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Abstract
Extremely synchronized firing patterns such as those observed in brain diseases like epilepsy
may result from excessive network excitability. Although network excitability is closely related
to (excitatory) connectivity, a direct measure for network excitability remains unavailable.
Several methods currently exist for estimating network connectivity, most of which are related to
cross-correlation. An example is the conditional firing probability (CFP) analysis which
calculates the pairwise probability (CFPi,j) that electrode j records an action potential at time
t= τ, given that electrode i recorded a spike at t= 0. However, electrode i often records multiple
spikes within the analysis interval, and CFP values are biased by the on-going dynamic state of
the network. Here we show that in a linear approximation this bias may be removed by
deconvoluting CFPi,j with the autocorrelation of i (i.e. CFPi,i), to obtain the single pulse response
(SPRi,j)—the average response at electrode j to a single spike at electrode i. Thus, in a linear
system SPRs would be independent of the dynamic network state. Nonlinear components of
synaptic transmission, such as facilitation and short term depression, will however still affect
SPRs. Therefore SPRs provide a clean measure of network excitability. We used carbachol and
ghrelin to moderately activate cultured cortical networks to affect their dynamic state. Both
neuromodulators transformed the bursting firing patterns of the isolated networks into more
dispersed firing. We show that the influence of the dynamic state on SPRs is much smaller than
the effect on CFPs, but not zero. The remaining difference reflects the alteration in network
excitability. We conclude that SPRs are less contaminated by the dynamic network state and that
mild excitation may decrease network excitability, possibly through short term synaptic
depression.

Keywords: cultured cortical networks, network bursts, excitability, connectivity, cross-
correlation, carbachol, ghrelin

(Some figures may appear in colour only in the online journal)

Introduction

Neuronal excitability at the cellular level has been described
as the relation between excitatory and inhibitory forces. In the
simplest neuronal setting, this relation translates into the
propensity of a neuron to generate an output signal—the

action potential (AP)—given an input signal that exceeds a
certain threshold (usually an excitatory postsynaptic potential,
EPSP). The coupling between neuronal inputs and outputs in
the form of EPSP and APs is essential for neurotransmission
[2]. The strength of this coupling may vary and is referred to
as excitability.
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Hyper excitability supposedly underlies diseases like
epilepsy [3]. Therefore, most antiepileptic drugs aim to reduce
the amount of activity, either by impeding excitation or by
enhancing inhibition. Still, 30–40% of epilepsy patients do
not respond to these drugs. Despite significant efforts to
develop new antiepileptic medications over the past decade,
this percentage has remained relatively stable, possibly
because the available medication has not addressed all causes
of hyper excitability. This suggests that certain forms of
epilepsy may have causes other than hyper excitability at the
cellular level.

Several studies suggest that hyper excitability may also
arise as a network phenomenon, induced by insufficient
external input. Network excitability may be defined as the
ease with which a network response can be induced by a
stimulus. Here, we define network excitability as the mean
network response to a spike in one neuron, averaged across all
possible presynaptic neurons. When using multi-electrode
arrays (MEAs) to measure network activity, the signals from
most neurons are not recorded and the electrodes may pick up
signals from more than one neuron. Therefore, we adjusted
our definition of network excitability to be the array wide
mean response to an AP recorded at a certain electrode,
averaged across all electrodes.

In hyper excitable networks, a small stimulus (or even no
stimulus at all) may induce bursts of activity as seen during
epileptic seizures. In fact, several forms of epileptic firing
have been associated with low input, like electrical status
epilepticus during sleep [4]. During anesthesia, periods of
very low afferent input may also occur. Indeed, many anes-
thetics have been reported to produce seizure patterns in EEG
associated with convulsions [5]. In in vitro preparations of
horizontal hippocampal/limbic cortical slices, deafferentiation
increased the sporadic spontaneous epileptiform activity [6].
Moreover, organotypic hippocampal slice cultures usually
develop spontaneous ictal-like activity patterns in response to
slicing induced deafferentiation [7]. These observations all
suggest that sensory input might have a suppressive effect on
cortical population bursts [8].

