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Cryptographic enforcement of access control mechanisms relies on encrypting protected data with the keys
stored by authorized users. This approach poses the problem of the distribution of secret keys. In this paper, a
key management scheme is presented where each user stores a single key and is capable of efficiently
calculating appropriate keys needed to access requested data. The proposed scheme does not require
encryption of the same data (key) multiple times with the keys of different users or groups of users. It is
designed especially for the purpose of access control. Thanks to that, the space needed for storing public
parameters is significantly reduced. Furthermore, the proposedmethod supports flexible updates when user's
access rights change.
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1. Introduction

Advances in information and communication technologies bring
with numerous benefits also concerns with respect to security issues.
The data no longer resides on mainframes physically isolated within
an organization, where physical security measures can be taken to
safeguard the data and the system. Modern solutions are evolving
towards open, interconnected environment where storage outsour-
cing and operations on untrusted servers happen frequently. Open
access data storage standards pose new challenges on security
technologies. The old server-centric protection model locks data in a
database server and uses a traditional access control model to permit
access to data. To facilitate current developments, a data-centric
protection model is required, where data is cryptographically
protected and allowed to be outsourced or even freely float on the
network. In many cases there is a need to replicate the data and send it
to the clients. Examples are distributed databases, grid computing,
enterprise rights management systems and peer-to-peer data man-
agement systems in general. Consider for example the development of
Electronic Health Records (EHRs). It aims at increased availability and
sharing of patient records. Records are shared among different
healthcare providers, external wellness services and relatives. As the
healthcare data is very sensitive, privacy and security have to be taken
care of. Today this often means that access to EHRs is restricted to a
controlled environment of care institutions. This limitation can be
overcome by the more flexible data-centric protection.

In this paper, we address the key management problem of the
data-centric protection model. Namely, when the data is encrypted,
the access control policies have to be taken into account so that
control is maintained regarding which users can access what data. In a
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standard access control model, the policies are defined using one of
the standard model/languages, such as Lightweight Directory Access
Protocol (LDAP) [19], ANSI/INCITS Role Based Access Control [6],
Security AssertionMarkup Language standards [9] or OASIS Extensible
Access Control Markup Language [10]. However, when a data-centric
protection model is used these policies have to be mapped into a
proper key management scheme, which is the problem this paper
deals with.

The remainder of this paper is organized as follows. Section 2
describes the problem and surveys the related work. Our key
management solution is presented in Section 3. Section 4 is devoted
to the problem of updates of access rights. Section 5 discusses the
advantages of the proposed solution compared to the state-of-the-art.
Finally, Section 6 summarizes our contributions and proposes several
directions for the future work.

2. Related work and problem description

A straightforward solution to enforce access control with crypto-
graphy is to encrypt the data with a data key, which is consequently
encrypted with the keys of users that should be able to access this
data. The drawback of such approach is that each data key is stored in
multiple copies encrypted with different user keys. The number of
copies of a single data key can reach the number of users (or roles or
user groups) in the system. For large systems that allow fine
granularity of access to data, this number can by far exceed the size
of the protected data itself. Another problem is updating encrypted
data keys when the access control policies change. Thus, we search for
a method to assign the keys to the data and the users in a more
efficient manner, supporting flexible updates.

There are a number of different definitions of the key management
problem in the literature. We propose here a generalized problem
statement. To the best of our knowledge our definition covers all the
approaches presented in the literature.
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Fig. 1. Example of an access table and orders on access configurations from this table.
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2.1. Generalized key management problem

Let U be the set of users of the system (users can represent
individuals, roles or groups of individuals), and let D be the set of data
records. Any set of users is an access configuration. The set of users
allowed to access data record d2D is an access configuration
associated with d, denoted as AC (d). The access configurations are
partially ordered in a natural way via subset inclusion ⊂ (see Fig. 1c).

The inclusion partial order is used to assign the keys to groups of
users. This partial order satisfies more conditions than necessary and
therefore wastes opportunities. By relaxing these, and defining a
weaker order relation, we allow partial orders that in turn allow for
more efficient key management.

