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Sampled Signal Reconstruction With Causality
Constraints–Part I: Setup and Solutions

Gjerrit Meinsma and Leonid Mirkin, Member, IEEE

Abstract—This paper studies the problem of reconstructing an
analog signal from its sampled measurements, in which the sam-
pler (acquisition device) is given and the reconstructor (interpo-
lator/hold) is the design parameter. We formulate this problem as
an (Wiener/Kalman filtering like) optimization problem and
place the main emphasis on a systematic incorporation of causality
constraints into the design procedure. Specifically, the optimization
problem is solved under the constraint that the interpolation kernel
is -causal for a given , i.e., that its impulse response is zero in
the time interval , where is the sampling period. We
present a closed-form state-space solution of the problem, whose
computational complexity does not depend on and which can be
efficiently calculated and implemented.

Index Terms—Causality, mean-square optimization, model
matching, sampling and reconstruction.

I. INTRODUCTION

I N these two papers, we study the problem of reconstructing
analog signals from their given sampledmeasurements. The

problem is presented in Fig. 1. Here, is a given, possibly non-
ideal, sampling (acquisition) device, which generates a discrete
measurement from an analog signal . Our goal is to design a
reconstructor, containing a discrete filter and an interpolator
(hold device) , which produces an accurate reconstruction
of . The separation of the reconstructor to a discrete part and
an interpolator is not essential, and without loss of generality
we may assume that is the identity. It, however, might be
convenient from the implementation point of view and in the
discussion below. We assume that and are linear and shift
invariant, which means that we consider reconstruction devices

of the form

(1)

where is an interpolation kernel or hold function to be
found and is a given sampling period.
The reconstruction problem has been extensively studied in

the literature. If is bandlimited and is the ideal sampler, the
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sampling theorem [1]–[3] states that can be perfectly recon-
structed,provided thebandwidthof doesnotexceed theNyquist
frequency . The perfect reconstruction is then de-
livered by the reconstructor with the sinc-interpolation kernel

. Perfect reconstruction
is possible for some other classes of analog signals; see, e.g., [4],
in which cases can be determined from properties of . Fre-
quently, however, cannot be perfectly reconstructed, soweaker
requirements on , likeoptimality or consistency, are considered.
For example, the sinc-interpolator can still be justified if has
dominant low frequencies and involves prefiltering with the
ideal lowpassfilter, inwhich case the sinc-interpolator is both
(mean-square) [2]and (minmax) [5]optimal. If isfixed, the
discrete filter can be designed to minimize various optimality
criteria, like mean-square or min-max [6], or to guarantee the
consistency of reconstruction in the sense that for all
admissible [2]. Frequently used choices for in the latter case
are polynomial B-splines, resulting in cardinal B-splines [7] as
interpolation kernels . In some optimization formulations
can be designed too [8]. A unified setup, within which many of
these results, from the sinc-interpolator to cardinal splines, can
be produced as solutions to norm-optimization problems, was
studied in [5].
A common attribute of these solutions is that they do not take

into consideration any causality requirement on the designed re-
constructors. As a result, the available reconstruction methods
normally produce noncausal solutions: to reconstruct at any
time instance we have to know the whole time history, both
in the past and in the future, of . Yet in many online applica-
tions only a finite preview of , if any, is available. This problem
is commonly resolved by the truncation of a noncausal part of

, after it is designed. This is thoroughly exposed in [9],
which also contains many relevant references. This approach,
however, is ad hoc and can only be justified if the truncated part
is insignificant, which, in turn, requires sufficiently fast decay
of a noncausal part of . For example, this approach works
poorly for the sinc-reconstructor as has slow decay.1

This is why the decay rate is an important factor in the choice
of ; see [2, p. 572]. However, the fast decay requirement might
compromise the reconstruction performance.
In this paper, we put forward a different idea. We cast the

reconstruction problem as a mean-square optimization problem
for the whole, hybrid, reconstructor and enforce the following
relaxed causality requirement:

whenever (2)

1In fact, we shall show in Appendix B that reconstructors with one-side trun-
cated sinc interpolation kernels are even not -stable.
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Fig. 1. Sampling and reconstruction setup.

for a given called the smoothing lag, as a hard constraint
on this optimization procedure. Toward this end, we follow
the system-theoretic approach in which signals are modeled
through their generating systems and performance require-
ments are expressed in terms of system norms [10], [11]. In the
terminology of [5], we consider the Type-III (fixed sampler,
free reconstructor) (Wiener/Kalman) problem.
If no causality constraints are imposed, this optimization pro-

duces known cardinal polynomial or exponential splines, de-
pending on the choice of the model of [5]. Optimal solutions
minimizing the very same performance index, yet with causality
constraints imposed, may therefore be regarded as causal car-
dinal splines. Having the smoothing lag as a part of the opti-
mization process has a clear advantage over ad hoc truncations
of noncausal solutions. We no longer hinge on the decay rate
of and can therefore use a wider class of signal generators
and, consequently, a richer set of reconstructors. Moreover, the
optimization-based design makes it easy to link preview with
the achievable performance, which may be useful in justifying
the choice of the preview length .
The incorporation of causality requirements nontrivially

changes the solution procedure. Optimization problems without
causality constraints are essentially static in the frequency do-
main, i.e., we may design the reconstructor independently
at each frequency. This is no longer possible when causality
constraints are imposed because of analyticity requirements
[11]. Different, more involved, techniques are then requisite.
In the case of , referred to as the filtering, the solution
is well-known in the literature [12] and can be traced back to
[13] (see also [14] for a closed-form filtering solution).
The case of , referred to as the fixed-lag smoothing, is
more challenging and less studied in the sampled-data context.
If only the discrete filter is the design parameter, the problem
can in principle be converted to an equivalent filtering problem
by augmenting a discretized signal generator with the delay
as described in [10], [15]. This, approach, however, produces
nontransparent and numerically inefficient (dimensions inflate
with ) solutions, which cannot address important questions
of the rationale, structure, and interpretations of causal recon-
structors, see the discussion in [15, Sec. III]. This approach also
is not readily extendible to the design of the interpolator .
In this paper we derive a closed-form solution to the recon-

