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WORST-CASE AND SMOOTHED ANALYSIS OF K-MEANS CLUSTERING
WITH BREGMAN DIVERGENCES∗

Bodo Manthey† and Heiko Röglin‡

Abstract. The k-means method is the method of choice for clustering large-scale data sets
and it performs exceedingly well in practice despite its exponential worst-case running-time.
To narrow the gap between theory and practice, k-means has been studied in the semi-
random input model of smoothed analysis, which often leads to more realistic conclusions
than mere worst-case analysis. For the case that n data points in Rd are perturbed by
Gaussian noise with standard deviation σ, it has been shown that the expected running-
time is bounded by a polynomial in n and 1/σ. This result assumes that squared Euclidean
distances are used as the distance measure.

In many applications, however, data is to be clustered with respect to Bregman
divergences rather than squared Euclidean distances. A prominent example is the Kullback-
Leibler divergence (a.k.a. relative entropy) that is commonly used to cluster web pages. To
broaden the knowledge about this important class of distance measures, we analyze the
running-time of the k-means method for Bregman divergences. We first give a smoothed
analysis of k-means with (almost) arbitrary Bregman divergences, and we show bounds of

poly(n
√
k, 1/σ) and kkd · poly(n, 1/σ). The latter yields a polynomial bound if k and d are

small compared to n. On the other hand, we show that the exponential lower bound carries
over to a huge class of Bregman divergences.

1 Introduction

Clustering a set of objects into a certain number of classes so as to maximize the similarity
of objects in the same class is a fundamental problem with applications in a wide range of
areas. Usually the objects are represented by points in Rd, and they are to be clustered
into k classes C1, . . . , Ck that can be represented by centers c1, . . . , ck ∈ Rd such that the
sum

∑k
i=1

∑
x∈Ci d(x, ci) becomes minimal for some distance measure d. A common dis-

tance function d are squared Euclidean distances but in many practical applications other
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distance measures are required. For instance, when clustering text documents like web
pages often the bag-of-words model [8] is applied, in which the objects to be clustered are
probability distributions over the set of all words. A popular distance measure for probabil-
ity distributions is the Kullback-Leibler divergence (KLD, also known as relative entropy).
Both squared Euclidean distances and KLD are special cases of Bregman divergences, a very
general class that contains many practically important distance measures.

Even though a lot of theoretical research has been conducted on clustering algo-
rithms, the by far most successful algorithm in industrial and scientific applications is the
seemingly ad hoc k-means method [7], a local search algorithm due to Lloyd [16]: Start with
an arbitrary set of k centers and repeat the following two steps until the process stabilizes:
1) Assign every data point to its closest center. 2) Readjust the positions of the centers
such that they are optimal for the current assignment. The k-means method works very
well in practice. One of its distinguished features is its speed: It has been observed that
the number of iterations it needs to find a local optimum is much smaller than the number
of objects to be clustered [9, Section 10.4.3]. This is in stark contrast to its worst-case
running-time: The only upper bound is nO(kd) [14], which is based on the observation that
no clustering appears twice in a run of k-means. On the other hand, Vattani [24] showed
that k-means can run for 2Ω(n) iterations in the worst case. This lower bounds holds for all
d ≥ 2.

To reconcile theory and practice, Arthur and Vassilvitskii considered the k-means
method for squared Euclidean distances in the framework of smoothed analysis. This notion
has been introduced by Spielman and Teng [22]. We refer to two surveys [19, 23] for an
overview over smoothed analysis. and it is based on a two-step input model: An adversary
specifies an instance, which is then subject to slight random perturbation. The smoothed
running-time is defined to be the worst expected running-time the adversary can achieve. If
it is small, then (artificial) worst-case instances might still exist, but they are encountered
only with very small probability if inputs are subject to some small amount of random noise.
In practice, such noise can come, e.g., from measurement errors or numerical imprecision.
Unlike worst-case or average-case analyses, smoothed analyses are neither dominated by
single worst-case instances nor by completely random instances, and they lead to more
realistic conclusions. Arthur and Vassilvitskii [4] showed that the smoothed running-time of
k-means is poly(nk, 1/σ) if the data points are perturbed by Gaussian noise with standard

deviation σ. We have improved this bound to poly(n
√
k, 1/σ), and we have additionally

obtained a bound of kkd · poly(n, 1/σ) [17]. Recently, Arthur et al. [3] have shown that the
smoothed running-time of k-means is polynomial in n and 1/σ.

However, with only a few exceptions [1, 2, 5], the theoretical knowledge about k-
means clustering is limited to the case of squared Euclidean distances. In this paper, we
initiate the theoretical study of the k-means method for general Bregman divergences. We
show that the lower bound of 2Ω(n) for the worst-case running-time is valid for almost every
Bregman divergence, leading, as for squared Euclidean distances, to a huge discrepancy
between theory and practice for many commonly used distance measures like Kullback-
Leibler divergence or Itakura-Saito divergence. To obtain more realistic theoretical results,
we also analyze the smoothed running-time of k-means for general Bregman divergences.
We show that for almost arbitrary Bregman divergences, the smoothed running-time of
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k-means is upper-bounded by poly(n
√
k, 1/σ) and kkd · poly(n, 1/σ).

In the next section, we define Bregman divergences (Section 2.1), describe the k-
means method (Section 2.2), and discuss perturbation models for Bregman divergences
(Section 2.3). We summarize our results in Section 3. After that, we present the generic
smoothed analysis (Section 4) and apply it to some prominent Bregman divergences (Sec-
tion 5). Finally, we prove a lower bound on the running-time of k-means with Bregman
divergences (Section 6) and conclude with some open problems (Section 7).

2 Preliminaries

2.1 Bregman Divergences

The idea behind Bregman divergences and their use as distance measures is quite simple:
Assume that we have a strictly convex function Φ, and assume that we have two points x
and c whose distance we want to measure. We take the linear interpolation Φ of Φ from
c. We say that the distance from x to c is the amount by which we underestimate Φ(x),
i.e., Φ(x) − Φ(x). Since Φ is strictly convex, Φ(x) underestimates Φ(x). Thus, we have
Φ(x) ≤ Φ(x) with equality only for x = c. The following definition makes this rigorous.

Definition 2.1. Let D ⊆ Rd, and let Φ : D→ R be a strictly convex function such that Φ is
differentiable on the relative interior ri(D) of D. The Bregman divergence dΦ : D× ri(D)→
[0,∞) is defined as

dΦ(x, c) = Φ(x)− Φ(c)− (x− c)T∇Φ(c),

where ∇Φ(c) is the gradient of Φ at c.

Note that dΦ is not a metric (even squared Euclidean distances, which are a Bregman
divergence, are not a metric): First, it does not satisfy the triangle inequality. Second, it is
often not even symmetric.

Some important properties of squared Euclidean distances are true for Bregman
divergences [20]. For a finite set of points C ⊆ D, we denote the center of mass of C by
cm(C) = 1

|C|
∑

x∈C x. An important property of Bregman divergences is that the potential

can be expressed in terms of the center of mass in the following way [5, Proposition 1]: For
every c, ∑

x∈C
dΦ(x, c) =

∑
x∈C

dΦ(x, cm(C)) + |C| · dΦ(cm(C), c). (1)

Another important property of Bregman divergences is that the bisector of two
centers c and c′, i.e., the set {x ∈ D | dΦ(x, c) = dΦ(x, c′)}, is a hyperplane. This follows
immediately from the definition of dΦ, and it is important both for our analysis and to
obtain a worst-case upper bound for k-means.

In the following, we present some prominent Bregman divergences.

Mahalanobis Distances. Assume that we want to cluster objects that are each character-
ized by d quantities. If these quantities are independent, then clusters should be axis-aligned
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hyper-ellipses. If the d quantities share the same scale, then the clusters are even hyper-
spheres and squared Euclidean distances provide a good distance measure.

However, if the coordinates are correlated or scaled differently, then clusters cease to
be axis-aligned or hyperspheres, but are some hyper-ellipse. In that case, let C ∈ Rd×d be
the covariance matrix of the components of the data points and assume that it is invertible.
This means that the matrix C is symmetric and positive definite. Let A = C−1, then
the right distance measure taking into account the correlations is the Mahalanobis distance
dmA for mA(x) = xTAx. The gradient of mA is ∇mA(c) = 2Ac, which yields dmA(x, c) =
(x − c)TA(x − c). (Letting A be the identity matrix I shows that Mahalanobis distances
are a generalization of squared Euclidean distances. This means that dmI (x, c) = ‖x− c‖2.)

Kullback-Leibler Divergence and Generalized I-Divergence. The Kullback-Leibler diver-
gence (KLD, relative entropy) is a very popular Bregman divergence. Here, D = {x ∈ Rd |
x ≥ 0,

∑d
i=1 xi ≤ 1} and an element x = (x1, . . . , xd) ∈ D represents a probability distribu-

tion on a discrete set with d+ 1 elements (where (x1, . . . , xd+1) with xd+1 = 1−
∑d

i=1 xi is

the vector of probabilities). For KLD(x) =
∑d+1

i=1 xi log(xi), we obtain

dKLD(x, c) =
d+1∑
i=1

xi log

(
xi
ci

)
,

where xd+1 = 1−
∑d

i=1 xi and cd+1 = 1−
∑d

i=1 ci. Intuitively, the Kullback-Leibler diver-
gence is a measure for the expected difference in the number of bits that are required to
code samples drawn according to x when, on the one hand, we use an optimal code based
on c and, on the other hand, we use an optimal code based on x. KLD plays a crucial
role in a variety of applications like clustering text documents and image classification. For
instance, for clustering web pages, every data point x represents a probability distribution
on a set of words that appear on the corresponding web page [8].

We will also consider the generalized I-divergence (GID), which generalizes KLD
to a larger domain: For this, we have D = {x ∈ Rd | x ≥ 0}, the potential function
GID(x) =

∑d
i=1 xi log(xi), and

dGID(x, c) =
d∑
i=1

xi log

(
xi
ci

)
−

d∑
i=1

(xi − ci) .

Itakura-Saito Divergence. Another Bregman divergence that is commonly used in signal
processing and in particular in speech processing is the Itakura-Saito divergence (ISD) [5,13].
We have again D = {x ∈ Rd | x ≥ 0}, and the potential function is given by the Burg entropy
ISD(x) = −

∑d
i=1 log(xi). From this, we get the Bregman divergence

dISD(x, c) =
d∑
i=1

xi
ci
− log

(
xi
ci

)
− 1 .
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2.2 k-Means Method

Before we describe the k-means method, let us explain k-means clustering. An instance for
k-means clustering is a set X ⊆ D consisting of n points. The aim is to find a clustering
C1, . . . , Ck of X , i.e., a partition of X , as well as cluster centers c1, . . . , ck ∈ Rd such that
the potential

k∑
i=1

∑
x∈Ci

dΦ(x, ci)

is minimized, where Φ is a strictly convex function and, thus, dΦ is a Bregman divergence
(see Definition 2.1).

Given the cluster centers, every data point should be assigned to the cluster whose
center is closest to it. The other way round, given the clusters, the centers c1, . . . , ck should
be chosen so as to minimize the potential. According to (1), we should choose

ci =
1

|Ci|
·
∑
x∈Ci

x,

i.e., we should choose ci as the center of mass of its cluster Ci, in order to minimize the
potential.

The k-means method proceeds as follows:

1. Select cluster centers c1, . . . , ck ∈ D ⊆ Rd arbitrarily.

2. Assign every x ∈ X to the cluster Ci whose cluster center ci is closest to it, i.e.,
dΦ(x, ci) ≤ dΦ(x, cj) for all j 6= i. (If the closest center is not unique and a point
is already assigned to one of the closest clusters, then do not change its assignment.
Otherwise, we break ties arbitrarily.)

3. Set ci = 1
|Ci|
∑

x∈Ci x.

4. If clusters or centers have changed, goto 2. Otherwise, terminate.

The potential decreases in every step. Thus, no clustering occurs twice, and the
algorithm eventually terminates in a local optimum.