The necessary conditions for the partial order (P, b) on access
configurations are as follows. For each user u access configuration {u}
belongs to P : 8u2U uf ga P. There may be however some additional
access configurations in P, for example AC (d) for daD. The order
relation b on elements of P satisfies (order conditions):

AC1s AC2; jAC2j ¼ 1ZAC1 b AC2
AC1b AC2 Z AC1s AC2

:

�
ð1Þ

This definition ensures, that if u∈AC, then {u}NAC, and requires as
few other order relations as possible. Intuitively, we want to model
that the data accessible by thewhole group AC is also accessible by any
user u∈AC. Examples of orders that satisfy our definition are
presented in Fig. 1.

The task of the keymanagement scheme is to (i) design an efficient 1

partial order P satisfying order conditions (1) and (ii) assign to each
access configuration AC in P on or more secret keys KAC, such that based
on K{u} each user u can obtain KAC for every ACb{u}. The data records
daD are encrypted with the data key kd, that in turn is encrypted with
the keys of groups of users ACi in such away, that AC(d)=∪i ACi. Thus, all
the authorized users can access their data. The examples are shown in
Fig.1. In case of broadcast encryption order (Fig.1a), the data keys kd3 and
kd4 are encrypted three times eachwith the keys of access configurations
that sum up to AC (d3)=AC (d4). In the two other partial orders in Fig. 1b
and c, AC (d) for each data record daD is included in the order, thus each
data key is encrypted only once.

Various solutions were proposed to address this problem
[11,17,22,16,25,12]. Practical approaches designed for cryptographically
enforced access control are mostly based on broadcast encryption [16].
In the basic approach, the users are represented by the leafs and the
1 By efficient we mean with minimal number of configurations and relations on
them, but avoiding multiple copies of data keys.
access configurations are represented by the interior nodes of a binary
tree. This binary tree represents the partial order on access configura-
tions, as shown in Fig.1a. The user is required to store all the keys on the
path from the corresponding leaf to the root of the tree. She can decrypt
all the necessary data with the keys she stores. This strategy only
partially reduces the redundancy described previously, as there are still
multiple copies of data keys. Furthermore, each user stores the number
of keys that is of orderof the logarithmof thenumberof subjects, instead
of just a single key as in the straightforward solution.

A number of improvements of this basic method were proposed.
Most of them [25,12] consider users as stateless receivers, and are
referred in the literature as revocation schemes. The improvements
are achieved by introducing more groups, more complex orderings of
these groups, and sophisticated key assignment methods.

Another popular approach constitutes of the key generation
schemes [11,17,22]. Essentially, the partial order is given, and the
task of the scheme is to assign the keys to the elements (access
configurations) of the given order. In the access control settings, that
means that given the key of AC1 and some public information one can
compute the key of AC2 if and only if AC2bAC1. Support for an arbitrary
number of groups allows the complete elimination of the multiple
copies of data keys while, thanks to key generation mechanism, each
user has only one secret key. However, the price to be paid is the public
information that is stored on a public server, used by the users to
derive keys. Especially in the case of access control, it is very important
to minimize the public space, as the size of the partial orders of access
configurations can be exponential in the number of users. We discuss
the key generation schemes applied to access control (as done in [13])
and compare them with our approach in Section 5.

3. Key management solution

In this section we propose an efficient solution for the key
management problem stated above. In Section 3.1, we present an
algorithm for constructing the partial order on access configurations
(AC) satisfying Eq. (1).We represent this partial order by an acyclic and
transitively reduced directed graph, where nodes are access config-
urations, and arcs (directed edges) connect comparable elements,
from greater to smaller. In the literature, such a graph is called a Hasse
diagram of a partial order. We denote the presence of an arc from x to
y by x→y, and a directed path as x↠y. The constructed graph has two
additional properties referred to as V-conditions:

The number of arcs coming into a node is either 2 or 0
For any two nodes; at most one node has arcs into both of them:

�

ð2Þ



Fig. 2. (a) Graph obtained after the first phase applied to table in Fig. 1; (b) transformation. CreateTree applied in the third phase; (c) the final result of the algorithm applied to the
table in Fig. 1.