struction problem for an arbitrary smoothing lag . This solution
is based on one Riccati and one Lyapunov matrix equations and
can be efficiently computed and implemented using state-space
methods. The equations above do not depend on , which is evi-
dently advantageous over augmentation-based approaches. Our
approach also allows one to incorporate steady-state behavior
constraints via the use of unstable signal generators. A con-
ference version of this paper was presented at the 2006 IEEE
ICASSP; see [16].

To streamline the exposition, we have divided the presenta-
tion into two parts. In the first part, the problem is formulated
and the solution is presented without proofs. Part II of this paper
[17] presents technical developments that are relevant for the
problems under consideration, but also have independent in-
terest. This part is organized as follows. In Section II, the opti-
mization problemwe address is formulated. The solution, which
is the main result of this paper, is then formulated in Section III.
Frequency-domain properties of the optimal solution are dis-
cussed in Section IV. As an example illustrating the proposed
approach, we then consider the design of causal cubic splines in
Section V. Concluding remarks are provided in Section VI. Fi-
nally, Appendix A collects short technical derivations, which do
not rely on the lifting technique, and in Appendix B, we show
that the reconstructor with a one-side truncated sinc as its inter-
polation kernel is -unstable.

Notation

Throughout both parts signals are represented by lowercase
symbols such as and overbars indicate discrete
time signals, . For a set , the indicator func-
tion is 1 if and 0 elsewhere. By we understand
the number of elements of a vector-valued signal . The no-
tation is used for the transpose of a matrix . Uppercase
calligraphic symbols, like , denote continuous-time systems
in the time domain. Corresponding transfer functions/frequency
responses are then presented by uppercase symbols, like
and . Discrete-time systems, transfer functions, etc., are
denoted by overbars, like , etc.
By , we denote the set of all integers larger or equal to

and then is the set of integers smaller than .
The symbols , and stand for the unit circle , the
open unit disk , and the closed unit disk in
the complex plane, respectively.

II. PROBLEM FORMULATION

To pose the reconstruction problem formally, we supplement
the scheme in Fig. 1 with a few extra ingredients as shown in
Fig. 2. Here

is an LTI system, embodying our information about properties
of the reconstructed signal , the sampled signal (not neces-
sarily different from ), and their dependencies. The constant
matrix is the covariance matrix of the measurement noise
, reflecting imperfections of the sampling process, like quanti-
zation errors [18]. The signals and are fictitious normal-
ized signals, which generate the “physical” signals , and .
The reconstruction error reflects the closeness of the
reconstruction to .
We say that a reconstructor is admissible if it is of the

form (1) and stable, in the sense that it is bounded as an oper-
ator . This stability requirement does not mean
to limit to be an signal, but rather to guarantee that the
reconstructed signal does not blow up. Also, is said to be
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Fig. 2. The problem setup.

-causal if its interpolation kernel satisfies (2). The recon-
struction problem is then cast as the following optimization
for the setup in Fig. 2:

Let a finite-dimensional system , a matrix ,
and be given and let be the ideal sampler.
Find an admissible and -causal reconstructor

, which stabilizes the error system

(3)

and minimizes its system norm, , over all
admissible and -causal reconstructors.

The remainder of this section is devoted to explanations of
some aspects of this formulation (for more details, see [11]).
In particular, we comment on the use of the signal generator
to model and , motivate the use of unstable generators, and
discuss the system norm.

A. System-Based Modeling

In accordancewith the system-theoretic approach, we express
the available information about , and their relations via mod-
eling these signals as outputs of the signal generator (shown by
the gray box in Fig. 2), driven by a common normalized signal

. While the modeling of as a white noise is stan-

dard [6], [8], the use of dynamical systems in representing sig-
nals of interest is less common in sampling and reconstruction
problems. We therefore present below several examples, illus-
trating the construction of .
Let and be stochastic processes with power spectral

densities (PSD) and and a cross-spectral density
. This is equivalent [19, Sec. 6.4] to pre-

senting and as the outputs of a system , whose frequency
response verifies

driven by a standard white noise process (standard means
having unit spectral density). Thus, the signal generator in this
case is a fictitious system, reflecting our knowledge of properties
of and . In fact, without loss of generality we can assume in
this case that is causal.
The signal generator does not have to be completely fictitious.

For example, let have the PSD and assume that is
, measured by a sensor with the transfer function and
corrupted by an analog noise, which is independent of and

has the PSD . In this case, is a system with the transfer
function

(4)

where and are any (causal) systems, whose frequency
responses satisfy and ,
and is again standard white noise.
The system-based modeling also suits deterministic, or even

mixed deterministic/stochastic, problems. For example, the gen-
erator in (4) can reflect the situation, when is a low-pass signal
with the baseband frequency . We then may choose as a
low-pass filter with the bandwidth . In this case, is com-
prised of both a deterministic normalized broadband component
(generating ) and a white noise (generating the measurement
noise).