The only known worst-case bound for the running-time of k-means on squared Eu-
clidean distances comes from the observation that no clustering can repeat during the
execution of k-means. This yields a bound of W ≤ n3kd [3, 14]. The proof of this bound
relies only on the fact that the bisectors are hyperplanes. This is true not only for squared
Euclidean distances, but for any Bregman divergence. Hence, also for Bregman divergences,
the worst-case number of iterations cannot exceed W .
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2.3 Perturbation Models for Bregman Divergences

2.3.1 Natural Perturbations and Exponential Families

If the Bregman divergence is defined on the whole space Rd, i.e., if D = Rd, then it is often
considered natural to assume that the points are perturbed by adding Gaussian noise to
them. More precisely, we can assume that an adversary is allowed to place initially n points
in [0, 1]d, and that each of these points is perturbed by adding an independent d-dimensional
Gaussian random variable with standard deviation σ to it. Equivalently, we can also assume
that each point from X is a Gaussian random vector with standard deviation σ whose mean
can be chosen by the adversary in [0, 1]d. This perturbation model has been used for the
case of squared Euclidean distances [3, 4, 17]. But if D is a proper subset of Rd, as it is the
case for KLD or GID, then Gaussians cannot be used as it might yield points outside the
feasible region D. For this reason, special care is needed when defining perturbation models
for Bregman divergences.

However, it is not surprising that Gaussian noise is not suitable for all Bregman di-
vergences. In fact, other probability distributions are often more natural: Banerjee et al. [5],
making observations by Forster and Warmuth rigorous [11], show a nice correspondence be-
tween Bregman divergences and exponential families of probability distributions [6]. What
they basically show is that the Bregman divergence to some center c equals the negative
log-likelihood of a corresponding parametric exponential family with expectation parameter
c (up to some fixed function that is independent of the parameter). Let us briefly explain
exponential families and what “corresponding” means in this context.

A parametric exponential family of probability distributions is given by its density

x 7→ exp
(
θT x̃− Φ∗(θ)

)
· p0(x̃).

Here, x̃ is a sufficient statistic for the family and θ is the parameter. For instance, if we
choose x̃T = x, θ = µ, Φ∗(θ) = θ2/2 = ‖µ‖2/2, and p0(x) = (2π)d/2 · exp(−‖x‖2/2), we
obtain that the d-dimensional Gaussian distribution with uniform variance is an exponential
family, parameterized by its its mean [5, Example 9]. We refer to Barndorff-Nielsen [6] for
a thorough introduction to exponential families.

Assume that we have a Bregman divergence dΦ generated by some strictly convex
function Φ. Let Φ∗ be the Legendré-Fenchel dual (or convex conjugation) of Φ [21], i.e., we
have

Φ∗(θ) = sup
{
xT θ − Φ(x) | x ∈ D

}
.

The dual Φ∗ is also strictly convex. From the dual Φ∗, we obtain a parametric exponential
family of probability distributions as described above, and this parametric exponential
family is the one that corresponds to dΦ.

Squared Euclidean distances are a Bregman divergence for Φ(x) = ‖x‖2. Replacing
this by Φ(x) = ‖x‖2/2 only scales the distances. Now we have Φ∗(θ) = ‖θ‖2/2, which
shows that squared Euclidean distances correspond to the exponential family of Gaussian
distributions.
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The exponential families corresponding to KLD are multinomial distributions. For
Itakura-Saito divergence, we have exponential distributions [5].

However, while Gaussian perturbations are perfect for a smoothed analysis, multi-
nomial distributions cannot be used easily. Multinomial distributions are discrete, and we
need continuous probability distributions for our analysis to work. If we make them contin-
uous, we obtain multivariate Gaussian distributions, which can yield negative values and,
thus, are useless for KLD.

For these reasons, we decided to use exponential distributions for KLD, Itakura-
Saito and generalized I-divergence in the following way: Given the adversarial points, we
add independent exponentially distributed random variables to each coordinate, each with
the same parameter. In case of KLD, the point thus obtained is not in the domain. Thus,
we scale it afterwards to make sure that the some of the coordinates is 1.

Let us stress that our smoothed analysis is not restricted to these perturbation mod-
els: In the following section, we describe which properties we demand from the perturbation
models and which parameters we extract from the Bregman divergences. Then we can apply
our smoothed analysis to any combination of Bregman divergence and perturbation model
that satisfies these properties.

2.3.2 Assumptions and Parameterization

In order to make our smoothed analysis applicable to a large class of Bregman divergences
and perturbation models, we decided to consider very general perturbation models that
need to satisfy only a couple of properties. In this section, we list these properties and
explain how the perturbation model is parameterized. (The parameters will influence the
smoothed running-time bounds.)

Assumptions. First of all, we assume d ≤ n and k ≤ n, which is satisfied in any reasonable
instance of the clustering problem. Additionally, we assume that d ≥ 4, which is also no
restriction from a practical point of view, as the dimension is usually significantly larger.

We assume that the perturbation model is parameterized by some σ ∈ (0, 1] that
measures the amount of randomness. This means that the smaller the parameter σ, the
weaker the perturbation and the closer we are to worst-case analysis. If every point is
perturbed by Gaussian noise as described above, then the parameter σ can be chosen as
the standard deviation.

We assume that the following properties are satisfied for σ ∈ (0, 1]:

(1) For any ε ≥ 0, any hyperplane H, and any point in x ∈ D∩ [0, 1]d, the probability that
the perturbed version of x has a distance of at most ε from H is bounded from above
by
√
ε/σ.

(2) For any x ∈ D ∩ [0, 1]d, the perturbed version of x can be described by a probability
density function that is bounded from above by (1/σ)d on Rd.
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(3) Perturbed points cannot be too far away from the hypercube [0, 1]d: Let D be chosen
such that with a probability of at least 1−W−1 every point from the perturbed point
set X is contained in the hypercube D = [−D, 1 + D]d, where W ≤ n3kd denotes the
worst-case number of steps of k-means.

Let us make a few remarks about these assumptions:

• For Gaussian noise, the probability of being close to a hyperplane is even ε/σ. How-
ever, to gain some flexibility for choosing other perturbation models, we use the weaker
bound of

√
ε/σ.

• The bound on the density immediately implies that for any ε ≥ 0, any c ∈ Rd, and
any x ∈ D ∩ [0, 1]d, the perturbed version of x lies in some hyperball with radius ε
and center c with a probability of at most (2ε/σ)d.

• The bounds on the smoothed running-time that we obtain depend polynomially on
D. For Gaussian random vectors with mean in [0, 1]d and standard deviation σ ≤ 1,
we can choose D polynomially in n.

• The parameter D, where 2D + 1 is the side length of the cube D, of course depends
on σ. However, as we have σ ≤ 1 and D should increase with σ, we can simply use
always the value for D that we obtain from σ = 1.

• For Bregman divergences with a bounded domain, such as KLD, we can choose D
simply sufficiently large such that the whole domain is contained in D.

Parameterization. For our analysis to work, we have to define a few parameters that
basically measure how close a Bregman divergence is to the squared Euclidean distance.

Recall that D is the domain of the Bregman divergence and D = [−D,D + 1]d

is a hypercube that contains all points (after perturbation) with a probability of at least
1 −W−1. For ε ≥ 0, let I(ε) be the interior of D ∩ D that has a distance of at least ε to
the boundary:

I(ε) = {x ∈ D ∩ D | dist(x, ∂(D ∩ D)) ≥ ε} .

Note that, on the one hand, for squared Euclidean distances, we have D = Rd and thus
D ∩ D = D. On the other hand, for KLD, we have D ⊆ [0, 1]d ⊆ D and thus D ∩ D = D.

For a given perturbation model, we choose ε∗ such that Pr
[
x /∈ I(ε∗)

]
≤ n−13, where

x denotes the perturbed version of any point in D ∩ [0, 1]d. In the following, we use the
notations I = I(ε∗) and I ′ = I(ε∗/(2n)). (Note that I ⊆ I ′.) An important property of
this definition is the following: If A ⊆ X ⊆ D is a subset of the data points, and A contains
a point from I, then cm(A) ∈ I(ε∗/n) ⊆ I ′, i.e., the center of mass of A is at a distance of
at least ε∗/n from the boundary.

To relate the Bregman divergence dΦ to squared Euclidean distances, we introduce
two parameters ξ and ξ′ such that, for all x, y ∈ D ∩ D,

dΦ(x, y) ≥ ξ · ‖x− y‖2 (2)
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and, for all x, y ∈ I ′,
dΦ(x, y) ≤ ξ′ · ‖x− y‖2 .

Observe that for the definition of ξ′ only the interior of D∩D is relevant. This is important:
If we had let x, y ∈ D ∩ D instead of x, y ∈ I ′ for the definition of ξ′, then ξ′ is unbounded
for many Bregman divergences.

We also need a lower bound on the “second derivative” of Φ: We have

2ξ ≤ ‖∇Φ(x)−∇Φ(y)‖
‖x− y‖

(3)

for all x, y ∈ D ∩D with x 6= y. Since ∇Φ∗ = (∇Φ)−1 [21, Theorem 26.5], we can view this
as a Lipschitz condition on the gradient of the dual of Φ:

‖∇Φ∗(x)−∇Φ∗(y)‖
‖x− y‖

≤ 1

2ξ
.

We can derive (3) from (2) as follows:

2ξ‖x− y‖2 ≤ dΦ(x, y) + dΦ(y, x) by (2)

= (x− y)T
(
∇Φ(x)−∇Φ(y)

)
by definition of dΦ

≤ ‖x− y‖ · ‖∇Φ(x)−∇Φ(y)‖ .

Dividing both sides by ‖x − y‖2 yields the desired bound. Similarly, we need an upper
bound, which unfortunately cannot be derived easily from ξ′. Instead, we define it in terms
of the maximum eigenvalue of the Hessian matrix of Φ, which is denoted by ∇2Φ:

Q′ = sup
x∈I′

λmax

(
∇2Φ(x)

)
.

In particular, this implies ‖∇Φ(x)−∇Φ(y)‖ ≤ Q′ · ‖x− y‖ for x, y ∈ I ′. Again, note that
we need the upper bound Q′ only for the interior.

Let us conclude this part with some remarks:

• The ratio ξ′/ξ is closely related to the µ in the notion of µ-similarity introduced by
Ackermann et al. [2]. However, for any µ, Bregman divergences like KLD, GID, or
ISD are not µ-similar on their whole domain. To make them µ-similar, their domains
have been restricted such that all data points must be sufficiently far away from
the singularities [2]. We emphasize that our smoothed analysis does not need such
restrictions. There may be points arbitrarily close to the boundary of the domain,
but we can take special care of these points. This technical challenge is the reason for
the definition of I and I ′ above.

• For our Bregman divergences, the boundary is defined by hyperplanes. Thus, Prop-
erty (1) yields that it is unlikely for a single point to be very close to the boundary. In
particular, the probability that more than O(kd) points are outside of I is bounded
from above by poly(n−kd).

• Our smoothed running-time bounds will depend polynomially on ξ, ξ′ and Q′.
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3 Our Contributions

3.1 Smoothed Analysis

Results. Our first result is to show that the expected running-time of the k-means method

is polynomially bounded in n
√
k and 1/σ for Bregman divergences (Theorem 5.1). The

polynomial, however, depends on the parameters defined above. To be precise, the bound

we obtain is 1/ξ times a polynomial in n
√
k and 1/σ. The polynomial is independent of

the Bregman divergence. Hence, the bound grows only linearly in 1/ξ and it is completely
independent of Q′, ξ′, and ε∗. (Thus, a special consideration of the boundary of the domain,
as we did by introducing I and I ′, is not necessary to obtain this bound.)

Our second bound on the smoothed running-time is kkd poly(n, 1/σ) (Theorem 5.2).
This yields a polynomial smoothed running-time if k, d ∈ O(

√
log n/ log log n) (Corol-

lary 5.3). Indeed, k and d are usually much smaller than n in practice; in fact, they
are often even considered as constants. This second bound depends polynomially on the
parameters Q′, ξ′, 1/ξ, and 1/ε∗.

Section 4 contains the core of the analysis. In Section 5, we state our generic
smoothed analysis theorems and apply them to the specific Bregman divergences introduced
in Section 2.1.

Note that we only analyze the running-time in this paper. We do not analyze how
close the local optimum found by the k-means method is to the global optimum. In fact,
k-means method does not usually seem find the global optimum in practice. But it usually
seems to be fast. Thus, our smoothed analysis of time but not of accuracy matches the
observed performance of the k-means method.

Main Idea and Technical Di�culties. Our smoothed analysis of k-means with Bregman
divergences uses a novel lemma about perturbed point sets (Lemma 4.1): Given any Voronoi
partition of the point set, it is unlikely that many points are close to the bisectors.