Table 1
Conditions specifying access control graph and their informal description

Description Condition

a. Access configurations of all single users belong to G {u}∈G for each u∈U
a'. Access configurations of all data records belong to G AC(d)∈G for each d2D
b. A user is connected via directed paths with all the

configurations she belongs to (first order condition)
u∈AC⇒{u} ↠AC

b'. Second order condition AC1↠AC2⇒AC1pAC2

c. First V-condition |In(AC)|=0 or |In(AC)|=2 for
any AC∈G

d. Second V-condition |In(AC1)∩ In(AC2)|≤1 for any
AC1, AC2∈G
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A graph satisfying Eq. (2) is a V-graph. Examples of a non V-graph
(a) and a V-graph (c) are shown in Fig. 2. We refer to a transitively
reduced acyclic digraph satisfying Eq. (2) and representing an order
satisfying Eq. (1) as access control graph. The V-form of the graph
allows us to apply the Diffie–Hellman (DH) based key generation
scheme presented in Section 3.2. The DH scheme assigns public and
private keys to the nodes. Each user receives a single private key and
using this key he is able to derive the keys needed to decrypt the data
he has right to access.

3.1. Hierarchy construction algorithm

In this sectionwepresent the constructionof a partial orderonaccess
configurations. The CreateHierarchy(Access Table ACCESS) algorithm
presented in this section takes as input an access table (as in Fig. 1a)
and builds an access control graph on access configurations (shown in
Fig. 2c). Appendices A and B provide the code and the correctness proof
respectively.

The input access table ACCESS is a boolean matrix representing
access rights given to the users. The rows correspond to the users and
the columns to the data records. The value ACCESS[u, d]=true(+) if and
only if user u is allowed to access data d. Each column represents an
access configuration of the corresponding data object. The access table
from Fig. 1a could represent access rights of eight roles of health care
professionals: u1-u8 related to six categories of documents in patients
electronic health records: d1–d6. According to the hospital and
patient policy, some roles do not have access to some document
categories (such as u1 to d5 and d6 and u2 to d3 and d4). The rest is
accessible by all care professional roles.

The algorithmconsists of the initial phase and the three construction
phases described below. In the initial phase, the CreateHierarchy
algorithm obtains access configurations of all daD from corresponding
columns and stores them in the priority queueQ, with the priority of AC
set to its size |AC|. Smaller configurations are extracted earlier.
Additionally, all access configurations containing a single user are
inserted to initially empty graph G.

Let In(x) for x∈G denote the set of directed edges (arcs) pointing to
x. In the next phases, the algorithm adds access configurations and
edges to the graph. Some of these adds may cause previously added
edges to be removed. The aim of these transformations is to obtain a
graph satisfying the conditions from Table 1.

In the first phase, the algorithm constructs graph G satisfying
conditions (a−b′). Queue Q stores the configurations that still need to
be added to G. As before smaller configurations are extracted earlier.
For each extracted configuration AC the algorithm:

1. inserts AC to graph G
2. finds in G the minimal set cover of AC, that is a minimal set of

configurations ACi already in G, such that AC=∪ ACi
3. inserts an edge ACi→AC for each ACi from the found cover until Q
is empty (see Appendix A, procedure InsertCoveredMin(AC)).
Trivially, (a–b′) are satisfied after completing this phase. For the
example access table from Fig. 1, the graph obtained after this
phase is shown in Fig. 2a.