Acute electrical stimulation [1, 9] or pharmacological
treatment of in vitro preparations of neuronal tissue [10, 11]
have been shown to transform neural bursting patterns into
more dispersed one firing. Both manipulations, however,
were only effective within a narrow window of moderate
parameter settings, and could also induce adverse effects. For
example, electrical stimulation at a very low frequency
(<0.2 Hz) usually triggered population bursts rather than
suppress them. Stimulus induced population bursts probably
occur because the network is already in a hyper excitable state
and stimulation at such frequencies are insufficient to con-
tinuously reduce the network excitability. In cultured cortical
networks, pharmacological desynchronization only succeeds
with mild excitatory agents—such as acetylcholine (ACh),
orexin, serotonin, ghrelin etc. Straightforward excitants like
glutamate or aspartate do not suppress epileptiform bursting,
but instead enhance bursting at specific concentrations [12].
The outcome of either manipulation depends on the delicate
balance between two factors: (strong) stimuli that may induce

excessive responses or even trigger seizures in networks that
are already hyper excitable may also reduce network excit-
ability which leads to smaller stimulus responses and less
population bursts. Thus, ‘restoring’ moderate input strongly
decreases, or even abolishes excessive synchronization. It has
been hypothesized that insufficient activity within neural
networks leads to a very low average level of synaptic/
neuronal depression [13, 14] or homeostatic up regulation of
excitability [15–17], thus yielding hyper excitable networks.

Although hyper excitability is a crucial factor in diseases
such as epilepsy or Parkinson’s disease [26] and has been
related to disorders like phantom pain [27], tinnitus [28] and
amnestic mild cognitive impairment [29], there is currently no
tool to quantify network excitability. Obviously, network
excitability is closely related to (excitatory) connectivity and
several methods currently exist for estimating network con-
nectivity. We developed an analysis of network connectivity
based on conditional firing probabilities (CFPs). CFPi,j[τ] is
the probability that electrode j will record an AP at time t= τ,
given that electrode i recorded a spike at t= 0. We refer to
electrodes rather than neurons in our definition because we do
not discriminate between the activity from individual neurons
that may be recorded by the same electrode. Because elec-
trode i often records multiple spikes within the analysis
interval (typically 500 ms) and the response to the first spike
cannot be discriminated from those from subsequent spikes,
CFP values are biased by the dynamic state of the network
(e.g. bursting patterns vs. dispersed firing). In particular,
network bursts may cause a bias that we will refer to as
multiple input spike bias. This bias also exists in other cross-
correlation based measures. We will show that this bias may
be removed in a linear approximation by deconvolution of the
autocorrelation from the CFP. This procedure provides the
average response at electrode j to a single spike at electrode i
(single pulse response, SPRi,j). Thus, in a linear system, SPRs
are independent of the dynamic network state. However,
nonlinear components such as facilitation and short term
depression will still be reflected in SPRs. Since they are not
biased by multiple input spikes within the analysis interval,
SPRs will provide a cleaner measure of network excitability
than traditional cross-correlation based methods.

We will evaluate SPRs in cultured networks of cortical
neurons on MEAs. In the absence of external input, such
networks usually develop bursting firing patterns [18]. It is
hypothesized that these bursts result from excessive network
excitability. We will apply cholinergic stimulation to activate
these cortical networks. ACh is a neuromodulator with a net
excitatory effect on cortical networks. Since it is not synthe-
sized in the cortex, ACh does not directly affect the existing
excitatory (glutamatergic) connections. It does however affect
the dynamic network state. In addition, we will apply ghrelin,
another neuromodulator that induces moderate neural acti-
vation, to the cultures. We will show that cholinergic or
ghrelinergic activation changes the activity patterns from
predominant synchronous bursting to more dispersed firing.
This change in network dynamics may affect CFPs in two
ways: (1) the multiple input spike bias will change, and (2)
network excitability may change. The multiple input spike
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bias will cause an overestimation of the CFP values in a
bursting dynamic state. SPRs are only affected by this second
factor. Excitability changes may mask the effect of multiple
input spike bias or alternatively enhance it, depending on the
direction of change. Assuming that bursting patterns result
from high network excitability, multiple input spike bias most
likely enhances the increase of CFPs due to higher excitability
in a bursting dynamic state. Therefore, we expect that SPRs
are less affected than CFPs by dynamic state changes. We
will validate this hypothesis using carbachol (CCh) or ghrelin
and we will confirm that periods of more pronounced bursting
indeed coincide with higher network excitability.

Methods

Cell cultures

We obtained cortical cells from newborn Wistar rats on post
natal day 1. After trypsin treatment, cells were dissociated by
trituration. About 400 000 dissociated neurons (400 μl sus-
pension) were plated on a multi electrode array (MEA; Multi
Channel Systems, Reutlingen, Germany), precoated with poly
ethylene imine. This procedure resulted in an initial cell
density of approximately 5000 cells mm−2, in agreement with
the counted estimates in the first few days after plating. With
aging, cell densities gradually decreased to ∼2500
cells mm−2. We used MEAs containing 60 titanium nitride
electrodes with a 30 μm diameter and 200 μm pitch.