However, to analyze general Bregman divergences, we still had to tackle several
problems. Let us describe the main problem by way of example: For KLD, if we had
defined the parameters ξ′ and Q′ in terms of the whole domain, they would have been
unbounded. Even after the perturbation, some of the points might still be too close to the
boundary to obtain reasonable upper bounds for ξ′ and Q′. Essentially, we show that, first,
the kd points that are closest to the boundary can be handled separately and that, second,
all other points are sufficiently far away from the boundary (this means that they lie in I)
to allow for a reasonable upper bound for both ξ′ and Q′.

3.2 Lower Bounds

To complement our smoothed analysis, we transfer the lower bound of 2Ω(n) for squared
Euclidean distances to basically all Bregman divergences dΦ, whose third-order derivatives
exist and are bounded within a small region (Section 6). This includes Mahalanobis dis-
tances, KLD, GID, and ISD.

http://jocg.org/


JoCG 4(1), 94–132, 2013 104

Journal of Computational Geometry jocg.org

In order to prove the lower bound, we first observe that all Mahalanobis distances
(in particular squared Euclidean distances) exhibit the same worst-case behavior. Then
we show that if a Bregman divergence is sufficiently smooth (this includes all commonly
considered examples like KLD, GID, or ISD), then it behaves locally like some Mahalanobis
distance. This makes a transfer of the known lower bound for the Euclidean case possible.

4 Smoothed Analysis of k-Means with Bregman Divergences

In this section, we present the generic smoothed analysis of k-means with Bregman diver-
gences. In order to bound the expected running-time of k-means we analyze how long it
takes in expectation until the potential decreases by at least 1. For this, it is first of all
important to understand which events cause a significant drop of the potential. In Sec-
tion 4.2 we identify two such events: the potential decreases significantly in an iteration of
k-means if either one of the centers moves significantly or if a point is reassigned that has
a significant distance from the bisector separating its old and its new cluster center.

To bound the probability of these events, we prove in Section 4.1 a crucial geometric
property of perturbed inputs: it is unlikely that many points are close to bisectors in
any Voronoi partitioning of the data points. In particular, this property implies that the
probability that there exists a Voronoi partitioning in which more than kd/2 data points
have a distance of at most ε from one of the bisectors is negligible for an appropriately
chosen ε. As these kd/2 points can be assigned in at most kkd/2 different ways to the clusters,
in any sequence of kkd/2 + 1 consecutive iterations of k-means one point must change its
assignment that has a distance of more than ε at the beginning of the sequence. This implies
that either one of the centers must move significantly in the sequence of iterations or that
this point has a significant distance to the corresponding bisector when it gets reassigned.
This argument is made formal in Section 4.3 and it leads to a bound on the smoothed
running-time of kkd poly(n, 1/σ) (Theorem 5.2).

To obtain the second bound that is polynomial in n
√
k and 1/σ (Theorem 5.1), we

distinguish between iterations of k-means with at most
√
k active clusters (Section 4.4) and

with at least
√
k active clusters (Section 4.5). (A cluster is active in an iteration if it gains

or loses points during the iteration.) If a lot of clusters are active, then it is unlikely that for
none of them the center moves significantly. To be more precise, we show that if at least

√
k

clusters are active, then with high probability at least one center changes its position by

at least n−O(
√
k). If at most

√
k clusters are active, then either at most 2dk points change

their assignment or there exists a pair of clusters that exchange more than 2d points. In

the former case it is unlikely that none of the centers moves by at least n−O(
√
k). In the

latter case it is unlikely that all points that switch between the two aforementioned clusters
are close to the bisector.

4.1 A Property of Perturbed Point Sets

A crucial argument in our smoothed analysis is that, with high probability, there are not
too many points close to the hyperplanes dividing the clusters. This means that eventually

http://jocg.org/


JoCG 4(1), 94–132, 2013 105

Journal of Computational Geometry jocg.org

one point with a relatively large distance from the bisecting hyperplanes must go from one
cluster to another, which causes a significant decrease of the potential. In this section, we
generalize this lemma to general Bregman divergences. The proof is closely based on the
one for squared Euclidean distances [17], but we introduce here a new idea that shortens
the proof significantly and makes the generalization possible.

Lemma 4.1. Let a ∈ [k] := {1, . . . , k} be arbitrary. With a probability of at least 1−2W−1,
the following holds: In every iteration of the k-means method (except for the first one)
in which at least kd/a points change their assignment, at least one of these points has a
Euclidean distance larger than

ε =

(
σ2

3Dn11

)4a

from the hyperplane that bisects its new and its old cluster center.

Proof. We consider an iteration of the k-means method, and we refer to the configuration
before this iteration as the first configuration and to the configuration after this iteration
as the second configuration. To be precise, we assume that in the first configuration the
positions of the centers are the centers of mass of the points assigned to them in this
configuration. The step that we consider is the reassignment of the points according to the
Voronoi diagram corresponding to the first configuration.

Let B ⊆ X with |B| = ` := kd/a be a set of points that change their assignment
during the step. If more than ` points change their assignment during the step, then B can
be an arbitrary subset of these points with |B| = `. There are at most n` choices for the
points in B and at most k2` ≤ n2` choices for the clusters they are assigned to in the first
and the second configuration. We apply a union bound over all these at most n3` choices.

The following sets are defined for all i, j ∈ [k] and j 6= i. Let Bi ⊆ B be the set of
points that leave cluster Ci. Let Bi,j ⊆ Bi be the set of points assigned to cluster Ci in the
first and to cluster Cj in the second configuration, i.e., the points in Bi,j leave Ci and enter
Cj . We have B =

⋃
iBi and Bi =

⋃
j 6=iBi,j .

Let Ai be the set of points that are in Ci in the first configuration except for those
in Bi. We assume that the positions of the points in Ai are determined by an adversary.
Since the sets A1, . . . , Ak form a partition of the points in X \B that has been obtained in
the previous step on the basis of a Voronoi diagram, there are at most W ≤ n3kd choices
for this partition [14]. We also apply a union bound over the choices for this partition.

In the first configuration, exactly the points in Ai ∪ Bi are assigned to cluster Ci.
Let c1, . . . , ck denote the positions of the cluster centers in the first configuration, i.e., ci
is the center of mass of Ai ∪ Bi. The positions of the points in X \ B are assumed to be
fixed by an adversary, and we apply a union bound over the partition A1, . . . , Ak. Thus,
the impact of the set Ai on the position of ci is fixed. However, we want to exploit the
randomness of the points in Bi in the following. Thus, the positions of the centers are not
fixed yet but they depend on the random positions of the points in B. In particular, the
separating hyperplane Hi,j of the clusters Ci and Cj is not fixed but depends on Bi and Bj .
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In order to complete the proof, we have to estimate the probability of the event

∀i, j ∈ [k] : ∀b ∈ Bi,j : dist(b,Hi,j) ≤ ε , (E)

where dist(x,H) = miny∈H‖x− y‖ denotes the shortest Euclidean distance of a point x to
a hyperplane H. We denote this event by E . If the hyperplanes Hi,j were fixed, then, by
our assumption on the perturbation model, the probability of E could readily be seen to be

at most
(√ε
σ

)`
. However, the hyperplanes are not fixed as their positions and orientations

depend on the points in the sets Bi,j . Since the union bound also fixes the number of
points in Bi and Bj , it suffices to know the sums

∑
b∈Bi

b and
∑

b∈Bj
b to deduce the exact

position of the hyperplane Hi,j . Hence, once all sums
∑

b∈Bi
b are fixed, all hyperplanes are

fixed as well. The drawback is, of course, that fixing the sum
∑

b∈Bi
b has an impact on

the distribution of the random positions of the points in Bi. Basically, we show that after
fixing the sum

∑
b∈Bi

b, we can still exploit the randomness of |Bi| − 1 points. For a set Bi
with at least two points this means that we can exploit the randomness of at least half of
its points. Sets Bi with only one point need a special treatment.

In the following, we define for each i a set B′i ⊆ Bi and a point bi ∈ (Ai ∪ Bi) \ B′i
with the intuition that for fixing the sum

∑
b∈B′i∪{bi}

b, we sacrifice the randomness of bi,

while we can still exploit the randomness of all the points in B′i. For sets Bi with at least
two points, we can choose bi ∈ Bi arbitrarily and B′i = Bi \ {bi}. If |Bi| = 1, then only one
point leaves Ci, and B′i would be empty. In this case, however, Ai 6= ∅ because otherwise
only a single point would belong to Ci, whose position would be identical to the cluster
center. Thus, this point would not leave cluster Ci. This allows us to choose a point bi ∈ Ai
and to set B′i = Bi. We remove the point bi from Ai and assume that its position is not
fixed yet. For this, we have to include the choices for the points bi for those sets Bi with
|Bi| > 0 into the union bound. Since |B| = `, there are at most ` sets Bi with |Bi| > 0.
Hence, we choose for at most ` indices i a point bi, leaving us with an additional factor of
at most n` in the union bound. Altogether, there are at most n4`W choices in the union
bound.

Let Z denote a particular choice in the union bound, and let EZ be the respective
event. In Lemma 4.2 we prove that, for any choice Z, we can exploit the randomness of all
the points in the sets B′i and we obtain the following bound:

Pr
[
EZ ∧ ¬F

]
≤
(

3nD

σ2

)dk
· ε`/4 ,

where ¬F denotes the event that, after the perturbation, all points of X lie in D. Now
the union bound yields the following upper bound on the probability that a set B with the
stated properties exists:

Pr
[
E
]
≤ Pr

[
F
]

+ Pr
[
E ∧ ¬F

]
≤ Pr

[
F
]

+
∑
Z

Pr
[
EZ ∧ ¬F

]
≤W−1 + n4`W ·

(
3nD

σ2

)dk
· ε`/4

≤W−1 + n4kdW ·
(

3nD

σ2

)dk
·
(

σ2

3Dn11

)a`
≤ W−1 + n−3kd ≤ 2W−1 .
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The inequalities are due to some simplifications, W ≤ n3kd, and our choice of ε.

Lemma 4.2. For every choice Z in the union bound in the proof of Lemma 4.1, the prob-
ability of the event EZ ∧ ¬F is bounded from above by(

3nD

σ2

)dk
· ε`/4 .

Proof. The union bound fixes the sets Ai, Bi, and B′i. Additionally for every i the point bi
(its identity not its position) is fixed by the union bound. The positions of all points in A
are chosen arbitrarily by an adversary while all other points are left random. The center of
cluster i in the first configuration is the center of mass of the points currently assigned to
that cluster. If |Bi| > 1, then bi ∈ Bi, Bi = B′i ∪ {bi} and exactly the points Ai ∪ Bi are
assigned to cluster i in the first configuration. If |Bi| = 1, then bi /∈ Bi, bi /∈ Ai (remember
that in this case we have removed bi from Ai), and exactly the points Ai ∪ Bi ∪ {bi} are
assigned to cluster i in the first configuration. Hence, if |Bi| > 1 the center of cluster i is
at the position

cm(Ai ∪Bi) =
|Ai|

|Ai|+ |Bi|
· cm(Ai) +

|Bi|
|Ai|+ |Bi|

· cm(Bi)

=
|Ai|

|Ai|+ |Bi|
· cm(Ai) +

1

|Ai|+ |Bi|
·

∑
b∈B′i∪{bi}

b.

Since the positions of all points in Ai are specified by an adversary and the cardinalities
of the sets Ai and Bi are fixed in the union bound, the center of cluster i is completely
determined if additionally the sum

∑
b∈B′i∪{bi}

b is given. Similarly one can argue that also

in the case |Bi| = 1 it suffices to know the sum
∑

b∈B′i∪{bi}
b in order to determine the center

of cluster i.