In the second phase, the algorithm transforms the graph to pre-
serve conditions (a–b′), and reduce the number of incoming edges to at
most two per node. Queue Q stores configurations that need to be
processed by the algorithm, that is those with more than two incom-
ing edges. The algorithm extracts the configurations with a greater
number of incoming edges first. For each extracted configuration AC,
the algorithm looks at configurations AC′ in Q, and considers their
intersection AC∩AC′ with AC. For each AC′, AC∩AC′ is a potential
new configuration to be added to graph G. Note, that if X⊂AC∩AC′
⊂AC, then adding configuration AC∩ AC′ and edges X→AC∩AC′,
AC∩AC′→AC, makes edge X→AC unnecessary by transitivity. The
algorithm chooses AC′ in a way, that adding configuration AC∩AC′
allows to reduce themaximal numberof edges coming intoAC. It repeats
this step, until no more edges in In(AC) can be reduced in this manner.
During these transformations, the numbers of incoming edges of con-
figurations AC′ are reduced aswell. The configurations, whose incoming
edges were reduced to at most two are removed from Q. After com-
pleting the loop described above, the graph for our running example
is shown in Fig. 1c. Condition (d) is satisfied trivially after the termi-
nation of the second phase (see Appendix B).

In the third phase, if after the second phase there are AC in G such
that |In(AC)|N2, then the algorithm reduces |In(AC)| by substituting In
(AC) with a binary tree rooted in AC (see Appendix A procedure Crea-
teTree(AC)), as shown in Fig. 2b. The leafs are the nodes connected toAC
with arcs In(AC). After this step, |In(AC)|=2 and AC can be removed
from Q. The algorithm continues the third phase until Q is empty.

Note, that |In(AC)|=1 cannot hold for any AC. At the end of the third
phase, all (a−d) are satisfied (see Appendix B), and the algorithm



Fig. 3. Update scenarios and example.

2 Such as Content Scrambling System (CSS) [26], Video Content Protection System
(VCPS) [7], Content Protection for Recordable Media (CPRM) [2], and Advanced Access
Content Systems (AACS) for HD-DVD [1].
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terminates. The final result of the algorithm for the running example is
shown in Fig. 2c.

3.2. Diffie–Hellman based key generation scheme

In this section, we describe a key generation scheme for an access
control graph returned by algorithm CreateHierarchy(Access Table
ACCESS), which was presented in Section 3.1. The security of the
scheme follows directly from the security of the DH key exchange
protocol. The Diffie–Hellman key exchange protocol is standardized by
RSA Laboratories as the Diffie–Hellman Key Agreement standard [8]. It
is used in a number of standards such as ISO/IEC 11770-3:1999, the
part three of the Key Management standard (mechanisms using
asymmetric techniques) [4], IEEE P1363 Public Key Standard [3], as
well as in a number of components of Transport Layer Security (TLS)
[5] and its predecessor Secure Socket Layer (SSL).

Let LeftParent(AC) and RightParent(AC) be the nodes of In(AC). We
assign private and public keys to the nodes of G, according to the
Diffie–Hellman key exchange protocol. If In(AC) is empty then the
secret key of AC is a randomly chosen number. Otherwise the secret
key of AC is a shared key obtained by applying Diffie–Hellmanprotocol
on the private and public keys of LeftParent(AC) and RightParent(AC),
treating them as the key exchanging parties. The public key of AC is
obtained from its private key according to the Diffie–Hellman
protocol. Thus, each AC is labeled with its private key SAC and its
public key PAC as follows:

SAC ¼ gSLef tParent ACð Þ � SRightParent ACð Þ mod p
PAC :¼ gSAC mod p

:

�
ð3Þ

To derive the key of a descendant node, a node needs its own secret
key, as well as the public keys of the “other” parents in the path to the
target node. It recursively derives child keys along the path to the
target, by calculating Schild=(Pother parent)Sparent.

