ)nx‖2.

By Lemma 4.3, the operator PV defined by (4.11) is the unique solution
of (4.5). Since P1, P2 are positive and λ > 1, we find that PV > 0, and so
by Lemma 4.2,

(4.22) 〈PV x, x〉 =
∞∑
n=0

(
λ− 1
λ+ 1

)n
‖V nx‖2.

Writing (4.11) as

〈(P1 + P2 + λI − I)x, x〉 = 2λ〈PV x, x〉,

and substituting (4.20)–(4.22) we find that

∞∑
n=0

(λ2 − 1)n‖Rn(A, λ)x‖2 +
∞∑
n=0

(λ2 − 1)n‖Rn(A−1, λ)x‖2 + (λ− 1)‖x‖2

= 2λ
∞∑
n=0

(
λ− 1
λ+ 1

)n
‖V nx‖2.

Dividing by λ2 and substituting λ = (1 + r2)/(1 − r2) on the right-hand
side, we obtain (4.18).

Proof of (2). Since A and A−1 are in G, the Hille–Yosida Theorem yields
constants M,M1 ≥ 1 such that

(4.23) ‖Rn(A, λ)‖ ≤Mλ−n, ‖Rn(A−1, λ)‖ ≤M1λ
−n, λ > 0, n ∈ N.

Substituting this in (4.17), we find that for any x ∈ H,

(4.24) GA(x;λ) ≤ M2 +M2
1

λ2

∞∑
n=0

[
λ2 − 1
λ2

]n
‖x‖2 = (M2 +M2

1 )‖x‖2.

Next using elementary calculus, we find that

r ∈ (0, 1) ⇔ λ =
1 + r2

1− r2
∈ (1,∞), r > 0,

and
λ− 1
λ2

≤ 1
4
, λ > 1,

2(1 + r)
1 + r2

≥ 2, r ∈ (0, 1).

Using these estimates, we find from (4.18) and (4.24) that

(1− r)
∞∑
n=0

‖V nx‖2r2n ≤ M2 +M2
1 + 1/4

2
‖x‖2, r ∈ (0, 1), x ∈ H.
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Since the norm of the adjoint equals the norm of the operator, we see that
(4.23) also holds for A∗ and (A−1)∗. Thus, using analogous considerations
for GA∗(x;λ), we have

(1− r)
∞∑
n=0

‖V n(A∗)x‖2r2n ≤ M2 +M2
1 + 1/4

2
‖x‖2, r ∈ (0, 1), x ∈ H.

Since V (A∗) = V ∗(A), we conclude from Lemma 4.5 that (4.19) holds.

In the previous theorem we have shown that if A and A−1 each generate
a bounded semigroup on the Hilbert space H, then V (A) is power bounded.
In the next theorem we give some other sufficient conditions.

Theorem 4.7. Let A ∈ E(H) with σ(A) ⊂ {λ ∈ C | Reλ ≤ 0}. If either

(1) there exists an s ∈ R such that is ∈ ρ(A) and −R(A, is) ∈ G(H), or
(2) there exists a non-zero s ∈ R such that (A−isI)−1 and (A+is−1I)−1

are in G(H),

then the Cayley transform V (A) is a power bounded operator.

Proof. Assume that (1) holds. Equation (2.13) defines As ∈ L(H). Com-
bining (1) with (2.16), we conclude that As ∈ G(H). Consequently, V (As)
is power bounded by Lemma 4.1. Now Lemma 2.2 yields the equalities

V (As) = α(s)V (A), |α(s)| = 1,
and thus V (A) is power bounded as well.

Assume next that (2) holds. Then we can define As and A−s−1 (see
(2.13)). Furthermore, A−1

s = A−s−1 . Moreover, from (2) and (2.16) it follows
that As, A−s−1 ∈ G(H). Applying Theorem 4.6 we conclude that V (As) is
power bounded, and Lemma 2.2 shows that so is V (A).

We remark that condition (2) is not stronger than (1), since in (1) it is
assumed that (A−isI)−1 is a bounded operator, whereas in (2) this operator
is assumed to be an infinitesimal generator.

The following theorem extends the second statement of Theorem 4.6.