We define for each i a random vector gi as gi :=
∑

b∈B′i∪{bi}
b. For yi, yj ∈ Rd, we

denote by Hi,j(yi, yj) the bisector of the clusters Ci and Cj that is obtained for gi = yi and
gj = yj . Let k? be the number of clusters Ci with |Bi| > 0. Without loss of generality, these
are the clusters C1, . . . , Ck? . This convention allows us to rewrite the probability of EZ ∧¬F .
When the event ¬F occurs, then all input points are contained in D. Hence every random
vector gi is contained in nD := [−nD, 1 + nD]d. Hence,

Pr
[
∀i, j : ∀b ∈ Bi,j \ {bi} : dist(b,Hi,j) ≤ ε

]
≤
∫
y1∈nD

· · ·
∫
yk?∈nD

(
k?∏
i=1

fgi(yi)

)
· Pr
[
∀i, j : ∀b ∈ Bi,j \ {bi} : dist(b,Hi,j(yi, yj)) ≤ ε

∣∣ ∀i : gi = yi
]

dyk? . . . dy1 ,

where fgi is the density of the random vector gi. Our notation is a bit sloppy: If |Bi,j | > 0
and j /∈ {1, . . . , k?}, then Hi,j depends only on yi. In this case, we should actually write
Hi,j(yi) instead of Hi,j(yi, yj) in the formula above. In order to keep the notation less
cumbersome, we ignore this subtlety and assume that Hi,j(yi, yji) is implicitly replaced by
Hi,j(yi) whenever necessary. Points from different sets Bi and Bj are independent even
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under the assumption that the sums gi and gj are fixed. Hence, we can further rewrite the
probability as∫

· · ·
∫ ( k?∏

i=1

fgi(yi)

)

·

(
k?∏
i=1

Pr
[
∀j : ∀b ∈ Bi,j \ {bi} : dist(b,Hi,j(yi, yj)) ≤ ε

∣∣ gi = yi
])

dyk? . . . dy1 . (4)

Now let us consider the probability

Pr
[
∀j : ∀b ∈ Bi,j \ {bi} : dist(b,Hi,j(yi, yj)) ≤ ε

∣∣ gi = yi
]

for a fixed i and for fixed values yi and yj . To simplify the notation, let
⋃
j Bi,j \ {bi} =

B′i = {q1, . . . , qm}, and let the corresponding hyperplanes (which are fixed because yi and
the yj ’s are given) be H1, . . . ,Hm. (A hyperplane may occur several times in this list if
more than one point goes from Ci to some cluster Cj .) Then the probability simplifies to

Pr
[
∀j : dist(qj , Hj) ≤ ε

∣∣ gi = yi
]
. (5)

LetHj(ε) be the slab of width 2ε aroundHj , i.e., Hj(ε) = {x ∈ Rd | dist(x,Hj) ≤ ε}.
Let f be the joint density of the random vectors q1, . . . , qm, gi. Then the probability in (5)
can be bounded from above by∫

z1∈H1(ε)
· · ·
∫
zm∈Hm(ε)

f(z1, . . . , zm, yi)

fgi(yi)
dzm . . . dz1 .

Now let fi be the density of the random vector qi, and let fm+1 be the density of bi. This
allows us to rewrite the joint density, and we obtain the upper bound∫

z1∈H1(ε)
· · ·
∫
zm∈Hm(ε)

f1(z1) · . . . · fm(zm) · fm+1(yi −
∑m

j=1 zj)

fgi(yi)
dzm . . . dz1

≤ 1

σdfgi(yi)
·
∫
z1∈H1(ε)

· · ·
∫
zm∈Hm(ε)

f1(z1) · . . . · fm(zm) dzm . . . dz1

=
1

σdfgi(yi)

(
m∏
i=1

∫
zi∈Hi(ε)

fi(zi) dzi

)
≤ 1

σdfgi(yi)
·
(√

ε

σ

)m
.

The first and the last inequality follow from the properties that the perturbation model has
to fulfill: The first inequality follows from fm+1(·) ≤ 1/σd, and the last inequality follows
because the probability that a random vector assumes a position within distance ε of a
given hyperplane is at most

√
ε/σ.

If we plug this bound into (4), the density fgi cancels out for every i. Hence, the
term in the integral does not depend anymore on the values y1, . . . , yk? . We obtain the
following upper bound for (4):(√

ε

σ

)|B′1|+...+|B′k| 1

σdk?

∫
y1∈nD

· · ·
∫
yk?∈nD

1 dyk? . . . dy1

≤
(

3nD

σ

)dk?
·
(√

ε

σ

)|B′1|+...+|B′k|
≤
(

3nD

σ

)dk
·
(√

ε

σ

)`/2
≤
(

3nD

σ2

)dk
· ε`/4
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since k? ≤ k, |B′1|+ . . .+ |B′k| ≥ (|B1|+ . . .+ |Bk|)/2 = `/2, and σ ≤ 1.

4.2 Properties of Bregman Divergences and k-Means

In this section, we collect properties of Bregman divergences that we need for the smoothed
analysis. In order to relate the movement of a cluster center to the potential drop, we use
the following lemma, which immediately follows from Banerjee et al. [5, Proposition 1] (see
also (1)).

Lemma 4.3. If in an iteration of the k-means method a cluster center changes its position
from c to c′, then the potential drops by at least dΦ(c′, c).

In order to relate a point’s change of assignment to the potential drop, we use the
following lemma.

Lemma 4.4. Let c1, c2, x ∈ Rd, and assume that x has a Euclidean distance of ε from the
bisector of c1 and c2 and is lying on the same side of the bisector as c1. Then

dΦ(x, c2)− dΦ(x, c1) ≥ 2εξ‖c1 − c2‖ .

Proof. The point x has a Euclidean distance of at least ε from the hyperplane

H = {y | dΦ(y, c1) = dΦ(y, c2)} .

Let δ = ‖c2 − c1‖, and let x′ ∈ H be any point on this hyperplane. Then dΦ(x′, c1) =
dΦ(x′, c2) and ‖x− x′‖ ≥ ε. We obtain

dΦ(x, c2)− dΦ(x, c1) = dΦ(x, c2)− dΦ(x′, c2) + dΦ(x′, c1)− dΦ(x, c1)

= 〈x− x′,∇Φ(c1)−∇Φ(c2)〉
= ‖x− x′‖ · ‖∇Φ(c1)−∇Φ(c2)‖ · cosα

≥ 2εξ‖c1 − c2‖ · cosα ,

where α is the angle between x− x′ and ∇Φ(c1)−∇Φ(c2) and the inequality follows from
Inequality (3). As ∇Φ(c1) − ∇Φ(c2) is orthogonal to the hyperplane H, we can achieve
cos(α) = 1 by choosing x′ to be the orthogonal projection of x onto H. This results in
cos(α) ∈ {−1, 1}. But dΦ(x, c2)− dΦ(x, c1) > 0 rules out cos(α) = −1. This concludes the
proof.

We say that X is ε-separated if, for every hyperplane H, there are at most 2d points
in X that are within a distance of at most ε of H. The following lemma, due to Arthur
and Vassilvitskii [4, Proposition 5.6], shows that X is likely to be ε-separated. As its proof
is only based on an upper bound on the probability that a point has a distance of at most
ε from a fixed hyperplane, a modified version holds also in our more general setting, when
taking into account the upper bound of

√
ε/σ for the aforementioned probability.
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Lemma 4.5. For ε ≥ 0, the point set X is not ε-separated with a probability of at most

n2d ·

(√
2dε

σ

)d
.

Proof. Arthur and Vassilvitskii’s proof is based on the following geometric lemma.

Lemma 4.6. Let P be a set of at least d points in Rd, and let H be an arbitrary hyperplane.
Then there exists a hyperplane H ′ passing through d points of P that satisfies,

max
p∈P

dist(p,H ′) ≤ 2d ·max
p∈P

dist(p,H).

If X is not ε-separated, then, by the previous lemma, there exists a hyperplane that
passes through d points of X and to which d other points from X have a distance of at
most 2dε.

Let P1 ⊆ X and P2 ⊆ X be two disjoint sets with |P1| = |P2| = d. The probability
that for fixed sets all points from P2 have a distance of at most 2dε from the hyperplane
that passes through all points from P1 is bounded from above by(√

2dε

σ

)d
according to the first property of our perturbation model. Now a union bound over all
sets P1 and P2 yields the lemma.

4.3 An Upper Bound

Lemma 4.1 yields an upper bound for the number of iterations that k-means needs: Since
in any configuration there are only few points close to the bisectors, eventually a point
switches from one cluster to another that initially was not close to a bisector. The results
of this section lead to the proof of Theorem 5.2. First, we bound the number of iterations
in terms of the distance ∆ of the closest simultaneous cluster centers that occur during the
run of k-means.

Lemma 4.7. With a probability of at least 1−4W−1, every sequence of kkd/2+1 consecutive
iterations of the k-means method (not including the first one) reduces the potential by at
least

1

kkd/2

(
ξ5/2εε∗∆

6D
√
dQ′ξ′3/2

)2

,

where ∆ denotes the smallest distance of any two simultaneous cluster centers that occur
during the sequence and ε is defined as in Lemma 4.1 for a = 4.

Proof. Consider the configuration directly before the sequence of steps is performed. Due
to Lemma 4.1, the probability that more than kd/4 points are within distance ε of one of
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the bisectors is at most 2W−1. Additionally, only with a probability of at most W−1, there
exists a point from X that does not lie in the hypercube D, and only with a probability
of at most W−1, there are more than kd/4 points outside of I. To see the latter recall
that I is chosen such that the probability that any perturbed point lies outside of I is at
most n−13. Hence, the probability that there exists a set P ⊆ X with |P| = kd/4 such that
all points from P lie outside of I can be bounded from above by

nkd/4 · (n−13)kd/4 = n−3kd ≤W−1.

by a union bound over all choices for P. Let us assume in the following that none of these
failure events occurs.

The at most kd/2 points that are either close to a bisector or not contained in I
can assume at most kkd/2 different configurations. Thus, during the considered sequence,
at least one point in I that is initially not within distance ε of one of the bisectors must
change its assignment. Let us call this point x, and let us assume that it changes from
cluster C1 to cluster C2. Furthermore, let c1 and c2 be the positions of the centers before
the sequence. We distinguish two cases. First, if x is closer to c2 than to c1 with respect to
dΦ already in the beginning of the sequence, then x will change its assignment in the first
step. According to Lemma 4.4, the potential decreases by at least 2εξ∆.

The second case is that x is closer to c1 than to c2 with respect to dΦ. Then,
according to Lemma 4.4,

dΦ(x, c2)− dΦ(x, c1) ≥ 2ξε∆ .

In this case, x can only change to cluster C2 after at least one of the centers of C1 or C2 has
moved. Let c′1 and c′2 denote the centers of C1 and C2 immediately before the reassignment
of x. Then

dΦ(x, c′1)− dΦ(x, c′2) ≥ 0 .

Together, this implies

dΦ(x, c2)− dΦ(x, c′2) + dΦ(x, c′1)− dΦ(x, c1) ≥ 2ξε∆ . (6)

Since the point x lies in I and it belongs to cluster C1 when c1 and c′1 are computed, c1 and
c′1 must both belong to I ′. Let us first consider the case that also c2 and c′2 both belong to
I ′. In this case, we derive a lower bound on dΦ(c′1, c1) + dΦ(c′2, c2). For i ∈ {1, 2}, we can
rewrite dΦ(c′i, ci) as follows:

dΦ(c′i, ci) = dΦ(x, ci)− dΦ(x, c′i)− 〈x− c′i,∇Φ(c′i)−∇Φ(ci)〉 . (7)

In the following calculation we will use that for any two points x, y ∈ D the Euclidean
distance ‖x − y‖ is bounded from above by 3D

√
d. Together with Equations (6) and (7),
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c1, c
′
1, c2, c

′
2 ∈ I ′ implies

dΦ(c′1, c1) + dΦ(c′2, c2)

≥ ξ

ξ′
·
(
dΦ(c1, c

′
1) + dΦ(c′2, c2)

)
≥ ξ

ξ′
·
(
2ξε∆− |〈x− c1,∇Φ(c1)−∇Φ(c′1)〉| − |〈x− c′2,∇Φ(c′2)−∇Φ(c2)〉|)

≥ ξ

ξ′
·
(
2ξε∆− ‖x− c1‖ · ‖∇Φ(c1)−∇Φ(c′1)‖ − ‖x− c′2‖ · ‖∇Φ(c′2)−∇Φ(c2)‖

)
≥ ξ

ξ′
·
(
2ξε∆−Q′ · ‖x− c1‖ · ‖c1 − c′1‖ −Q′ · ‖x− c′2‖ · ‖c′2 − c2‖

)
≥ ξ

ξ′
·
(
2ξε∆− 3D

√
dQ′ · ‖c′1 − c1‖ − 3D

√
dQ′ · ‖c′2 − c2‖

)
≥ ξ2ξε∆

ξ′
− 3
√
ξD
√
dQ′

ξ′
·
(√

dΦ(c′1, c1) +
√
dΦ(c′2, c2)

)
.