B. Stability of the Error System

The error system defined by (3) is a linear map from

to . By the stability of we understand that it is a

bounded operator . If the signal gen-
erator is itself stable, the error system is stable whenever so
is the reconstructor. In other words, in this case the stability re-
quirement on is redundant. There are situations, however,
when it might be required to include unstable dynamics into .
In such situations, the stability requirement imposes additional
constraints on the reconstructor.
Our primary motivation for allowing unstable is the use of

signal generators with -axis poles to impose steady-state re-
quirements. To explain the idea, consider a simple analog de-
convolution problem, where a signal is recovered from its
noise-free measurement by a deconvolution filter .
To guarantee perfect steady-state recovery of a constant (un-
biased deconvolution), we have to assure that the static gain
of satisfies the interpolation constraint .
In terms of the error system , this constraint
reads . A key observation is that the latter condition
is equivalent to the stability of the transfer function

for any . Indeed, if we assume that and
are stable, the pole at the origin is the only source of instability
in . Hence, is stable iff cancels this pole,
which, in turn, is equivalent to the zero static gain of .
Thus, the interpolation constraint can be im-
posed through incorporating a pole at the origin into the model
of .
The reasonings above extend straightforwardly to situations

where asymptotically perfect recovery of a ramp (double pole at
the origin), a sine wave with the frequency (poles at ),
etc., is required and to more general problems. Casting inter-
polation constraints as a stabilization problem facilitates exten-
sions to non time-invariant problems, like the signal reconstruc-
tion studied here.

C. System Norm

System-based modeling prompts expressing the reconstruc-
tion performance in terms of system norms, thus providing a
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unified setup for deterministic and stochastic formulations. In
this paper we opt for the system norm, which corresponds to
the mean-square framework that one can find inWiener/Kalman
filtering [19].
The -norm of -time invariant systems is defined through

their lifted frequency responses; see [11, Sec. V-D] and the ref-
erences therein. For the discussion in this part, however, it is
sufficient to elaborate on deterministic and stochastic interpre-
tations of this definition.
For the deterministic interpretation, partition as

according to the partition of . Assuming, for simplicity, that
both and are scalar signals, the -norm of the error
system satisfies

The first component above, which corresponds to the effect of
on , is the average energy of , where the average is taken

over all in . The second component,
which corresponds to the effect of on , is effectively the
energy of the interpolation kernel, , scaled by (it can
thus be thought of as a Tikhonov regularization [6]).
In the stochastic setting, equals the over time averaged

sum of variances (power) of all elements of , provided
and are standard analog and discrete white processes, re-
spectively.
Concluding this section, we would like to emphasize that we

see the signal generator and the weight on the measurement
noise as our tuning parameters, rather than the most accu-
rate reflection of properties of , and . The minimization
of is then merely our design tool. In view of this, it may
frequently be preferable to trade precision for the simplicity of
the resulting solution. This may be manifested in the choice of
a low-order . The choice of the -norm as the performance
measure is then motivated, to some extent, by the transparency
of the resulting solution procedure and (relatively) easily trace-
able properties of the resulting reconstructors.

III. PROBLEM SOLUTION

To formulate the solution of , bring in a minimal state-
space realization of :

(5)

Minimality implies that the pair is controllable and

is observable [20]. Throughout, we make the

following assumptions.
: has no unobservable modes in .
: has full row rank.

Assumption is necessary for the existence of a reconstructor,
stabilizing the error system . It always holds for stable ; oth-
erwise, it implies that all unstable modes of are also present
in the measurement channel . Assumption merely rules

out redundant measurements and thus entails no loss of gener-
ality.
Introduce the following matrix function of a real argument:

(6)

We skip the argument when , so that we write instead
of . We shall also need the matrix defined via

(7)

with the natural partitioning to four subblocks .
Now, define the discrete algebraic Riccati equation (DARE)

(8)

Its solution is said to be stabilizing if is nonsin-
gular and

(9)

is Schur (i.e., has all its eigenvalues in ); see [21] for details.
The stabilizing solution, if it exists, is unique and verifies

. In this case, the discrete Lyapunov equation

(10)

is always solvable by an (because is Schur).
The main result of this paper is as follows:
Theorem 3.1: Let the signal generator be given by the min-

imal realization (5) and suppose that assumptions hold.
Then DARE (8) admits a unique stabilizing solution
and, given , the solution of exists, is unique, and is
as shown in Fig. 3. Here is the causal discrete filter

and is the anti-causal discrete FIR filter

in which

(11)

and is a D/A converter with the -valued interpola-
tion kernel with support on ,

(12)

The optimal performance is then calculated as

with .

Proof: See Part II [17].
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Fig. 3. The optimal -causal reconstructor .

Fig. 4. The optimal -causal reconstructor with an alternative form of .

In the remainder of this section, we discuss some properties
of the optimal solution.

A. Structure and Implementation of

The first component of the digital part of the reconstructor,
, is a causal IIR system, which is the Kalman filter for the

sampled state vector of and can be efficiently implemented as
the following state propagation:

(13)

The signal , defined in Fig. 3 as

(14)

is then the innovations signal. Finally, is an -causal FIR
system, which can also be implemented via state propagation:

(15)

Note that this can only be done backward in time, the forward
recursion is internally unstable (it contains unstable pole/zero
cancellations then).
Remark 3.1 (No Measurement Noise): If , then (13)

and (15) can be simplified by noticing that is always singular.
Indeed, in this case

so that , which means that has eigenvalues
at the origin. Hence, -order realizations of and

can be constructed, where is the state dimension.
The digital part of the optimal reconstructor, , admits an

alternative form as stated by the following proposition:
Proposition 3.2: Let

Then, the optimal reconstructor can be equivalently presented
in the form depicted in Fig. 4.