Theorem 4.8. Let H be a Hilbert space and let A ∈ G(H). Assume fur-
ther that the inverse of A exists and lies in E. Then the following statements
are equivalent:

(1) For all ε > 0 the operator −R(A, ε) is in G(H) and there exists a
constant M1 ≥ 1, not depending on ε > 0, such that

‖e−R(A,ε)t‖ ≤M1, t ≥ 0.
(2) A−1 ∈ G(H).
(3) For all δ > 0 the Cayley transform V (δA) is power bounded and

there exists a constant C ≥ 1, not depending on δ, such that

(4.25) ‖V n(δA)‖ ≤ C, n = 0, 1, 2, . . . .
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Proof. The implication (1)⇒(2) follows from the second Trotter–Kato
approximation theorem (see [8, Theorem III.4.9]). Moreover, ‖eA−1t‖ ≤M1,
t ≥ 0, where M1 is the constant from (1).

(2)⇒(3). If A generates a bounded semigroup, so does δA. Furthermore,

sup
t≥0
‖eδAt‖ = sup

t≥0
‖eAt‖ = M.

Similarly,
sup
t≥0
‖e(δA)−1t‖ = sup

t≥0
‖eA−1t‖ = M1.

By Theorem 4.6(2), V (δA) is power bounded, with bound independent of δ.
Thus we have proved (4.25) with C = e

2(M2 +M2
1 + 1/4).

(3)⇒(1). Using (4.25), we see that for any δ > 0,

(4.26) ‖eV (δA)t‖ ≤ Cet, t ≥ 0.

Let ε > 0. By (3.1), we have

e−2εtR(A,ε) = e2t(ε
−1A−I)−1

= e−teV (ε−1A)t.

Choosing δ=ε−1 and combining this with (4.26), we find that ‖etR(A,ε)‖ ≤ C
for all t ≥ 0. Thus we have obtained (1).

In the above theorem we have shown that for A ∈ G the inverse lies in
G if and only if (A − εI)−1 ∈ G for some (or all) ε > 0. Furthermore, if
A−1 ∈ G, then e(A−εI)

−1t is bounded by a constant independent of t and ε.
We would like to extend this result to (A−λI)−1 for λ ∈ C with Re(λ) ≥ 0.
This will be the subject of Theorem 4.10. In that theorem we show that
e(A−λI)

−1t is uniformly bounded in t, but the constant depends on λ. For
the proof, we need the following relation between the semigroups generated
by A and by A−1 (see [17]). For A ∈ Gexp we have

(4.27) eA
−1tx = x−

√
t

∞�

0

J1(2
√
ts)√
s

eAsx ds, t > 0, x ∈ H.

Here J1 is the Bessel function of the first kind and of the first order.
Besides equation (4.27), we need the following lemma.

Lemma 4.9. Let f : [0,∞)→ H be a continuous function with exponen-
tial decay. Define

(4.28) f̂(τ) :=
√
τ

∞�

0

J1(2
√
τt)√
t

f(t) dt, τ > 0.

For this transformation, the following Parseval identity holds:

(4.29)
∞�

0

‖f(t)‖2 dt
t

=
∞�

0

‖f̂(τ)‖2 dτ
τ
.
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Proof. The statement follows easily from the Parseval identity
∞�

0

|H[f ](τ)|2τ dτ =
∞�

0

|f(t)|2t dt

for the (first order) classical Hankel transformation

H[f ](τ) :=
∞�

0

tf(t)J1(τt) dt, f ∈ L2((0,∞); t dt),

combined with the relation

f̂(τ) =
√
τ(H(f0))(

√
τ),

where f0(t) = (1/t)f(t2/4).

Hence we can extend the transformation (4.28) to all functions for which
the left-hand side of (4.29) is finite.

Theorem 4.10. Suppose A,A−1 ∈ G(H). Furthermore, choose M , M1

such that
‖etA‖ ≤M, ‖etA−1‖ ≤M1, ∀t ≥ 0.

Then for any λ = ε+ iτ with ε > 0, the bounded operator −R(A, ε+ iτ) is
in G(H), and moreover for all t ≥ 0,

(4.30) ‖e−R(A,ε+iτ)t‖ ≤ 2
[
e2(M2 +M2

1 + 1/4)2 +M2 log
(

1 +
τ2

4ε2

)]
.

Proof. From Theorem 4.8 it follows that −R(A, ε) ∈ G(H) for any ε > 0,
and moreover

(4.31) ‖e−R(A,ε)t‖ ≤ e

2
(M2 +M2

1 + 1/4), t ≥ 0.