For i = argmaxi∈{1,2} dΦ(c′i, ci), this yields

2dΦ(c′i, ci) +
6
√
ξD
√
dQ′

ξ′
·
√
dΦ(c′i, ci) ≥

ξ2ξε∆

ξ′
, (8)

which in turn implies

dΦ(c′i, ci) +
√
dΦ(c′i, ci) ≥

2ξ2ε∆

6D
√
dQ′ξ′

.

As the right side of the inequality is at most 1, this implies√
dΦ(c′i, ci) ≥

2ξ2ε∆

12D
√
dQ′ξ′

.

Since c1, c
′
1 ∈ I ′, and since we consider the case that also c2, c

′
2 ∈ I ′, we obtain

‖c′i − ci‖ ≥
√
dΦ(c′1, c1)/ξ′ ≥ 2ξ2ε∆

12D
√
dQ′ξ′3/2

=: Z .

Each time the center of Ci moves by some amount δ with respect to the Euclidean distance,
the potential drops by at least ξδ2 (see Lemma 4.3). Since this function is convex, the
smallest potential drop is obtained if the center moves by Z/kkd/2 in each iteration. Thus,
the decrease of the potential due to the movement of the center is at least

kkd/2 · ξZ
2

kkd
=

1

kkd/2

(
2ξ5/2ε∆

12D
√
dQ′ξ′3/2

)2

,

which concludes this case.

To finish the proof, we have to consider the case that c2 /∈ I ′ or c′2 /∈ I ′. In this
case, we also consider the position c′′2 of the center of cluster C2 after this iteration, that
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is, after x is reassigned and the center of C2 is recomputed. Since x ∈ I, we know that
c′′2 ∈ I(ε∗/n). As c2 or c′2 does not lie in I ′ = I(ε∗/(2n)), this implies ‖c2 − c′′2‖ ≥ ε∗/(2n)
or ‖c′2 − c′′2‖ ≥ ε∗/(2n), respectively. Hence, in kkd/2 + 1 steps the center of C2 must have
moved by at least ε∗/(2n). By the same arguments as above, this yields a lower bound for
the potential drop of

(kkd/2 + 1) ·
( √

ξε∗

2n(kkd/2 + 1)

)2

≥ 1

kkd/2

(√
ξε∗

4n

)2

,

which concludes the proof as the bound claimed in the lemma is smaller than the bounds
obtained in the two cases.

Next we need to analyze the random variable ∆, the smallest possible distance of
any two simultaneous centers that can occur during the execution of k-means.

Lemma 4.8. For δ ≥ 0, we have

Pr
[
∆ ≤ δ

]
≤
(

1028n8δ

σ2

)d/2
.

Proof. Let us consider a situation reached by k-means in which there are two clusters C1

and C2 whose centers are at a distance of δ from each other. We denote the positions of
these centers by c1 and c2. Let H be the bisector of c1 and c2. The points c1 and c2 are the
centers of mass of the points assigned to C1 and C2, respectively, and they have a Euclidean
distance of at most δ from H.

From Markov’s inequality, we can conclude that the total number of points assigned
to C1 or C2 can be at most twice as large as the total number of points assigned to C1 or C2

that are at a distance of at most 2δ from H. Hence, there can only exist two centers at a
distance of at most δ if one of the following two properties is met:

1. There exists a hyperplane from which more than 2d points have a distance of at most
2δ.

2. There exist two subsets of points whose union has a cardinality of at most 4d and
whose centers of mass are at a distance of at most δ.

The probability that one of these events occurs can be bounded from above using a union
bound and Lemma 4.5:

Pr
[
∆ ≤ δ

]
≤ n2d

(√
4dδ

σ

)d
+ (2n)4d ·

(
2δ

σ

)d
≤
(

1028n8δ

σ2

)d/2
.

The following lemma is the crucial ingredient of the proof of Theorem 5.2. It basically
says that the potential decreases significantly every couple of steps.
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Lemma 4.9. Let a ∈ [k] be arbitrary, and let ε =
(

σ2

3Dn11

)4a
be as in Lemma 4.1. Then

the expected number of steps until the potential drops by at least 1 is bounded from above by

γkkd ·

(
n11DQ′ξ′3/2

2σξ5/2εε∗

)2

for a sufficiently large absolute constant γ.

Proof. With a probability of at least 1−4W−1, the number of iterations until the potential
drops by at least

1

kkd/2

(
2ξ5/2εε∗∆

12nD
√
dQ′ξ′3/2

)2

is at most kkd/2 +1 ≤ 2kkd/2 due to Lemma 4.7. We estimate the contribution of the failure
event, which occurs only with probability 4W−1, to the expected running-time by 4 and
ignore it in the following. Let T denote the random variable that equals the maximum
number of sequences of length 2kkd/2 until the potential has dropped by at least one. The
random variable T can only exceed t if

∆2 ≤ kkd/2

t

(
12nD

√
dQ′ξ′3/2

2ξ5/2εε∗

)2

,

leading to the following bound on the expected value of T :

E [T ] =
W∑
t=1

Pr
[
T ≥ t

]
≤ 4 +

∫ W

0
Pr

∆2 ≤ kkd/2

t

(
12nD

√
dQ′ξ′3/2

2ξ5/2εε∗

)2
 dt

≤ 4 + t′ +

∫ W

t′
Pr

[
∆ ≤ 12kkd/4nD

√
dQ′ξ′3/2

2
√
tξ5/2εε∗

]
dt

with

t′ =

(
12336kkd/4n9D

√
dQ′ξ′3/2

2σ2ξ5/2εε∗

)2

.

According to Lemma 4.8,

Pr

[
∆ ≤ 12kkd/4nD

√
dQ′ξ′3/2

2
√
tξ5/2εε∗

]
≤

(√
t′√
t

)d/2
.

For d ≥ 4, this yields

E [T ] ≤ 4 + t′ +

∫ W

t′

(√
t′√
t

)d/2
dt ≤ 4 + t′ +

∫ W

t′

t′

t
dt

≤ 4 + t′ + t′ ·
[
ln(t)

]W
1

= 4 + t′ · (1 + ln(W )) ≤ 12nkd · t′ .
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Altogether, this shows that the expected number of steps until the potential drops
by at least 1 can be bounded from above by

2kkd/2 · 12nkd ·

(
12336kkd/4n9D

√
dQ′ξ′3/2

2σ2ξ5/2εε∗

)2

,

which can, for a sufficiently large absolute constant γ, be bounded from above by

γkkd ·

(
n11DQ′ξ′3/2

2σξ5/2εε∗

)2

.

This concludes the technical preparation of Theorem 5.2.

4.4 Iterations with at Most
√
k Active Clusters

In this section, we analyze steps with at most
√
k active clusters. In such a step, either

every cluster exchanges altogether at most 2d
√
k points with other clusters or there are

two clusters that exchange at least 2d + 1 points with each other. In the former case, the
potential will drop due to a significant movement of the centers. In the latter case, the
potential drops due to the reassignment.

We start by analyzing the former case. As was done for squared Euclidean dis-
tances [4], we define an epoch to be a sequence of consecutive iterations in which no cluster
center assumes more than two different positions. Equivalently, there are at most two dif-
ferent sets C′i, C′′i that every cluster Ci assumes. It has been shown that the length of any
epoch is at most three [17], where length refers to the number of iterations of the epoch.1

The proof of this does not use any specific properties of squared Euclidean distances and
holds for general Bregman divergences as well.

We use the notion of (η, c)-coarseness used by Arthur et al. [3]: X is (η, c)-coarse
if for any pairwise different subsets C1, C2, and C3 of X with |C14C2| ≤ c and |C24C3| ≤ c
either ‖cm(C1)− cm(C2)‖ > η or ‖cm(C2)− cm(C3)‖ > η. Since the length of any epoch is
at most three, after at most four iterations, one cluster assumes a third position. Assume
that X is (η, c)-coarse and that in four consecutive iterations, no cluster gains or loses more
than c points. Then one cluster center moves by at least η during one of these iterations.
Combining this with Lemma 4.3 and (2), we get a potential drop of at least ξη2.

Lemma 4.10. Assume that X is (η, c)-coarse and consider a sequence of four consecutive
iterations. If in each of these iterations every cluster exchanges at most c points, then the
potential decreases by at least ξη2.

It remains to prove an upper bound for the probability that X is not (η, c)-coarse.
This bound needs only the probability for the event that a single point falls into a hyperball
of a specific radius ε [3, Lemma 4.7]. For Gaussian noise, this probability is at most (ε/σ)d.
Here we only have an upper bound of (2ε/σ)d, which yields the following, slightly weaker
bound.

1We claimed earlier [17] that any epoch has a length of at most two. This has been corrected to three in
the full version of the paper [3].
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Lemma 4.11. For η ≥ 0, the probability that X is not (η, c)-coarse is at most (6n)2c ·
(4ncη/σ)d.

Now we turn to the case that one cluster gains or loses many points. Given that X
is ε-separated, every iteration with at most

√
k active clusters in which one cluster gains or

loses more than 2d
√
k points yields a significant decrease of the potential.

Lemma 4.12. Assume that X is ε-separated. For every iteration with at most
√
k active

clusters, the following holds: If a cluster gains or loses more than 2d
√
k points, then the

potential drops by at least 2ξε2/n.

Proof. Assume that a cluster Ci gains or loses more than 2d
√
k points in a single iteration

with at most
√
k active clusters. Then there exists another cluster Cj with which Ci ex-

changes at least 2d + 1 points. Since X is ε-separated, one of these points, say, x, must
be at a distance of at least ε from the bisector of ci and cj . According to Lemma 4.4,
dΦ(x, ci)− dΦ(x, cj) ≥ ε2ξ · ‖cj − ci‖.

It remains to be proved that ‖cj − ci‖ ≥ ε
n . Let H ′ be the hyperplane bisecting the

centers of Ci and Cj in the previous iteration. While H ′ does not necessarily bisect ci and
cj , it divides the data points belonging to Ci and Cj correctly. This implies ‖ci − cj‖ ≥
dist(ci, H

′) + dist(cj , H
′).

Consider the at least 2d+ 1 data points switching between Ci and Cj . One of them
must be at a distance of at least ε from H ′ because X is ε-separated. Let us assume that
this point belongs to Ci. Then dist(ci, H

′) ≥ ε/n as Ci contains at most n points. Thus,
‖ci − cj‖ ≥ ε/n.

We consider (η, c)-coarseness for c = 2d
√
k. For a set of points that is (η, 2d

√
k)-

coarse and ε-separated, any sequence of four consecutive steps with at most
√
k active clus-

ters yields an improvement of at least min{ξη2, 2ξε2/n}: either Lemma 4.10 or Lemma 4.12
applies. This yields the main lemma of this section. Together with Lemma 4.14 of Sec-
tion 4.5, it will lead to Theorem 5.1.

Lemma 4.13. The expected number of sequences of at most four consecutive iterations,
each with at most

√
k active clusters, until the potential has dropped by at least 1 is bounded

from above by

1

ξ
· poly

(
n
√
k,

1

σ

)
,

where the polynomial is independent of the parameters of the Bregman divergence and d ≥ 4.

Proof. Let ∆ be the smallest improvement made by any sequence of four consecutive iter-
ations with at most

√
k active clusters. The random variable ∆ can only be smaller than

some value x ≥ 0 if either the instance is not ε(x)-separated for ε(x) =
√
nx/(2ξ) or not
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η(x)-coarse for η(x) =
√
x/ξ. Hence, for x ≤ 1,

Pr
[
∆ ≤ x

]
≤ Pr

[
X is not η(x)-coarse

]
+ Pr

[
X is not ε(x)-separated

]
≤

(
2n12

√
k+2 ·

√
x/ξ

σ

)d
+ n2d ·


√

2d ·
√
nx/(2ξ)

σ

d

≤

(
2n14

√
k

σ

)d((
x

ξ

) d
2

+

(
x

2ξ

) d
4

)
.