4. Updates

This section shows how to efficiently deal with the updates of the
access control policies. The updates to the policies can be categorized
according the amount of change they cause in the database. Each
category requires different steps to be taken to re-encrypt the
necessary data. The table in Fig. 3 presents four categories covering
all possible scenarios of access control policy update. According to the
nature of the introduced update, we apply a combination of three
basic steps as presented in the table. Below we describe these basic
steps and their effects on the database.
The Insert Access Configuration (Insert AC) step is needed when new
access control policies imply a new access configuration ACnew, which
is not an element of the current hierarchy (represented by an access
control graph). This is the only step, in which the hierarchy must be
updated. We proceed as follows. The new node is created in the
hierarchy for ACnew. It is not assigned any children. If it were, then the
set {X∈G: ∃Z∈GACnew↠Z and X↠X} must be assigned new keys. This
could require the re-encryption of the whole hierarchy. Thus, to insert
ACnew, we apply the operations G.InsertCoverMin(ACnew) and G.
CreateTree(ACnew) (see Section 3.1). After these two steps conditions
[a–d] from Section Table 1 remain satisfied and we can generate new
keys for new nodes using the DH scheme. No rekeying is required
whatsoever. Frequent updates of the hierarchy influence the perfor-
mance and public space. Therefore after a certain number of updates
the whole hierarchy is rebuilt and rekeyed. If the access configuration
in the hierarchy does not correspond to any data object, it is not
removed until the hierarchy is rebuilt, and remains as a virtual node.
Applying updates to an example hierarchy is shown in Fig. 3.

The Add Data Object (Add DO) step is required when a new data
object is assigned an existing access configuration. In this case, a new
secret key for the new data object is created, the object is encrypted
with the new key, and the new key is encrypted with the key of the
(existing) access configuration assigned to the object.

The Rekey Data Object (Rekey DO) step is performed, when an
access configuration ACold assigned before to a data object daD is
changed into another existing access configuration ACnew. Assume K
(d) is the data encryption key assigned to d, K (ACnew) and K (ACold) are
the key encryption keys corresponding to these access configurations.
There are two possible cases:

1. ACold⊂ACnew: in this case the users gain access rights andK (d) is
re-encrypted with K (ACnew).

2. otherwise: in this case the users loose rights and K (d) must be
changed into Knew(d), d is re-encrypted with Knew(d), Knew(d) is
encrypted with K (ACnew) and stored.

5. Discussion

In this section, we compare our scheme to the schemes described
in Section 2. Compared to broadcast encryption methods, which are
used in a number of copy protection standards 2, the solution we
propose eliminates the need for multiple copies of data keys and
reduces to a single key the storage required per user. Therefore, we



Fig. 4. Full access control hierarchy.
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focus in this section on the comparison of our scheme with the key
generation schemes. For the sake of a clear comparison we divide
them into two groups: PKC (Public Key Cryptography) based schemes
and SKC (Symmetric Key Cryptography) based schemes.

Letnbe the sizeof apartial order towhichaPKC scheme is applied. The
PKC based solutions are essentially extensions of two basic approaches.
The first approach requires storing large public keys proportional to the
product of first n primes: p1·····pn [11,27,20]. The upper bound for the
product ofnprimes is (n logn)n, so the size in bits required to store it is log
(n log n)n=n log(n log n). Each key derivation step requires a single
operation, but computation on numbers of that size implies the time
needed for the key derivation proportional to n. In the second approach,
thenumberofmodularexponentiationsneeded for computing theprivate
keys is proportional to n [17,18,24]. This is applicable for reasonably small
partial orders, for instance hierarchies inside a company or an institute.
However in our settings, assuming that N is the number of users, the
number n of possible access configurations can reach 2N. Therefore the
direct application of these schemes for partial order on access configura-
tions results in a key derivation time that is exponential in N.

In the schemewepropose, all theprivate andpublic keys are bounded
fromabovebya largeprimenumberp. To ensure that thekeys areunique,
pmust be of order nα for some constant α. Therefore the size of a public
key is bounded from above byα log n. It is in theworst case proportional
to N. The key derivation time in the proposed scheme is proportional to
theheight of the partial order. Since the height of a partial order on access
configurations cannot exceed N, the derivation time is bounded from
above by N. An additional advantage of our scheme is the support for
flexible updates, which are poorly supported in the PKC based schemes.

The SKC based schemes [17,14,23,22] are more efficient, however
some successful attacks against them have been proposed [21].
Furthermore, we argue below that in terms of storage space our
scheme is more efficient than any of these schemes applied directly to
an inclusion partial order on access configurations.