Proof: See Appendix A.
The part of this reconstructor without the gray block,

is the truncation of the noncausal reconstructor to . The
interpolation kernel of can be written as

if
if

(16)

where and . The truncation of the non-
causal solution, however, is not optimal. Its digital part should
be complemented by the gray block in Fig. 4, which amounts to
adding the interpolation kernel

(17)

to the truncated version of . We call it the correction term.
The optimal -causal interpolation kernel is then given by

if
otherwise.

(18)

The correction term is the only part of that depends on the
smoothing lag . If vanishes (as ), and
we recover the noncausal solution. For a finite , the correction
term affects mainly the part of close to , and its
influence diminishes exponentially as increases.

B. Optimal Performance

The optimal achievable performance level, , can
be presented in two equivalent forms:

where and are the optimal performance levels of
and , respectively. is obtained from of Theorem 3.1
by replacing with 0, while is obtained by replacing
with . In this case,

quantifies the performance improvement with respect to the pre-
view-free case due to the preview of length and

quantifies the deterioration with respect to the noncausal case
due to imposing the -causality constraint.
The value of the optimal performance level itself might not

be a meaningful quantity. After all, by scaling of the signal gen-
erator one can end up with any performance level. What is im-
portant is how the smoothing lag affect . For example, the
ratios and may be quite useful in justifying the
choice of the smoothing lag.

C. Continuity

Continuity, or even a degree of differentiability, may be a
desired property of the reconstructed signal in some applications
[22]. In this subsection, we study continuity properties of the
reconstructed signal and how these properties are affected by
the interpolation constraints.
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Fig. 5. Sampling and reconstruction analysis setup.

Because is a smooth function in , the continuity
of and, therefore, of can fail only at the knots .
Thus, continuity is equivalent to the condition that

The following technical result shows that the sequence
is proportional to the predicted innovations signal defined in
Fig. 3 [see also (14)].
Lemma 3.3: Let , then

for all .
Proof: See Appendix A.

As the transfer function from to is in-
vertible, the continuity of for every is equivalent to the
condition [mind (11)]

(19)

Because vanishes as , we can conclude that the non-
causal solution is always continuous. Imposing causality con-
straints, however, might destroy continuity. Although condition
(19) is easy to check numerically, it is not quite useful in giving
us a generic insight into the class of reconstruction problems for
which the -causal solution is continuous.
In a particular case when a more transparent suf-

ficient condition can be derived from (19). Namely, by (9), we
have , so that the conti-
nuity condition (19) for reads

and holds whenever . In other words, when , the re-
laxedly causal reconstruction is continuous if no measurement
noise is assumed. This might appear counterintuitive as the ad-
dition of the measurement noise is expected to render the recon-
struction more cautious. In any case, the reconstruction with no
preview is always discontinuous because ,
which violates (19) for .

IV. FREQUENCY-DOMAIN ANALYSIS

The design setup in Fig. 2 involves weighting parameters
and , which normally contain fictitious components used to
shape properties of the optimal solution. Once the reconstructor
is designed, however, it might be of interest to analyze its prop-
erties with respect to “real” signals, which are and, possibly,
. In this section we consider frequency-domain properties of
the reconstruction setup in Fig. 5, where is the ideal sampler
and is an analog filter, representing the sensing mechanism,

so that the cascade may be viewed as a nonideal acquisi-
tion devise. To simplify the exposition, we also assume that
and are scalar signals. MIMO extensions are straightforward.

A. Frequency Power Response

One of the reasons that the frequency response is such a pop-
ular tool is that it allows to graphically present the frequency-de-
pendent behavior of a system, provided that the system is time
invariant. Extensions to -shift invariant systems, like that in
Fig. 5, are not that straightforward. For instance, applying the
harmonic , we end up with

where is the Fourier transform of the interpolation kernel
are the aliases of , and the last equality

follows by [11, eq. (17b)]. Because for all ,
we have that

(20)

In contrast to shift invariant systems, it is hard to relate this
output to its harmonic input .
There are generalization of the notion of the frequency re-

sponse to sampled-data (and other periodic) systems; see [23]
and the references therein. To account for possible folding ef-
fects, these generalizations determine the frequency response
at each frequency as an infinite-dimensional operator, which,
again, is hard to visualize. The magnitude frequency response,
defined then as a norm of such operators, has all aliased frequen-
cies mixed up in it. This is fine for the analysis of system
norms, but less appropriate for a harmonic analysis. In fact, if
applied to the system from to in Fig. 5, themethods presented
in [23] would result in the frequency response gain larger than
one at each frequency, which makes no sense.
In this paper we adopt an alternative approach to visualize

frequency-domain properties of sampled-data system. Given a
linear system , define its frequency power response (FPR) as

FPR

It is the power of the output when driven by a unit-power har-
monic input of frequency . This function is well defined for all

, provided is -shift invariant and -stable, and allows
us to visualize the behavior of the system, very similar to what
the magnitude frequency response does for shift-invariant sys-
tems. In fact, if is shift invariant, then FPR .
For linear -shift invariant systems, we have that
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where the first equality follows by -shift invariance and the
second one by linearity. Therefore, if is -shift invariant its
FPR can be determined by an average energy over one period

FPR (21)

Consider now the FPR of the system from to in Fig. 5.
With some abuse of notation, we denote it FPR . Com-
bining (21) and (20), we have

FPR

(22)

where the last equality is due to the fact that all harmonic func-
tions for integrate to zero (cf. the proof of [11,
Prop. 5.1]). We thus just proved the following result.
Theorem 4.1: Let the system from to in Fig. 5 be

stable. Then, its frequency power response is

FPR

(23)

Proof: The right-hand side of (23) equals (22).
Remark 4.1: The two terms of the right-hand side of (23)

have neat interpretations. The first term would be the FPR (in
fact, the squared magnitude frequency response) of the error
system if were reconstructed directly from the analog mea-
surement by an analog LTI filter having the impulse response

, i.e., if no sampling were present. The second term char-
acterizes the deterioration of the reconstruction performance
due to the sampling process. This amounts to the powers of
all aliased components of the interpolation kernel weighted by

, which is intuitive.
Remark 4.2: Formula (23) is known in the literature as the

error kernel [2]. As shown in [24, Theorem 2],

FPR

where is the error of reconstructing and
stands for the signal norm. If , then the
relation above is the square of the norm of the system from
, which is the input of , to [11, Sec. V-D], which is exactly
what we minimize in the noise-free case. Thus,

FPR (24)

whenever .