Let T be the random variable of the maximal number of sequences of four consecutive
iterations with at most

√
k active clusters until the potential has dropped by one. We obtain

the following estimate for the expected value of T :

E [T ] =

W∑
t=1

Pr
[
T ≥ t

]
≤

W∑
t=1

Pr

[
∆ ≤ 1

t

]
≤ 1 +

∫ W

t=1
Pr

[
∆ ≤ 1

t

]
dt

≤ 1 +

∫ W

1
min

1,

(
2n14

√
k

σ

)d(
1

tξ

) d
2

 dt

+

∫ W

1
min

1,

(
2n14

√
k

σ

)d(
1

2tξ

) d
4

 dt

≤ 1

ξ
· poly

(
n
√
k,

1

σ

)
· log(W ) ≤ 1

ξ
· poly

(
n
√
k,

1

σ

)
,

where the second-to-last inequality uses the assumption d ≥ 4, and the last inequality uses
logW ≤ 3kd log n.

4.5 Iterations with at Least
√
k Active Clusters

In this section, we consider steps of the k-means method in which at least
√
k different

clusters gain or lose points. The improvement that such an iteration yields can only be
small if none of the cluster centers changes its position significantly due to the reassignment
of points. Intuitively, this becomes increasingly unlikely as the number of active clusters
increases. For squared Euclidean distances, we showed that, indeed, if at least

√
k clusters

are active, then with high probability one of them changes its position by n−O(
√
k). This

yields a potential drop in the same order of magnitude.

Lemma 4.14. The expected number of steps with at least
√
k active clusters until the

potential drops by at least 1 is bounded from above by

1

ξ
· poly

(
n
√
k,

1

σ

)
,

where the polynomial is independent of the parameters of the Bregman divergence.
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Proof. We consider one step of the k-means method with at least
√
k active clusters. Let

ε be defined as in Lemma 4.1 for a = 1. We distinguish two cases: Either one point that
is reassigned during the considered iteration has a distance of at least ε from the bisector
that it crosses, or all points are at a distance of at most ε from their respective bisectors.
In the former case, we immediately get a potential drop of at least 2ξε∆, where ∆ denotes
the minimal distance of two cluster centers. In the latter case, Lemma 4.1 implies that with
high probability less than kd points are reassigned during the considered step. We apply a
union bound over the choices for these points. In the union bound, we fix not only these
points but also the clusters they are assigned to before and after the step. We denote by
Ai the set of points that are assigned to cluster Ci in both configurations and we denote by
Bi and B′i the sets of points assigned to cluster Ci before and after the step, respectively,
except for the points in Ai. Analogously to Lemma 4.1, we assume that the positions of
the points in A1 ∪ . . . ∪ Ak are fixed by an adversary, and we apply a union bound on the
different partitions A1, . . . , Ak that are realizable. Altogether, we have a union bound over
less than n3kd · n3kd = n6kd events. Let ci be the position of the cluster center of Ci before
the reassignment, and let c′i be the position after the reassignment. Then

ci =
|Ai| · cm(Ai) + |Bi| · cm(Bi)

|Ai|+ |Bi|
,

where cm(·) denotes the center of mass of a point set. Since c′i can be expressed analogously,
we can write the change of position of the cluster center of Ci as

ci − c′i = |Ai| · cm(Ai)

(
1

|Ai|+ |Bi|
− 1

|Ai|+ |B′i|

)
+
|Bi| · cm(Bi)

|Ai|+ |Bi|
− |B

′
i| · cm(B′i)

|Ai|+ |B′i|
.

Due to the union bound, cm(Ai) and |Ai| are fixed. Additionally, also the sets Bi
and B′i are fixed but not the positions of the points in these two sets. If we considered
only a single center, then we could easily estimate the probability that ‖ci − c′i‖ ≤ β. For
this, we additionally fix all positions of the points in Bi ∪B′i except for one of them, say bi.
Given this, we can express the event ‖ci − c′i‖ ≤ β as the event that bi assumes a position
in a ball whose position depends on the fixed values and whose radius, which depends on
the number of points in |Ai|, |Bi|, and |B′i|, is not larger than nβ. Hence, the probability is

bounded from above by
(

2nβ
σ

)d
.

However, we are interested in the probability that this is true for all centers si-
multaneously. Unfortunately, the events are not independent for different clusters. We
estimate this probability by identifying a set of `/2 clusters whose randomness is indepen-
dent enough, where ` ≥

√
k is the number of active clusters. More precisely, we do the

following: Consider a graph whose nodes are the active clusters and that contains an edge
between two nodes if and only if the corresponding clusters exchange at least one point. We
identify a dominating set in this graph, i.e., a subset of nodes that covers the graph in the
sense that every node not belonging to this subset has at least one edge into the subset. We
can assume that the dominating set, which we identify, contains at most half of the active
clusters. (In order to find such a dominating set, start with the graph and throw out edges
until the remaining graph is a tree. Then put the nodes on odd layers to the left side and
the nodes on even layers to the right side, and take the smaller side as the dominating set.)
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For every active center C that is not in the dominating set, we do the following: We
assume that all the positions of the points in Bi∪B′i are already fixed except for one of them.
Given this, we can use the aforementioned estimate for the probability of ‖ci − c′i‖ ≤ β.
If we iterate this over all points not in the dominating set, we can always use the same
estimate; the reason is that the choice of the subset guarantees that, for every node not in
the subset, we have a point whose position is not fixed yet. This yields an upper bound of
(2nβ/σ)d`/2.

Combining this probability with the number of choices in the union bound yields a
bound of

n6kd ·
(

2nβ

σ

)d`/2
≤ n6kd ·

(
2nβ

σ

)d√k/2
.

For

β =
σ

2n18
√
k+1

the probability can be bounded from above by n−3kd ≤W−1.

Now we also take into account the failure probability of 2W−1 from Lemma 4.1.
This yields that, with a probability of at least 1 − 3W−1, the potential drops in every
iteration, in which at least

√
k clusters are active, by at least

Γ := min{2ξε∆, ξβ2} ≥ ξ ·min

{
σ8∆

1296n38D6d
,

σ2

n36·
√
k+2

}
≥ ξ ·min

{
∆ · poly

(
n−1, σ

)
, poly

(
n−
√
k, σ
)}

since d ≤ n and D is polynomially bounded in σ and n. The number T of steps with at
least

√
k active clusters until the potential has dropped by one can only exceed t if Γ ≤ 1/t.

Hence,

E [T ] ≤
∞∑
t=1

Pr
[
T ≥ t

]
+ 3W−1 ·W ≤ 3 +

∫ ∞
t=0

Pr
[
T ≥ t

]
dt

≤ 3 + β−2 +

∫ ∞
t=β−2

Pr

[
Γ ≤ 1

t

]
dt

≤ 3 + β−2 +

∫ ∞
t=β−2

Pr

[
∆ξ · poly

(
1

n
, σ

)
≤ 1

t

]
dt

≤ 3 + β−2 +

∫ ∞
t=β−2

Pr

[
∆ ≤ 1

tξ
· poly

(
n,

1

σ

)]
dt

≤ 3 + β−2 +

∫ ∞
t=β−2

min

1,

(
(4d+ 16) · n4 · poly

(
n, σ−1

)
tξσ

)d dt

=
1

ξ
· poly

(
n
√
k,

1

σ

)
,

where the integral is upper bounded as in the proof of Lemma 4.9.
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5 Applying the Smoothed Analysis

Now we apply the analysis of the previous section to four special Bregman divergences:
Mahalanobis distances, Kullback-Leibler divergence, generalized I-divergence, and Itakura-
Saito divergence.

In order to get smoothed bounds, we need two ingredients: First, the expected
number of steps until the potential drops by at least one. Second, an upper bound for the
potential after one iteration. The smoothed bound is the product of both.

We will instantiate the following results with specific Bregman divergences in the
remainder of this section. In the remainder of this section, let P be the maximal potential
that we have after the first iteration of k-means, provided that all points of X lie in D.
First, we exploit Lemmas 4.13 and 4.14.

Theorem 5.1. Let dΦ be a Bregman divergence. Then the smoothed running-time of k-
means is bounded from above by

P

ξ
· poly

(
n
√
k,

1

σ

)
.

Second, we apply Lemma 4.9. Note that the degree of the polynomial is not only
independent of d, but also independent of k.

Theorem 5.2. Let dΦ be a Bregman divergence. Then the smoothed running-time of k-
means is bounded from above by

P · kkd · Q
′2ξ′3

4ξ5ε∗2
· poly

(
n,

1

σ

)
.

If the parameters P , 1/ξ, ξ′, Q′, and 1/ε∗ are bounded by polynomials, then we get
a polynomial smoothed running-time if k and d are small compared to n.

Corollary 5.3. In the setting of Theorem 5.2, if P , Q′, and ξ′ as well as 1/ξ, and 1/ε∗ are
bounded from above by poly(n, 1/σ), then the smoothed running-time of k-means is bounded
from above by

poly

(
n,

1

σ

)
for k, d ∈ O

(√
log n/ log log n

)
.

5.1 Mahalanobis Distances

For Mahalanobis distances, we use the same perturbation model that has been used for
squared Euclidean distances [4, 17]: The adversary chooses n points in [0, 1]d. Then the d
coordinates are perturbed by independent Gaussian perturbations of standard deviation σ.
We can choose D = poly(n). Then X ⊆ D = [−D,D + 1]d with a probability of at least
1−W−1 since Gaussians are concentrated around their mean, which is in [0, 1]d. After one
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iteration of k-means, every point is assigned to a cluster center within a distance of at most
poly(n). Using this, we will bound the potential after one iteration in a moment.

Let A ∈ Rd×d be an arbitrary symmetric positive definite matrix, and consider k-
means using mA. Scaling the matrix does not change the behavior of k-means. Thus, we
scale A such that the smallest eigenvalue, which is positive, becomes 1. Let λmax be the
largest eigenvalue of A. Then ξ = 1 and ξ′ = λmax. Moreover, we have Q′ = 2‖A‖, where
‖M‖ = max‖x‖=1 ‖Mx‖ is the operator norm of a matrix M [12, Section 2.3]. The 2-norm
of a symmetric matrix equals its largest eigenvalue. Thus, Q′ = 2λmax. As ξ′ and Q′ are
bounded on the whole space Rd, we can define I = I ′ = D. Then, the case yielding to ε∗

in Lemma 4.9 cannot occur and we can simply remove ε∗ from the bound in Theorem 5.2.

Now we can also bound the potential after one iteration: P is bounded by λmax ·
poly(n) if all points lie in D. (If not all points assume a value in D, then we bound the
number of iterations by the worst-case bound of W , which contributes only a constant to
the expected running-time.)

Theorem 5.4. The smoothed running-time of k-means using mA is bounded from above by

λmax · poly

(
n
√
k,

1

σ

)
and

kkd · λ6
max · poly

(
n,

1

σ

)
.

If k, d ∈ O
(√

log n/ log logn
)

and the largest eigenvalue of A is bounded by a poly-
nomial, then, as in Corollary 5.3, we obtain smoothed polynomial running-time.

Remark 5.5. The most natural perturbation model for Mahalanobis distances dmA would
be Gaussian perturbations with covariance matrix A−1. Analogously to Lemma 6.2 below,
this is almost the same as using squared Euclidean distances and the identity matrix as
covariance matrix (thus, using independent Gaussians with the same standard deviation).

This (almost) makes the polynomial bound [3] applicable. The only issue that re-
mains is the initial potential: We have assumed that all eigenvalues of A are between 1
and λmax. If λmax is very large, then it is not possible to bound the potential after the first
iteration by a polynomial (the initial points are from [0, 1]d, and dmA(x, y) for x, y ∈ [0, 1]d

can be about λmax).

However, if we assume that λmax is bounded by a polynomial in n, then we obtain
smoothed polynomial running-time for k-means with Bregman divergences.

5.2 Kullback-Leibler Divergence

Before stating our perturbation model for KLD precisely, let us motivate our choice: A point
represents a probability distribution on a finite set {1, 2, . . . , d + 1}. For instance, assume
that we want to classify web pages based on a list w1, . . . , wd+1 of words (the so-called
bag-of-words model [8]). For a specific web page, let ni be the number of occurrences of wi.
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Then xi = ni∑d+1
j=1 nj

is the relative frequency of wi. Based on the vectors x, web pages can

be clustered according to their topics since pages about similar topics are likely to contain
similar words. To perturb instances, the idea is to add a random number of copies of each
word to the web page.