Essentially, the SKC based schemes assign the private keys to the
nodes and public keys to the edges of the given partial order. When
the nodes are access configurations, this order is naturally given by set
inclusion. It is represented by a directed graph with n nodes (access
configurations) and e edges. An SKC based scheme assigns O(n)
private and O(e) public keys. As emphasized in the problem statement
given in Section 2, inclusion order gives many redundant edges, which
in turn give many redundant public parameters. Intuitively, our partial
order construction aims at minimizing the number of edges.

A perceptive reader spots immediately that our scheme assigns both
private and public keys to the nodes of the partial order we construct.
However, for each node AC except forN singletons {u} we have |In(AC)|=
2 (V-condition). Therefore, thenumberof nodes is equal to jedgesj

2 þ N, and
this is the number of public keys issued by our scheme3.
3 |X | denotes the number of elements of set X.
This does not complete the analysis, because the number of edges
in the order we construct is different than in the inclusion order. Let n
and e be the number of nodes and edges in the inclusion order given
on access configurations uf guaU and AC dð ÞdaD. Let nt′ and et′ be the
number of nodes and edges in our construction after the t th phase of
the algorithm. After the first phase, the following conditions are
satisfied: e1′≤e and n1′=n. This is due to the weaker order conditions
defined in Section 2. When constructing the order, we insert only
necessary edges that connect users with access configurations they
belong to, thus for many inclusions AC1⊂AC2 there is no relation
(edge) in the constructed order. An example is shown in Fig. 4.

After the second phase, the number of edges decreases even more:
e2′≤e1′. Each inserted dummy access configuration D decreases |In(ACi)|
by α≥2 configurations. The precise number of edges after inserting D
changes from e1′ to e1′− (α−1) · |In(D)|+α as shown in Fig. 5a.

After the third phase, e3′≤2e2′−1, so the number of edges at most
doubles. This is due to the transformations made by function
CreateTree(AC), which transforms AC with In(AC) into a binary tree
with AC as a root and In(AC) as leaves (see Fig. 5b). Each call of Crea-
teTree(AG) adds |In(AC)|−1 edges.

Thus, in the end we have ezeV
1zeV

2z
e V
3
2 and nV

3 ¼ e V
3
2 þ N is the

number of public parameters in our scheme. This in practice means
that in the worst case, when all the reductions of edges do not bring
any result, we use at most (e+N) public parameters, whereas SKC
based schemes use at least e. However, when dealing with a few or
many intersecting access configurations we expect an improvement,
as shown in the figures. The number of private parameters remains
the same for both SKC based schemes and our scheme and is equal to
n=n1′, since we do not have to store the private keys for dummy access
configurations.

The support for updates of the access control policies is another
advantage of our scheme.We providemethods to efficiently handle all
possible changes in access rights granted to the users. If the hierarchy
is expanded with new access configurations, only the currently
inserted extension and the corresponding data keys need to change.
Concluding this comparison, it is worth mentioning that the security
of our scheme is guaranteed by the security of well-known DH key-
exchange protocol.

6. Conclusions and future work

In this paper, we proposed an efficient method to design a partial
order on access configurations. We provided a scheme to assign and
derive secret keys for the proposed partial order.

Compared to broadcast encryption methods, our solution elim-
inates the need for multiple copies of data keys and reduces to a single
key the storage required per user. This improvement is achieved by
applying the proposed key generation scheme. Compared to key
generation schemes adapted for access control purposes, our solution
reduces the required size of public information. This is achieved



Fig. 5. Insertion of a dummy access configuration D and tree transformation.
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thanks to the special properties of the hierarchy we propose, designed
especially for the access control purpose. To the best of our knowledge,
and as reported in [15], nobody has yet proposed a key generation
solution that takes advantage of constructing the hierarchy especially
for the access control settings. Finally, since access control systems are
very dynamic, the issue of changing access rights cannot be neglected.
Our solution supports flexible updates of access rights granted to the
users.

The work presented in this paper suggests some interesting
directions for future research. First of all, wewant to apply the proposed
key generation method to the application of broadcasting secret
messages to stateless receivers. We want to consider specifically
scenarios where secure storage or communication overhead is expen-
sive and should beminimized. In these scenarios, the goal is to decrease
the need for the private storage to one key per receiver, and minimize
the size of the message to and the time needed for deriving a key.