Hitherto we only considered the effect of the analog signal
on the reconstruction error . We may also be interested in the
sensitivity of this error to the discrete measurement noise . For
an D/A system , like that from to in Fig. 5, the counterpart
of the FPR is

FPR

By repeating our previous arguments replacing , we
end up with

FPR (25)

where . This function can be used to analyze noise
sensitivity of our reconstruction.

B. Computational Issues

To evaluate the FPRs in (23) and (25), we need to compute the
Fourier transform of the interpolation kernel and the folding
of its squared magnitudes. Below we discuss how these compu-
tations can be efficiently performed in terms of the state-space
realization (5).
We start with the optimal . It follows from the form of

the optimal reconstructor in Fig. 3 that

where

is the Fourier transform of the hold function in (12) and
is the frequency response of the discrete part of the

reconstructor, . If is not an eigenvalue of , then it follows
from (6) that

where the formula (30) from the Appendix A was used. If is
an eigenvalue of , the function above has a removable singu-
larity at this point, rendering this formula not well suitable for
calculations. In this case, an alternative expression can be ob-
tained using Lemma A.1 in the Appendix A (with ):

This formula requires the computation of a matrix exponen-
tial at each frequency, which is computationally quite involved.
Hence, this formula should be used only around pure imaginary
eigenvalues of .
Remark 4.3: Combining with and exploiting

the state-space structure of the latter, an alternative expression
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for can be derived. To this end, introduce the discrete
transfer function

where and stands for the principal
value of . It can be shown, by some tedious albeit quite
straightforward algebra, that

where

is the frequency response of the noncausal reconstructor given
by (16) (cf. [5, eq. (10)]) and

is the Fourier transform of the term, comprised of the truncation
of to and defined by (17). Note that
vanishes as .
The infinite sums in the FPR formulas (23) and (25) shall not

be computed directly. Instead, note that the interpolation kernel
has support in . Hence, its lifted transfer function is

static and the application of [11, Prop. 5.2] yields

where

is a matrix [cf. (12)]. To compute we can again
make use of Lemma A.1. Exploiting then the fact that

we end up with [the matrix below is defined by (7)]

(26)

which is readily calculable.

V. CAUSAL CARDINAL CUBIC B-SPLINES

To illustrate the proposed approach we consider in this sec-
tion the for

and

This choice of the signal generator can be thought of as re-
flecting a low-pass dominance of the signal to be reconstructed
and the requirement to have the zero steady-state error for step
and ramp components of . In the noncausal case this re-
sults (see [5, Theorem 3.3]) in the cardinal cubic B-splines of
[7], which are perhaps the most extensively studied polynomial
splines. This renders this case suitable for comparing the pro-
posed approach to the design of -causal reconstructors with
conventional -causal reconstructors obtained by ad hoc trun-
cations of noncausal interpolation kernels.

A. Solution

Bring in any minimal state-space realization of , say

(27)

Obviously, holds. As , the observability ma-

trix of is , which is nonsingular. Hence,

holds as well, and the problem is solvable.
Denoting

(28)

the formulas of Theorem 3.1 and Proposition 3.2 yield the dis-
crete filters

the Lyapunov solution

the “correction” gain (if )

and the two components of the interpolation kernels of

where is the normalized intersample time. Note that
is a first-order transfer function, which agrees with the

discussion in Remark 3.1.
Now, combining discrete filters with corresponding holds, we

end up with the optimal interpolation kernel of the form (18)
with

if
if
if
if
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Fig. 6. Interpolation kernels of -causal cardinal cubic splines.
(a) Smoothing lag , (b) Smoothing lag .

Fig. 7. FPRs with and . (a) Smoothing lag .
(b) Smoothing lag .

and

if

if

where

The resulting for and are shown by the solid
lines in Fig. 6 (the gray dashed lines there correspond to the
noncausal solution ). As increases, the correction term

, which is the difference between the solid and dashed
lines in Fig. 6, vanishes, so is then barely distinguishable
from the truncation of the noncausal solution . For small
, however, has a substantial effect on .
The optimal performance

is proportional to . As increases, decreases exponentially
to . The following table gives some indications about the
decay rate:

As we can see, one step preview makes a big difference with
respect to the causal reconstruction: it reduces the achievable
performance level from 500% of to 36% of it. With
three steps preview, we are already within 2‰ of .
The frequency power responses FPR of the reconstruc-

tion for are presented in Fig. 7. The plots are calcu-
lated by (23) and the dashed lines present the noncausal case,

. We are mostly interested in the frequency range

as the performance deteriorates rapidly above the Nyquist fre-
quency. It can be seen that within this range2 the error power is a
monotonically increasing function of . This is the result of our
choice of the weighting function, , which places
more emphasis on low frequencies; cf. (24). The presence of a
double pole at the origin in effectively imposes the in-
terpolation constraints FPR FPR . For
and , the noncausal reconstruction outperforms its causal
counterparts at every . This is no longer true for ,
where there are frequency ranges within where causal
reconstructors yield slightly (up to about ) better per-
formance.