Now let us describe our perturbation model precisely. For a point x ∈ D, we obtain
x′ ∈ Rd+1 by adding the component xd+1 = 1 −

∑d
i=1 xi. Then we draw random numbers

y1, . . . , yd+1 independently according to some probability distribution to be specified in a
moment. Let S =

∑d+1
i=1 xi + yi = 1 +

∑d+1
i=1 yi. Then we obtain the perturbed point z ∈ Rd

by setting zi = xi+yi
S . By construction, z ≥ 0 and

∑d
i=1 zi ≤ 1.

Now we have to choose a probability distribution. We use the exponential distribu-
tion [10], whose density is 1

θ · exp
(
−x
θ

)
for a positive parameter θ. It has mean θ, variance

θ2, and maximum density 1/θ.

We choose θ = 8dσd/(d+1). Furthermore, we restrict ourselves to σ ≤ 1
14d4/3

. These
choices require explanation. First, θ = σ would be the natural choice. However, to meet
the requirements for perturbation model, and to use our framework introduced in Section 4,
we need to choose θ slightly larger than σ. Let us emphasize that σ and θ = 8dσd/(d+1)

differ only by a polynomial factor. Second, due to the requirements for the perturbation
model, we also need σ ≤ 1

14d4/3
. But this does not harm the result either: On the one

hand, it includes the particularly interesting small values of σ. On the other hand, stronger
perturbations only decrease the expected running-time, and σ = 1 is only polynomially
larger than σ = 1

14d4/3
.

One might argue that Poisson distributions are a more natural model for choosing a
random number of words. Poisson distributions are, however, discrete distributions on N. A
natural way to get a continuous probability distribution would be to add a random number
from [0, 1) to the randomly drawn integer. In this way, the density function becomes a step
function that tends exponentially to 0, and the distribution function becomes continuous.

For simplicity, we restrict ourselves to exponential distributions in the following, and
we note that the same holds for any distribution with exponentially small tail bounds, like,
e.g., the above described variant of a Poisson distribution or Gaussian random variables
conditioned on the outcome being non-negative.

Let us now prove that our perturbation model satisfies the requirements of Sec-
tion 2.3.

Lemma 5.6. Let x ∈ D and let z ∈ D be the point obtained from x by perturbation. Let
H ⊆ Rd be any hyperplane. Then

Pr
[
dist(z,H) ≤ ε

]
≤
√
ε

σ
,

and the density of the random variable z is bounded from above by σ−d.

Proof. Let S =
∑d+1

i=1 xi + yi = 1 +
∑d+1

i=1 yi. Let v be the normal vector of the hyperplane
H. Without loss of generality, we assume that vd ≥ 1/

√
d.
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Let F denote the failure event that S ≥ 1 + Z for some Z yet to be specified. The
event F occurs only if there is an i with yi ≥ Z/d. This happens only with a probability
of at most (d + 1) exp

(
− Z
dθ

)
. We choose Z such that this probability is at most ε

2σ , which

yields Z = dθ log
(2(d+1)σ

ε

)
≤ dθ

√
3dσ
ε .

Given S and y1, . . . , yd−1, yd+1, we have dist(z,H) ≤ ε only if yd assumes a value
in an interval of length 2εS/vd ≥ 2εS

√
d. This implies that dist(z,H) ≤ ε happens only if

either S ≥ 1 + Z or if yd falls into an interval of length 2ε
√
d(1 + Z). Since the density of

yd is bounded from above 1/θ, we obtain

Pr
[
dist(z,H) ≤ ε

]
≤ ε

2σ
+

2ε
√
d(Z + 1)

θ
≤ ε

2σ
+

2ε
√
d ·
(
dθ
√

3dσ
ε + 1

)
θ

=
ε

2σ
+

2ε
√
d

θ
+ 2d2

√
ε3σ ≤ 3

√
ε

4σ
+ 2d2

√
3σε ≤

√
ε

σ
.

The last inequality follows from σ ≤ 1
14d4/3

.

Next, we analyze the maximum density of the random vector z. For this, we perform
a change of variables: Instead of considering the vector y = (y1, . . . , yd+1), we consider the
vector z′ = (z1, . . . , zd, S) and denote by h its density. The transformation Φ with

Φ: (y1, . . . , yd+1) 7→

(
x1 + y1

1 +
∑d+1

i=1 yi
, . . . ,

xd + yd

1 +
∑d+1

i=1 yi
, 1 +

d+1∑
i=1

yi

)

maps y to z′ and its inverse is

Φ−1 : (z′1, . . . , z
′
d+1) 7→

(
z′d+1z

′
1 − x1, . . . , z

′
d+1z

′
d − xd, z′d+1 − z′d+1

d∑
i=1

z′i

)
.

A simple calculation shows that the determinant of the Jacobian of Φ−1 at (z′1, . . . , z
′
d, T )

is T d. Let f denote the density of the exponentially distributed random variables yi. Then,
the density of z at (z1, . . . , zd) can be written as∫ ∞

0
T d ·

d∏
i=1

f(Tz′i − xi) · f

(
T − T

d∑
i=1

z′i

)
dT

≤
∫ ∞

0
T d ·

∏d
i=1 exp

(
−Tz′i+xi

θ

)
· exp

(
−T−T

∑d
i=1 z

′
i

θ

)
θd+1

dT

=

∫ ∞
0

T d ·
exp
(
−T
θ

)
θd+1

dT ≤ 1

θd+1

∫ ∞
0

T d exp
(
−T
)
dT

=
d!

θd+1
≤
(
d

θ

)d+1

≤ σ−d .

What remains to be done is to choose ε∗ and to analyze the parameters ξ, ξ′, and
Q′ as well as the potential P after the first iteration.
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All points are contained in D because the domain of KLD is a subset of [0, 1]d ⊆ D.

Consider a point z obtained by perturbing any point x. The probability of a per-
turbed point to be ε-close to a hyperplane is

√
ε/σ. We consider the d + 1 hyperplanes

xi = 0 for 1 ≤ i ≤ d and
∑d

i=1 xi = 1. The probability that at least one of the n points

comes ε-close to one of them is at most n(d+1)
√
ε

σ ≤ 2n2

σ

√
ε. We choose ε∗ = 1

4n
−29σ2, then

the probability that a point comes ε∗-close to the boundary of the domain is at most n−13.

Let us now analyze ξ. Let x, y ∈ D be arbitrary, and let xd+1 = 1 −
∑d

i=1 xi and

yd+1 = 1−
∑d

i=1 yi, and let x′, y′ be the vectors with this additional component. Then

dKLD(x, y) =

d+1∑
i=1

xi log(xi/yi) ≥
1

2
‖x′ − y′‖ ≥ 1

2
‖x− y‖ ,

where the first inequality follows from Ackermann et al. [2]. This shows ξ = 1
2 .

Now we turn to ξ′. Let x, y ∈ I ′ be arbitrary. Let x′ and y′ be defined as above.
First, we relate ‖x− y‖ and ‖x′ − y′‖:

‖x′ − y′‖2 =
d∑
i=1

(xi − yi)2 +

(
d∑
i=1

xi − yi

)2

= ‖x− y‖2 +
∑

1≤i,j≤d
(xi − yi)(xj − yj)︸ ︷︷ ︸
≤(xi−yi)2+(xj−yj)2

≤ (2d+ 1) · ‖x− y‖2.

Since x, y ∈ I ′, we have xi, yi ≥ ε∗/2n for 1 ≤ i ≤ d+ 1. Hence,

dKLD(x, y) ≤ n

ε∗
· ‖x′ − y′‖2 ≤ n(2d+ 1)

ε∗
· ‖x− y‖2,

where the first inequality follows from Ackermann et al. [2]. This shows that we have
ξ′ ≤ poly(n, σ−1).

Next comes Q′. We have x, y ∈ I ′ and

‖∇KLD(x)−∇KLD(y)‖
‖x− y‖

≤ d ·max
i

| log xi − log(yi)|
|xi − yi|

.

By the mean value theorem, the latter is d times the derivative of log at some point between
xi and yi. Since x, y ∈ I ′, we get Q′ ≤ 2nd

ε∗ .

Now we bound P . We note that dKLD(x, c) is monotonically increasing in each
xi and monotonically decreasing in each ci. Furthermore, after reassigning the clusters,
we have ci ≥ xi/n. This yields dKLD(x, c) ≤ d log n. Thus, after the first iteration, the
potential is bounded from above by dn log n.

Putting everything together yields the following theorem.
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Theorem 5.7. The smoothed running-time of k-means using KLD is bounded from above
by

poly

(
n
√
k,

1

σ

)
.

and

kkd · poly

(
n,

1

σ

)
.

5.3 Generalized I-Divergence

For generalized I-divergence, we use the same perturbation model, except for rescaling.
Since we do not have to rescale, this allows us to let the adversary choose any density
function f bounded by 1

2
√
dσ

whose tail bounds are sufficiently small: The probability of

a number greater than poly(n) must be bounded by 1
ndW . Then we perturb a point by

adding independent random numbers drawn according to f . The maximum density is then
(2
√
dσ)d, which is fine. The probability of coming ε-close to a hyperplane H is also easily

analyzed: Let v be the normal vector with v1 ≥ 1/
√
d. We allow the adversary to fix

z2, . . . , zd. Then for dist(z,H) ≤ ε, the component z1 must fall into an interval of length at
most 2ε

√
d, which happens with a probability of at most ε/σ ≤

√
ε/σ.

The values for ε∗, ξ′, and Q′ can be analyzed similarly as for KLD in the previous
section. Also ξ can be analyzed similarly, we only have to use the upper bound of poly(n)
rather than the upper bound of 1. In the same way, the potential P after the first iteration
can be analyzed.

Overall, we obtain the same results as for KLD.

Theorem 5.8. The smoothed running-time of k-means using GID is bounded from above
by

poly

(
n
√
k,

1

σ

)
.

and

kkd · poly

(
n,

1

σ

)
.

5.4 Itakura-Saito Divergence

For the Itakura-Saito divergence, we use again exponentially distributed perturbations.
This is the natural choice for this distance measure (see Section 2.3.1). Rescaling as we did
for KLD is not necessary. We can choose D = poly(n) to make sure that X ⊆ [0, D]d = D
with a probability of at least 1−W−1.

The analysis of ε∗ ≥ 1/poly(n) is similar to its counterpart for KLD. Let us first
analyze ξ and ξ′. By definition of a Bregman divergence, dISD is the tail of the first-order
Taylor expansion of ISD(x) at y. Thus, there exists a ξ ∈ Rd with ξi ∈ [xi, yi] or ξi ∈ [yi, xi]
such that

dISD(x, y) =
1

2
(x− y)T∇2 ISD(ξ)(x− y) ,
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where ∇2 ISD(ξ) is the Hesse matrix of ISD at ξ. (This exists for all possible ξ.) The Hesse
matrix ∇2 ISD(ξ) is a diagonal matrix with diagonal entries 1/ξ2

1 , . . . , 1/ξ
2
d. For each such

entry, we have 1/ξ2
i ≥ 1

max(y2i ,x
2
i )
≥ 1/D2. Thus, 1/ξ ≤ poly(n), which is fine. On the other

hand, 1
min(y21 ,x

2
i )
≤ 1

ε∗ ≤ poly(n), which shows ξ′ ≤ poly(n).

Next, we analyze Q′: For all x, y ∈ I ′, we have

‖∇ ISD(x)−∇ ISD(y)‖
‖x− y‖

≤ d ·max
i

|1/xi − 1/yi|
|xi − yi|

.

By the mean value theorem, the latter is d times the absolute value of the derivative of 1/z

at some point between xi and yi, which is 1/z2. Since x, y ∈ I ′, we get Q′ ≤ 4n2d
ε∗2
≤ poly(n).

If X ⊆ D, then, after the first round, we have P ≤ poly(n) since D = poly(n).
Altogether, we obtain the following result.

Theorem 5.9. The smoothed running-time of k-means using ISD is bounded from above
by

poly

(
n
√
k,

1

σ

)
.

and

kkd · poly

(
n,

1

σ

)
.

6 Lower Bound

In this section, we transfer the exponential lower bound proved by Vattani [24] to almost
arbitrary Bregman divergences. Our starting point is his lower bound construction.