Next, by (4.27), for any x ∈ H we have

(e−R(A,ε)t − e−R(A,ε+iτ)t)x =
√
t

∞�

0

J1(2
√
ts)√
s

[e−iτs − 1]e−εseAsx ds, t > 0,

and thus by Lemma 4.9,

(4.32)
∞�

0

‖(e−R(A,ε)t − e−R(A,ε+iτ)t)x‖2 dt
t

=
∞�

0

|1− eiτt|2

t
e−2εt‖eAtx‖2 dt.

Since
∞�

0

|1− eiτt|2

t
e−2εt dt = 4

∞�

0

sin2(τt/2)
t

e−2εt dt = log
(

1 +
τ2

4ε2

)
,

by (4.32) for any x ∈ H we obtain the estimate

(4.33)
∞�

0

‖(e−R(A,ε)t − e−R(A,ε+iτ)t)x‖2 dt
t
≤M2 log

(
1 +

τ2

4ε2

)
‖x‖2.
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For t > 0 and x ∈ H, we have

1
t

t�

0

‖e−sR(A,ε+iτ)x‖2ds

≤ 2
t

t�

0

‖(e−R(A,ε)s − e−R(A,ε+iτ)s)x‖2 ds+
2
t

t�

0

‖e−R(A,ε)sx‖2 ds

≤ 2
t�

0

‖(e−R(A,ε)s − e−R(A,ε+iτ)s)x‖2 ds
s

+ 2‖x‖2 sup
t≥0
‖e−R(A,ε)t‖2

≤ 2M2 log
(

1 +
τ2

4ε2

)
‖x‖2 +

e2

2
(M2 +M2

1 + 1/4)2‖x‖2,

where we have used (4.33) and (4.31). Thus for any x ∈ H and t > 0,

1
t

t�

0

‖e−sR(A,ε+iτ)x‖2ds ≤
[
e2

2
(M2 +M2

1 + 1/4)2 + 2M2 log
(

1 +
τ2

4ε2

)]
‖x‖2.

The analogous estimate holds for the adjoint semigroup (e−tR(A∗,ε−iτ)t)t≥0.
Then, by [4, Proposition 3.1], we obtain the statement (4.30).

In the above theorem we have assumed that A and A−1 are in G(H).
The same result holds if we assume that there exists a λ ∈ C satisfying
Re(λ) ≥ 0, λ 6= 0, such that A, (A − λI)−1 ∈ G(H). The proof is very
similar.

In this section we have concentrated mainly on the implication A ∈
G(H) ⇒ supn ‖V n(A)‖ < ∞. We have been able to prove it under extra
conditions formulated in terms of A−1. In the following theorem we show
that a (partial) converse holds as well.

Theorem 4.11. Let A generate an exponentially stable semigroup on
the Hilbert space H and let V (A) be power bounded. Then A−1 generates a
bounded C0-semigroup.

Proof. We define A1 = A− I. Then it is clear that

V (A) = (A+ I)(A− I)−1 = I + 2A−1
1 .

Thus
‖e2A

−1
1 t‖ = e−t‖eV (A)t‖ ≤Md, Md := sup

n≥0
‖V n(A)‖,

so A−1
1 generates a bounded semigroup. Since A generates an exponentially

stable semigroup, we have
∞�

0

‖(eAt − eA1t)x‖2 dt
t

=
∞�

0

(1− e−t)2‖eAtx‖2 dt
t
<∞.
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Combining this with (4.27) and Lemma 4.9, we find that for every x ∈ H,
∞�

0

‖eA−1tx− eA
−1
1 tx‖2 dt

t
<∞.

Since A−1
1 generates a bounded semigroup on H, we conclude as in the proof

of Theorem 4.10 that A−1 generates a bounded semigroup.

In the previous two theorems, we have related the growth of a semigroup
with a perturbed one. For the discrete counterparts of these results, we refer
to [3]. Combining Theorem 4.6 and 4.11, we obtain the following corollary.

Corollary 4.12. Let A ∈ Gexp(H) and let V (A) be power bounded.
Then V (αA) is power bounded for all α > 0.

Proof. By Theorem 4.11 we know that A−1 generates a bounded semi-
group. It follows directly that so does (αA)−1. Combining this with the fact
that also αA generates a bounded semigroup, we conclude by Theorem 4.6
that V (αA) is power bounded.
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