B. Comparisons With the Results of [9]

Wehave already argued that the reconstructors obtained in the
previous subsection may be regarded as causal cardinal cubic
splines. It is then of interest to compare these splines with those
available in the literature. A convenient starting point for this is
the recent work [9], where several ad hoc truncation approaches
are studied and their performance is compared by numerical
simulations. For the comparison purpose we pick the so-called
C-cascade splines, say , which produced the best results
over all other causal splines considered in [9], and compare them
with by their closeness to the noncausal cubic splines, .
First, following [9], consider the problem of reconstructing

the bandlimited triangle wave [see Fig. 8(a)]

(29)

from its samples [big dots in Fig. 8(a); small filled
dots will be explained in Section V-D]. Fig. 8(b)–(d) presents
steady-state (stationary) reconstruction errors over one pe-
riod of for three different smoothing lags , to-
gether with the noncausal case (dashed gray lines).3 One can see
that the error in noncausal reconstruction is symmetric around
the points and , which are the points where abruptly
changes its direction (in between, is close to the ramp, for
which the reconstructions are optimal). The symmetry is not
maintained in causal solutions. This is especially visible in the
case of , where the preview available to the reconstructor is
too short to anticipate this direction change. The deviation from
the reconstruction with the noncausal splines may be quantified
by the power
of the difference between and , which are the sig-
nals reconstructed by the noncausal and -causal splines, respec-
tively. Remarkably, each additional preview step reduces this
quantity by the very same factor of .
The case of [Fig. 8(d)] corresponds to the setup

studied by Petrinović, so we may compare our reconstructor
(causal spline) with those proposed in [9]. It is readily seen
from Fig. 8(d) that our reconstruction virtually coincides with
that obtained by the noncausal spline in every interval but in

2This is not true at higher frequencies, in fact, FPR for every has local
minima at all .
3The plots in Fig. 8(b) and (c) are clipped above 0.01. The clipped parts can

be easily recovered because the second halves of these curves are merely the
glide reflections of their first halves.
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Fig. 8. Reconstructing the bandlimited triangle wave (29). (a) Signal to be re-
constructed, (29), (b) Reconstruction error for

, (c) Reconstruction error for ,
(d) Reconstruction error for , (e) Recon-
struction error for and the C-cascade splines of [9]

.

and . Reconstruction errors with the causal
splines proposed by Petrinović are visibly different from the
noncausal case in every interval; see Fig. 8(e). This impression
is confirmed quantitatively: is larger than
almost by a factor of 7.5. The peak value of the analog error in
our case, 0.01, is also more than 5% smaller than that attainable
by the causal C-cascade splines.
Another option for comparing the closeness of causal cubic

splines to their noncausal versions is via the power of the de-
viation from the noncausal reconstruction of a single harmonic

. These quantities can be calculated by arguments
similar to those presented in Section IV. Fig. 9 presents the ratio
between such powers for our reconstructor and for the causal
C-cascade cubic splines as a function of the frequency . This
plot shows that is, in a sense, a better approximation of

Fig. 9. Comparison with C-cascade cubic splines of [9] for .

up to about three quarters of the Nyquist frequency , after
which the causal C-cascade splines become a more accurate im-
itation of . In the frequency range , however,
the reconstruction is rather inaccurate. The peak value of the re-
construction error there is at least 25% of the input magnitude.
This might question the suitability of the cubic splines for re-
constructing such rapid signals.

C. Reconstructing

Our approach seamlessly extends to the case when .
To demonstrate this, consider the problem of reconstructing the
derivative of from the sampled measurements of under the
same assumptions as those used in the beginning of this section.
This problem, corresponds to the choice of and

or to the following state-space realization of :

The only difference from (27) is the parameter. This, in turn,
implies that only changes comparing with the formulas of
Section V-A (the other components do not depend on ). We
then have

with , as before.
The impulse response of the optimal reconstructor is again

of the form , for the same and
as in the previous example, modulo the substitutions

(and then ), so that this
is the derivative of the impulse response of the causal cubic

splines in the previous example. This, actually, implies that the
optimal reconstruction in this case is consistent. Indeed, inte-
grating and then sampling this impulse response (this is exactly
our measurement system) will produce the Kronecker delta. The
impulse response plots for the cases of and are pre-
sented in Fig. 10. These impulse responses are no longer con-
tinuous functions of , although the noncausal solution (gray
dashed lines) is. This was expectable, taking into account the
nondifferentiability of the causal cubic splines in Fig. 6 at the
sampling points.
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Fig. 10. Interpolation kernels for -causal reconstructing derivative. (a)
Smoothing lag , (b) Smoothing lag .

Fig. 11. FPRs with (dashed), (dashed–dotted), and
(solid). (a) Effect of . (b) Effect of noise.

The optimal performance

is now proportional to . The decay rate of as increases can
be seen from the following table:

and is reminiscent of what we saw in the previous example.

D. Effect of

The gain is another, in addition to , tuning parameter in
our design procedure, which can be used to trade off the recon-
struction performance and sensitivity to inaccuracies in the ac-
quisition system. In this subsection we examine the effect of this
parameter on the properties of the optimal splines in the case of

.
The frequency power responses FPR and FPR of

the optimal reconstructors for three choices of are depicted
in Fig. 11. It is readily seen that the increase of reduces the
high-frequency gain of the optimal reconstructor at the expense
of a deterioration of the reconstruction performance at frequen-
cies above . At the same time, at low frequencies the effect
of is negligible. This can be explained by the interpolation
constraint imposed by the poles at the origin in , see the
discussion at the end of Section V-A. In problems with no inter-
polation constraints affects the low-frequency range as well.
As mentioned in Section II, discrete noise may represent

quantization in an acquisition system (analog noise can be
accounted for in the signal generator ). Although quantization
is a nonlinear process, it can be analyzed via introducing an
additive quantization error, which sometimes may even be well
modeled as a white process; see [18, Ch. 20] and the references
therein. We may expect that in this case the reconstruction
performance may be improved by an appropriate tuning of .