Another important direction is to find an assignment of public
parameters such that the users can generate them efficiently on-the-
fly. This would allow releasing the public space requirement on our
scheme.

Finally, in this paper we have not discussed if the proposed
algorithm for hierarchy creation is optimal. It will be worthwhile to
look at this optimization problem.

Appendix A. The algorithm

The output of the CreateHierarchy(Access Table ACCESS) algorithm
is the directed graph G=(V, E(V)) in a V-form, where the node set
Vt AC dð ÞjdaDf g. The algorithm uses an abstract data structure
Digraph G to represent the order on access configurations it
constructs. The standard available operations are: New(), Cover
(Node A), InsertNode(Node A), InsertEdge(Node A, Node B), Remove-
Node(Node A) and RemoveEdge(Node A, Node B). We assume that the
graph does not allow duplicate nodes (if the node to be inserted
already exists, than the insertion procedure terminates). Similarly, no
multiple arcs are allowed between two nodes. The algorithm
CreateHierarchy(Access Table ACCESS) uses the priority queue Q. A
priority queue is an abstract data type to efficiently support finding
the item with the highest priority across a series of operations. The
basic operations are: New(), Insert(Item, Priority), ExtractMax(),
ExtractMin(), FindMax(), FindMin() and Remove(Item). The items of
Q are the access configurations. The algorithm calls two additional
procedures: InsertCoverMin(Node AC) and CreateTree(Node AC),
which are presented in Section A.1. The number of elements in data
structure X is denoted as #X. For data structures X and Y we denote
their set difference (the elements in X but not in Y) as X−Y, and their
intersection as X⁎Y.

A.1. Subprocedures codes

algorithm InsertCoveredMin(Node AC)
begin

(1) G.InsertNode(AC) ;
(2) Node X:=AC;
(3) while (#XN0) do
begin
(4) Node Y:=maximal Z in G, s.t. X contains Z;
(5) G.InsertEdge(Y,X);
(6) X:=X−Y;
end

end.

algorithm CreateTree(Node AC)
begin

(1) pos:=0;
(2) for each (X in G s.t. X -NN AC) do

begin
Q. Insert (X, pos++);

(3) while (#QN2) do
begin
(4) AC_1:=Q.ExtractMin(); AC_2:=Q.ExtractMin();
(5) Node Y:=AC_1+AC_2; (6) G.InsertNode(Y);
(7) G.InsertEdge(AC_1,Y); G.InsertEdge(AC_2,Y);
(8) G.RemoveEdge(AC_1,AC); G.RemoveEdge (AC_2, AC);
(9) G.InsertEdge (Y,AC); (10) Q.Insert (Y, position++);
end

end
end.

A.2. The main code

algorithm CreateHierarchy(Access Table ACCESS)
begin

(1) Digraph G:=New (); PriorityQueue Q:=New();
(2) for each (u in U) do G.InsertNode({u});
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(3) for each (d in D) do Q.Insert(AC(d),#AC(d));
(4) while (Q.size()N0) do

begin
(5) AC:=Q.ExtractMin();
(6) G.InsertCoveredMin(AC);

end
(7) for each (AC in G s.t. #In (AC)N2) do Q.Insert (AC, #In (AC));

(8) repeat
(9) Node AC:=Q.FindMax (); MAX_CUT:=empty set;
(10) for each (AC_k in Q) do

begin
(11) CUT:=AC*AC_k;
(12) if ( #{X in G s.t. X-≫ AC, CUT contains X}

N#{X in G s.t. X-≫ AC, MAX_CUT contains X}
AND
there are X,Y in G
s.t. X!=Y, X,Y-≫ AC, CUT contains X*Y
AND
there are X,Y in G
s.t. X!=Y, X,Y-≫ AC_k, CUT contains X*Y