Neurons were cultured in a circular chamber with inner
diameter d= 20 mm that was glued on top of the MEA. The
culture chamber was filled with ∼700 μL R12 medium [19]
MEAs were stored in an incubator, under standard conditions
of 37 °C, 100% humidity, and 5% CO2 in air. For recordings,
we firmly sealed the culture chambers with watertight but
CO2 permeable foil (MCS; ALA scientific), and placed the
cultures in a measurement setup outside the incubator. During
recordings, we maintained the CO2 level of the environment
around 5% and we maintained humidity. For details about the
recording setup, see [20]. Recordings began after an accom-
modation period of at least 20 min. After the measurements,
the cultures were returned to the incubator. We used seven
CCh and nine ghrelin treated neuronal cultures obtained from
different rats. All CCh experiments were performed at least
20 days after plating of the dissociated cells ghrelin experi-
ments were done at 10 ± 0.6 days after plating.

Activity recording and analysis

Data was recorded from all electrodes at a sample rate of
16 kHz, using a custom program that estimated the noise
levels for each electrode in real time. Potential spikes were
stored whenever the signal exceeded a predefined threshold of
5.5 times the estimated noise level. For each spike, the pro-
gram stored the time stamp, the recording electrode on which
it was detected, and 6 ms of the spike waveform, from 2ms
before the threshold crossing to 4 ms thereafter.

We applied a method introduced by Wagenaar et al [1] to
estimate the burstiness of a culture on a minute-order time
scale. In short, 5 min recordings were divided into 300 1 s
long time bins and then number of spikes across all electrodes
in each bin was tallied. We then computed the fraction of
spikes accounted for by the 45 bins (15% of all bins) con-
taining the largest spike counts (f15). Should most of the
spikes occur in bursts, f15 will be close to 1; tonic firing
should lead to a f15≈ 0.15. We then defined a burstiness
index (BI) such that BI = (f15−0.15)/0.85, so that BI is nor-
malized between 0 (no bursts) and 1 (burst dominated).

We also analyzed firing and bursting patterns using the
algorithms introduced by Bologna et al [21]. In short, bursts
were detected whenever at least five spikes were recorded,
with a maximum inter spike interval of 100 ms. For each
300 s interval, the mean firing rate (MFR), burst intensity,
burst duration and dispersed fraction (DF; the fraction of
spikes detected outside bursts, see [22]) were determined.

Connectivity analysis

Several techniques have been developed to estimate network
connectivity based on the timing of spiking activity patterns.
Very often, these methods are based on or related to cross-
correlation. In our lab, we developed a technique based on
CFPs (CFPi,j[τ]) to estimate functional connectivity [23]. This
technique provides intuitive measures of the strengths and
latencies of functional connections and has been shown to, at
least to a certain extent, describe synaptic connections in
cultured cortical networks [24].

CFP analysis evaluates all spiking activity during the
500 ms after any recorded AP by calculating the probability
that electrode j recorded an AP at t= τ given that electrode i
did so at t= 0. To calculate the CFP, we first represent the
spike time series as a binary point process Xi[t] in which ones
and zeroes represent whether a spike was detected at electrode
i at time t. Thus, the number of APs at the initiating electrode
i followed by a spike at the responding electrode j with a
delay of τ (Nfollowi,j [τ]) is calculated as follows:

∑τ τ= ⋅ +N X t X t[ ] [ ] [ ]. (1)
t

i jfollowi j,

Equation (1) holds because it is applied to binary arrays
Xi and Xj, with Xi,[n]∈ {0, 1} for all n. CFP[τ] can be cal-
culated by dividing Nfollow[τ] by the total number of APs at
electrode i (Ni):

τ
τ

τ= =
∑ ⋅ +

∑
∀ < <

N

N

X t X t

X t
CFP [ ]

[ ] [ ]

[ ]
0 500ms. (2)i j

i

t i j

t i
,

follow

This analysis yields a probability curve, to which a four-
parameter standard function (equation (3)) is fitted to obtain
measures for the strength (Mi,j) and latency (Ti,j). The addi-
tional variables wi,j and offseti,j are necessary for curve fitting,
but are not used in further analyses. For detailed explanations,
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see [23].
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The measure in equation (3) does not reveal responses to
single input spike because the initiating electrode i usually
records more than one spike during the analysis interval.
Thus, a late response in electrode j may be attributed to a later
spike recorded at electrode i and a fast response in electrode j
may be attributed to a preceding spike at electrode i. This
introduces a bias, which we refer to as the multiple input
spike bias (see Introduction). For an example see figure 1.