Fig. 12. Reconstructing (29) from 5-bit quantized measurements (dashed line:
and ; solid line: and ).

To illustrate this point, consider the reconstruction of the ban-
dlimited triangle wave (29) studied in Section V-B. Because this
reconstructed signal is periodic, so is the quantization noise and
wemay again consider properties of the steady-state reconstruc-
tion error. Assume that the signal in (29) is measured via
a 5-bit A/D converter in the range . The measure-
ments are shown by small filled dots in Fig. 8(a). Fig. 12 presents
the reconstruction error for two designs. The dashed line corre-
sponds to , i.e., to the design neglecting the quantiza-
tion. As this reconstruction is consistent, , so the
dots in Fig. 12 correspond to the actual quantization noise. The
solid line represents the design with , whose FPRs are
shown in Fig. 11 by solid lines. We can see that for this quanti-
zation the addition of the measurement noise to the problem
pays off: the power of the error signal reduces by 75% and
its peak by 27%. Of course, the above example is only a par-
ticular realization of the quantization effect and the signal
is not very rich (it has effectively only 5 different magnitude
levels). The example, however, does show that in some situa-
tions tuning may be advantageous in handling quantization
effects. A comprehensive analysis of this phenomenon goes be-
yond the scope of this paper.

VI. CONCLUDING REMARKS

In this paper we have addressed the optimal design of
D/A converters (reconstructors) with causality constraints im-
posed on them. Closed-form optimal solutions have been pre-
sented in terms of state-space realizations of the given signal
generators. The solutions are in form of exponential/polynomial
splines, which have clear structural properties and recover some
known structures when preview length . Frequency-do-
main properties of the reconstruction performance has also been
analyzed. State space machinery facilitates both computational
and implementational efficiency of the resulted reconstructors.
Some related problems that may be of interest in various ap-

plications are the subject of ongoing research. It might, for ex-
ample, be important to have the possibility to impose FIR con-
straints on the optimal reconstructors. The approach pre-
sented in this paper cannot handle this situation, so different
techniques are required. A preliminary result in this direction
is reported in [25]. Another interesting problem is an extension
of the approach to the performance measure, which can be
done using the method of [26]. Unlike noncausal cases, so-
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lutions do not coincide with ones when causality constraints
are imposed and even possess some qualitatively different prop-
erties, see [26].

APPENDIX A
PROOFS

Proof of Proposition 3.2: Denote by the system con-
necting with in Fig. 3. Its transfer function is

Substituting

which is a rewritten (10), we end up with

This completes the proof.
Proof of Lemma 3.3: It is readily seen that ,

where is the discrete system with the transfer function

Taking into account the equalities

(30)

and [the latter follows from (8) and (9)],
we have

Hence,

Now, the transfer function is
the positive feedback interconnection of and . We
therefore have

Thus,

where the last equality is obtained by . The result
then follows by noting that .
We conclude this Appendix with the following result, which

is a slight modification of the Van Loan formulas [27].
Lemma A.1: Let and be square, then

where

Proof: The proof follows by considering the integral as the
impulse response of the cascade

sampled at .

APPENDIX B
TRUNCATING SINC-INTERPOLATOR

As mentioned in Section I, the main approach to the design
of reconstructors with some degree of causality available in the
literature is an ad hoc truncation of noncausal interpolation ker-
nels. In this Appendix, we demonstrate that this might lead to
unexpected complications. Although this result is not directly
related to the technical developments of this paper, it further
encourages our study of a rigorous ways of imposing causality
constraints.
The sinc-interpolator from the Sampling Theorem is known

to have a slow decay [2]. In fact, is not an func-
tion, which means that the sinc-interpolator is not bounded as an

operator [4]. It is then conventional wisdom
that truncating the sinc interpolation kernel leads to a substantial
performance deterioration. Still, the original sinc interpolator is
stable in the sense. A somewhat surprising fact,
which to the best of our knowledge has not been reported in the
literature yet, is that any half-axis truncation of yields
an -unstable D/A converter.
Proposition B.1: The D/A converter with the interpolation

kernel is unbounded as a linear operator
for every .

Proof: We only need to prove the statement for . The
interpolation kernel for any other can be viewed as an FIR
(i.e., stable) perturbation of the one with , which does not
affect its stability.
So, assume that and consider the following sequence

of unit-energy discrete signals indexed by :
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The output of the D/A converter to each of these inputs is

for all and . Applying standard harmonic
series arguments, the following lower bounds hold:

Thus,

Hence, grows at least logarithmically with . We thus
just showed that there is a sequence of unit-energy inputs for
which no upper bound on the energy of the output exists.

REFERENCES
[1] A. J. Jerri, “The Shannon sampling theorem—Its various extensions

and applications: A tutorial review,” Proc. IEEE, vol. 65, no. 11, pp.
1565–1596, 1977.

[2] M. Unser, “Sampling—50 years after Shannon,” Proc. IEEE, vol. 88,
no. 4, pp. 569–587, 2000.

[3] J. R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foun-
dations. Oxford, U.K.: Oxford Univ. Press, 1996.

[4] P. P. Vaidyanathan, “Generalizations of the sampling theorem: Seven
decades after Nyquist,” IEEE Trans. Circuits Syst. I, vol. 48, no. 9, pp.
1094–1109, 2001.