(13) then MAX_CUT:=CUT;
end // for each

(14) if (MAX_CUT not empty) //if MAX_CUT found
(15) then

begin
(16) G.InsertCoveredMin(MAX_CUT);
(17) for each (X in Q) do

begin
(18) if (X contains strictly MAX_CUT

AND
there are Y,Z in G s.t. Y!=Z,

Y,Z-≫ X, MAX_CUT contains X*Z)
(19) then

begin
(20) G.InsertEdge (MAX_CUT,X);
(21) for each (Y in G s.t. Y-≫ X, MAX_CUT

contains Y) do
G. RemoveEdge(Y,X);

(22) if (#In(X)b=2) then Q.Remove(X),
end // if

end // for each
(23) if (#In(MAX_CUT)N2)
(24) then Q.Insert (MAX_CUT,#In(MAX_CUT));
end // if

(25)else G.CreateTree(AC); Q.Remove(AC);
(26)until Q is empty; // repeat

end.

Appendix B. Correctness proof

Lemma 1. After the termination of the algorithm CreateHierarchy, the
output graph G=(V, E(V)) satisfies the following five conditions:

(a) 8uaU uf gaV
(a') 8daDAC dð ÞaV
(b) uaACZ uf gNAC
(b') AClNAC2Z AClp AC2
(c) ∀AC∈V |In(AC)|=0 or |In(AC)|=2
(d) ∀AC1,AC2∈V|{AC∈V:AC→ACl, AC→AC2}|≤1.

Proof. In the first phase (1–6), the algorithm constructs the hierarchy,
which satisfies (a), (a'), (b) and (b'). Since the arcs are added only
between such two configurations, that one contains the other, (b')
remains trivially satisfied until the termination. After addition of
singletons (2) G satisfies (a), and after addition of existing access con-
figurations (3–6), G satisfies (a') as well. Both (a) and (a') are not aff-
ected by the algorithm anymore and remain satisfied until
termination. After line (2) G satisfies (b) trivially because V is the
set of singletons. (b) remains satisfied after each step of the main
algorithm until line (21), because the procedures InsertCoveredMin
and CreateTree preserve (b), and only in line (21) the edges are
removed so (b) has a chance to be affected.

In the second phase, from line (7), additional access configura-
tions are inserted to reduce the number of edges and satisfy the
condition (c). Beginning at line (7) until the termination, Q stores the
nodes AC∈V for which |In(AC)|N2 and thus they still need to be
processed. The priorities of the items on Q determine the order of
processing the nodes of G. The priority of an item AC is |In(AC)|. The
nodes with larger In(AC) are processed first. The main loop REPEAT
(8-26) is terminated when Q is empty, so all the nodes have at most
two incoming edges. In (9) node AC, with the maximal number of
incoming edges, is extracted from Q to reduce |In(AC)|. After current
iteration of the main loop, the size |In(AC)| is reduced, and therefore
each iteration reduces the number of incoming edges of a node, with
the maximal number of incoming edges in G. Thus, at some point the
maximal number of incoming edges in G must reach 2. This
guarantees that the loop terminates. In lines (10–13), the algorithm
searches for the dummy access configuration MAX_CUT, which
insertion reduces |In(AC)| maximally, under the assumption that it
also reduces |In(ACk)| for some other access configuration ACk still
stored on Q. If (14)MAX_CUTwas found, then (15) it is inserted into G
(16), and for each node X on Q (17) the algorithm checks (18) whether
|In(X)| can be reduced using MAX_CUT. If the condition from line (18)
is satisfied, then MAX_CUT → X is added to |In(X)| (20), but then
based on (18) at least two edges in In(X) are removed in (21), and
therefore |In(X)| decreases at least by one. AC satisfies (18), thus one
of the iterations of loop for each (17–24) reduces In(AC) for a node AC
with the maximal number of incoming edges in G. In(MAX_CUT) does
not increase back the maximal number of incoming edges in G,
because |In(MAX_CUT)|b |In(AC)|. Based on (18), (b) is preserved after
each execution of line (21). In (23) the algorithm enqueuesMAX_CUT
if it needs to be processed. If (25) MAX_CUT was not found, then |In
(AC)| is reduced to 2 by inserting to G a binary tree rooted in AC with
configurations X: X→AC as leaves. The result of the algorithm is the
V-graph satisfying (a–d).
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