Theorem 6.1 (Vattani [24]). For squared Euclidean distances, there exist sets X ⊆ Rd
of n points on which the k-means method requires 2Ω(n) iterations when initialized with a
particular set of cluster centers. Here, k depends on n and d ≥ 2 is arbitrary.

The general idea to obtain lower bounds for general Bregman divergences is as
follows: First, given an arbitrary symmetric positive definite A, we map the point set X
in Theorem 6.1 to a point set X ′ such that k-means behaves on X ′ w.r.t. the Mahalanobis
distance mA exactly like on X w.r.t. squared Euclidean distances. In particular, if the
latter requires T iterations, the former also requires T iterations. In the second step, we
show that every Bregman divergence behaves locally like some Mahalanobis distance, if it
is three times differentiable. Thus, we can transfer the lower bound from squared Euclidean
via Mahalanobis to arbitrary distances.

For the second transfer (from Mahalanobis to arbitrary distances), we need a notion
of stability of an instance: Let dΦ be a Bregman divergence, let X be a point set, and let
c1, . . . , ck be initial centers. The instance X , c1, . . . , ck is called dΦ-stable with slack ν > 0 if
the following holds for all x ∈ X and all iterations: Assume that after reassignment in this
iteration, x belongs to Ci with center c′i. Then dΦ(x, c′i) < dΦ(x, c′j)− ν for all j 6= i, where
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c′j is the center of cluster Cj . We say that an instance is dΦ-stable if there exists a constant
ν > 0 such that it is dΦ-stable with slack ν.

If an instance is dΦ-stable, then there never exists a point that lies exactly on a
bisecting hyperplane. Intuitively, if an instance is dΦ-stable, then (very) slightly perturbing
the point set does not change the behavior of k-means.

6.1 Lower Bound for Mahalanobis Distances

First, we show that all Mahalanobis distances are equivalent in terms of the worst-case
number of iterations. Vattani’s lower bound is for squared Euclidean distances, which are
a special case of Mahalanobis distances. Thus, we get an exponential lower bound for all
Mahalanobis distances. Let W k,d

Φ (n) be the maximum number of iterations of k-means on
any dΦ-stable instance of n points in Rd using dΦ as the distance measure.

Lemma 6.2. For every symmetric positive definite matrix A ∈ Rd×d, we have W k,d
mA(n) =

W k,d
mI (n) for all n, k, d ∈ N.

Proof. Let X ⊆ Rd be a set of n points and let c1, . . . , ck ∈ Rd be initial cluster centers on
which k-means using squared Euclidean distances needs W k,d

mI (n) iterations.

Since A is symmetric and positive definite, there exists a matrix M ∈ Rd×d such
that A = MTM (Cholesky factorization [12, Theorem 4.2.5]). Let B = M−1 (since A is
positive definite, A and thus also M have full rank), and let y = x− x′ for any x, x′ ∈ Rd.
Then

dmI (x, x′) = ‖x− x′‖2 = yT y = yT (BTMT )(MB)y = (By)TA(By) = dmA(Bx,Bx′).

Now let X ′ = {Bx | x ∈ X} and c′i = Bci for i ∈ [k]. Then k-means behaves w.r.t.
squared Euclidean distances on X initialized with centers c1, . . . , ck exactly in the same way
as w.r.t. Mahalanobis distance dmA on X ′ initialized with centers c′1, . . . , c

′
k. This shows

W k,d
mI (n) ≤W k,d

mA(n).

To show that W k,d
mI (n) ≥W k,d

mA(n), we observe that any worst-case instance for dmA

can be transformed to an instance for squared Euclidean distances using B−1.

6.2 Lower Bound for Bregman Divergences

Now we transfer worst-case instances for Mahalanobis distances to general Bregman diver-
gences. For this, we use the observation that any Bregman divergence dΦ behaves locally at
some point z0 like the Mahalanobis distance dmH , where H is the Hessian matrix of Φ at z0.
For this, we need the assumption that the third-order derivatives of Φ exist. Essentially we
only need to scale down the worst-case instance for dmH and embed it locally into a small
space around z0.

Lemma 6.3. Let Φ : D → R be a strictly convex function with D ⊆ Rd and the following
properties: There exist a z0 ∈ D and a ζ > 0 such that
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• Z = {z ∈ Rd | ‖z − z0‖∞ ≤ ζ} ⊆ D,

• all third-order derivatives of Φ exist on Z and their absolute values are bounded, and

• the Hessian matrix of Φ at z0 is positive definite.

Then W k,d
Φ (n) ≥W k,d

mI (n).

Proof. First we show that dΦ behaves locally around z0 almost like the Mahalanobis distance
dmH , where H denotes the Hessian matrix of Φ at z0. For this, let Φ̃(y) = Φ(z0 + y), let
f = Φ(z0) = Φ̃(0), and let g = ∇Φ(z0) = ∇Φ̃(0) be the gradient of Φ at z0. All third-
order derivatives of Φ on Z are bounded in absolute value, say, by c. This implies that all
third-order derivatives of Φ̃ are bounded by c in Z̃ = {y | ‖y‖∞ ≤ ζ}.

We use the Taylor expansion (cf. Lang [15, §6]) of Φ̃, which yields, for all y ∈ Z̃
with ‖y‖∞ ≤ ε ≤ ζ,

Φ̃(y) = f + gT y +
1

2
yTHy +R(y) .

The remainder term R(y) is bounded in absolute value by

|R(y)| ≤
∫ 1

0

(1− t)2

2
d3cε3dt ∈ O(cd3ε3)

since the third-order derivatives are bounded by c. In the same way, we get

∇Φ̃(y) = g +Hy +R′(y)

with

‖R′(y)‖∞ ∈ O(cd2ε2) .

Now let y, y′ ∈ Z̃ with ‖y‖∞, ‖y′‖∞ ≤ ε, and let z = z0 + y and z′ = z0 + y′. Then

dΦ(z, z′) = Φ̃(y)− Φ̃(y′)− (y − y′)T · ∇Φ̃(y′)

= f + gT y +
1

2
yTHy +R(y)−

(
f + gT y′ +

1

2
y′
T
Hy′ +R(y′)

)
− (y − y′)T · (g +Hy′ +R′(y′)) .

We observe that |〈y − y′, R′(y′)〉| ∈ O(cd3ε3) and |R(y)|, |R(y′)| ∈ O(cd3ε3). This yields

dΦ(z, z′) =
1

2
yTHy − 1

2
y′
T
Hy′ − (y − y′)THy′ +O(cd3ε3)

=
1

2

(
yTHy + (y′)THy′ − y′THy − yTHy′

)
+O(cd3ε3)

=
1

2
(y − y′)TH(y − y′) +O(cd3ε3)

=
1

2
dmH (y, y′) +O(cd3ε3) ,

where the equalities hold due to some rearrangements and since H is a symmetric matrix.
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Due to Lemma 6.2, there exists a set X ⊆ Rd of n points and centers c1, . . . , ck ∈ Rd
such that the resulting instance is dmH -stable with some slack ν > 0 and k-means needs

W k,d
mI (n) iterations using mH . We construct an instance X̃ ⊆ Z of n points and initial

centers c̃1, . . . , c̃k on which k-means using dΦ also needs W k,d
mI (n) iterations. We can assume

w.l.o.g. that X ⊆ [−1, 1]d and c1, . . . , ck ∈ [−1, 1]d. If we use 1
2dmH instead, then the

instance is still stable with slack ν/2. If we scale down this instance by a factor of ε > 0,
then the resulting instance is still 1

2dmH -stable with slack εν/2. Thus, if we distort the
distance measure by at most νε/4, k-means using the scaled down version of X and 1

2dmH

behaves exactly the same way as k-means on X using dmH .

Let X̃ = {z0 + εy | y ∈ X} and c̃i = z0 + εci. This yields X̃ ⊆ Z and c̃1, . . . , c̃k ∈ Z
because ε ≤ ζ. The k-means method behaves on X̃ w.r.t. dΦ like on X w.r.t. dmH if∣∣∣∣dΦ(z, z′)− 1

2
mH(y, y′)

∣∣∣∣ < νε

4
.

Since the difference is bounded by O(cd3ε3), this can be achieved by making ε > 0 suffi-
ciently small.

6.3 Applying the Lower Bound

Vattani’s lower bound construction [24] is dmI -stable. Combining this construction with
Lemma 6.2 and Lemma 6.3, we obtain the main result of this section.

Theorem 6.4. The worst-case number of iterations of k-means for the following Bregman
divergences is at least exp(Ω(n)) for n points and d ≥ 2:

1. Mahalanobis distances for any symmetric positive definite matrix A,

2. Kullback-Leibler divergence (KLD),

3. generalized I-divergence (GID),

4. Itakura-Saito divergence (ISD).

Proof. For Mahalanobis distances, this follows immediately from Vattani’s lower bound [24]
and Lemma 6.2.

The domain of the Kullback-Leibler divergence (KLD) is D = {z ∈ Rd | z ≥
0,
∑d

i=1 zi ≤ 1}. We choose z0 = ( 1
d+1 , . . . ,

1
d+1) ∈ D. Then Z = {z ∈ Y | ‖z − z0‖∞ ≤

ζ} ⊆ D for ζ = 1/(d + 1)2. The convex function corresponding to KLD is KLD(x) =∑d+1
j=1 xj log xj , where xd+1 := 1−

∑d
j=1 xj . Simple calculus shows that ∂KLD(x)

∂xi
= log xi −

log xd+1, ∂
2 KLD(x)
∂x2i

= 1
xi

+ 1
xd+1

, and ∂2 KLD(x)
∂xi∂xj

= 1
xd+1

, for i 6= j. Hence, the diagonal entries

of the Hessian matrix at z0 are all 2(d + 1) while the other entries are all (d + 1). This
matrix is positive definite. It only remains to consider the third-order derivatives, which
are of the form

∂3 KLD(x)

∂x3
i

= − 1

x2
i

+
1

x2
d+1

and
∂3 KLD(x)

∂xi∂xj∂x`
=

1

x2
d+1
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if not i = j = `. For our choice of ζ all these derivatives are bounded by c = 2(d+ 1)2/d in
Z, which concludes the proof for KLD.

The lower bound for generalized I-divergence follows analogously by choosing, e.g.,
z0 = (1, . . . , 1).

For the Itakura-Saito divergence, we can again choose z0 = (1, . . . , 1). We have
∂ ISD(x)
∂xi

= −1
xi

and ∂2 ISD(x)
∂x2i

= 1
x2i

and, for i 6= j, ∂2 ISD(x)
∂xi∂xj

= 0. Thus, the Hessian matrix at

z0 is the identity matrix, which is of course positive definite. All third-order derivatives are

0 with the exception of ∂3 ISD(x)
∂x3i

= −2
x3

for i ∈ {1, . . . , d}. For ζ = 1/2, the absolute values

of all third-order derivatives around z0 are bounded by 16, which completes the proof.

The results of this section prove that for very general distance measures, the worst-
case running-time of k-means is poor, which complements our smoothed analysis. Further-
more, the two reductions (Lemmas 6.2 and 6.3) indicate that squared Euclidean distances
and Mahalanobis distances are in some sense the easiest distances for k-means, as the lower
bound for them carries over to other good-natured Bregman divergences.

7 Concluding Remarks

We have shown that the smoothed running-time of k-means using Bregman divergences

is bounded by a polynomial in n
√
k and 1/σ and by kkd poly(n, 1/σ), given that certain

parameters that characterize the Bregman divergence are bounded by a polynomial. On
the other hand, we proved exponential lower bounds for the worst-case running-time of
k-means using Bregman divergences that are three times differentiable. In particular, these
results hold for Mahalanobis distances (the upper bound requires that the largest eigenvalue
of the matrix used is bounded by a polynomial), Kullback-Leibler divergence, generalized
I-divergence, and Itakura-Saito divergence.

Recently, Arthur et al. [3] have proved that the smoothed running-time of k-means
for squared Euclidean distances is bounded by a polynomial in n and 1/σ. An obvious
open question is whether this results carries over to Bregman divergences. However, their
analysis exploits specific properties of Gaussian noise like, for example, that the projection
of a Gaussian onto a lower-dimensional subspace is still a Gaussian with the same stan-
dard deviation. There is no straightforward way of adapting this bound to our general
perturbation model.

It would be very interesting to see if it is possible to relax some of these require-
ments or if it is possible to design more general perturbation models that still meet the
requirements needed for the smoothed polynomial bound.
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