[5] G. Meinsma and L. Mirkin, “Sampling from a system-theoretic view-
point: Part II—Non-causal solutions,” IEEE Trans. Signal Process.,
vol. 58, no. 7, pp. 3591–3606, 2010.

[6] Y. C. Eldar and M. Unser, “Nonideal sampling and interpolation
from noisy observations in shift-invariant spaces,” IEEE Trans. Signal
Process., vol. 54, no. 7, pp. 2636–2651, 2006.

[7] M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing: Part
I—Theory,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 821–833,
1993.

[8] S. Ramani, D. Van De Ville, T. Blu, and M. Unser, “Nonideal sampling
and regularization theory,” IEEE Trans. Signal Process., vol. 56, no. 3,
pp. 2915–2925, 2008.

[9] D. Petrinović, “Causal cubic splines: Formulations, interpolation prop-
erties and implementations,” IEEE Trans. Signal Process., vol. 56, no.
11, pp. 5442–5453, 2008.

[10] P. P. Khargonekar and Y. Yamamoto, “Delayed signal reconstruction
using sampled-data control,” in Proc. 35th IEEE Conf. Decision Con-
trol, Kobe, Japan, 1996, pp. 1259–1263.

[11] G. Meinsma and L. Mirkin, “Sampling from a system-theoretic view-
point: Part I—Concepts and tools,” IEEE Trans. Signal Process., vol.
58, no. 7, pp. 3578–3590, 2010.

[12] A. H. Jazwinski, Stochastic Processes and Filtering Theory. New
York: Academic, 1970.

[13] H. M. Robbins, “An extension of Wiener filter theory to partly sampled
systems,” IRE Trans. Circuit Theory, vol. CT-6, pp. 362–370, 1959.

[14] W. Sun, K. M. Nagpal, and P. P. Khargonekar, “ control and fil-
tering for sampled-data systems,” IEEE Trans. Autom. Control, vol. 38,
no. 8, pp. 1162–1174, 1993.

[15] L. Mirkin and G. Tadmor, “Yet another discretization,” IEEE
Trans. Autom. Control, vol. 48, no. 5, pp. 891–894, 2003.

[16] G. Meinsma and L. Mirkin, “Sampled signal reconstruction via
optimization,” in Proc. 2006 IEEE Int. Conf. Acoust., Speech, Signal
Process., Toulouse, France, 2006, vol. III, pp. 365–368.

[17] G. Meinsma and L. Mirkin, “ sampled signal reconstruction with
causality constraints—Part II: Theory,” IEEE Trans. Signal Process.,
vol. 60, no. 5, pp. 2273–2285, 2012.

[18] B. Widrow and I. Kollár, Quantization Noise: Roundoff Error in Dig-
ital Computation, Signal Processing, Control, and Communications.
Cambridge, U.K.: Cambridge Univ. Press, 2008.

[19] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation. Upper
Saddle River, NJ: Prentice-Hall, 2000.

[20] W. J. Rugh, Linear System Theory, 2nd ed. Upper Saddle River, NJ:
Prentice-Hall, 1996.

[21] P. Lancaster and L. Rodman, Algebraic Riccati Equations. Oxford,
U.K.: Clarendon, 1995.

[22] P. Prandoni and M. Vetterli, “From Lagrange to Shannon and back:
Another look at sampling,” IEEE Signal Process. Mag., vol. 26, no. 5,
pp. 138–144, 2009.

[23] Y. Yamamoto and M. Araki, “Frequency responses for sampled-data
systems—Their equivalence and relationships,” Linear Algebra Its
Appl., vol. 205–206, pp. 1319–1339, 1994.

[24] T. Blu and M. Unser, “Approximation error for quasi-interpolators and
(multi-)wavelet expansions,” Appl. Comput. Harmon. Anal., vol. 6, pp.
219–251, 1999.

[25] Y. Levinson and L. Mirkin, “ signal reconstruction with FIR and
steady-state behavior constraints,” in Proc. 50th IEEE Conf. Decision
Control, Orlando, FL, 2011, pp. 7287–7292.

[26] L. Mirkin and G. Tadmor, “On geometric and analytic constraints in
the fixed-lag smoothing,” IEEE Trans. Autom. Control, vol. 52,
no. 8, pp. 1514–1519, 2007.

[27] C. F. Van Loan, “Computing integrals involving the matrix exponen-
tial,” IEEE Trans. Autom. Control, vol. 23, no. 3, pp. 395–404, 1978.

Gjerrit Meinsma was born in Opeinde, The Nether-
lands, in 1965. He received the Ph.D. degree at the
University of Twente, Enschede, The Netherlands, in
1993.
During the following three years, he held a

postdoctoral position at the University of Newcastle,
Australia. Since 1997, he has been with the De-
partment of Applied Mathematics at the University
of Twente, The Netherlands. His research interests
are in mathematical systems and control theory, in
particular robust control theory.

LeonidMirkin (M’99) is a native of Frunze, Kirghiz
SSR, Russia (now Bishkek, Kyrgyz Republic). He
received the Electrical Engineer degree from Frunze
Polytechnic Institute and the Ph.D. (candidate of sci-
ences) degree in automatic control from the Institute
of Automation, Academy of Sciences of Kyrgyz Re-
public, in 1989 and 1992, respectively.
From 1989 to 1993, he was with the Institute of

Automation, Academy of Sciences of Kyrgyz Re-
public. In 1994, he joined the Faculty of Mechanical
Engineering at the Technion—Israel Institute of

Technology, first as a postdoctoral researcher and then as a faculty member.
His research interests include systems theory, control and estimation of
sampled-data systems, dead-time compensation, systems with preview, the ap-
plication of control to electromechanical and optical devices, and robustifying
properties of corruption.