On average, this repeated firing may be captured by
τCFP [ ]i i, which is proportional to the auto correlation function

of the initiating electrode i. To avoid confusion between
τCFP [ ]i j, and τCFP [ ]i i, we will refer to the latter as the auto-

correlation. For linear time invariant systems, the output of a
system in the frequency domain Y(ω) is calculated by taking
the product of the input X(ω) and the transfer function H(ω)
(equation (4)). This is equivalent in the time domain to taking
the convolution of the input x(t) with the impulse response h

(t) (equation (5)).

ω ω ω= ⋅Y X H( ) ( ) ( ), (4)

∫ τ τ τ= ⊗ = − ⋅
−∞

∞
y t x t h t x t h( ) ( ) ( ) ( ) ( )d . (5)

Here, ⊗ denotes the convolution operator. On average, the
input from electrode i may be described by the autocorrelation
(CFPi,i[τ]), the probability that it records an AP at t= τ, given
that it previously recorded a spike at t= 0. This implies that, in
a linear approach, we may deconvolve the input (auto-
correlation) from the output (CFP) to obtain an ‘impulse
response’. This relationship can be deduced from equation (5)
as follows:
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Figure 1. CFPi,i[τ] (autocorrelation) and its effect on the estimated functional connectivity. (A) Two examples of CFPi,i[τ], the probability
that electrode i records an action potential at time t = τ, given that it also recorded one at t = 0. This conditional probability is proportional to
the autocorrelation. Although some flat autocorrelations (bottom window) can be found (∼20%), most electrodes are associated with an
autocorrelation as shown in the top window (∼80%). This indicates that electrodes are likely to pick up more than one action potential in the
analysis interval. (B) A hypothetical situation in which each spike from the presynaptic neuron i induces a fast and a slow response in the post
synaptic neuron j, as indicated by the gray lines. To estimate CFPi,j[τ], all spikes of neuron j are counted in fixed analysis time intervals
(indicated by blue horizontal bars) after each presynaptic spike. Because these time intervals partially overlap, in the calculation of Nfollow

(see equation (1)), responses are not only counted in the analysis interval directly after the corresponding presynaptic spike (green arrows),
but also in the analysis interval after the other presynaptic spike (red arrows). Multiple spikes from neuron i during the analysis interval thus
contaminate the estimation of the average response of neuron j to a spike from neuron i (multiple input spike bias). (C) To obtain an estimate
for the CFP’s, the incidence of postsynaptic action potentials is counted during a 50 ms time interval after the presynaptic spike (○). A
standard equation (equation (3)) was fitted to the data (black line) to obtain the CFPs. SPRs were calculated by convolving the standard
function with the autocorrelation of the presynaptic neuron during this fitting process (red line). The blue line indicates the convolution of the
SPR with the autocorrelation, which approximates the CFP.



However, because neuronal networks are nonlinear sys-
tems, we will use the term ‘SPR’ instead of impulse response,
as shown in equation (10).

τ τ= ⊗ tCFP [ ] CFP [ ] SRP( ). (10)i j i j, ,

Since deconvolution is a rather unstable process, we
avoided it by applying the following procedure. Instead of
fitting the standard function of equation (3) directly to the data
(which would yield CFP parameters), we convolved the
standard function with the autocorrelation during each itera-
tion of the fitting procedure. In this way, we obtained values
for the SPR parameters that would yield the CFP curve when
convolved with the autocorrelation (equation (10)).

To observe the development of the SPRs, long term
recordings were subdivided into data blocks of 215 detected
events (see [23]). For all electrode pairs (i,j), we calculated
the SPRi,j[τ] for each data block.

First, we investigated to what extent CFPs were biased
by bursting activity patterns. Assuming that multiple spike
induced bias may be neglected during periods of dispersed
firing (i.e. if autocorrelation curves are flat, convolution with
the autocorrelation reduces to rescaling of the CFP curve), the
SPRs will be rescaled versions of the CFPs. We noticed that,
during the phase of drug (i.e. CCh) application, activity pat-
terns showed the least synchronized firing, and consequently,
there was minimum multiple input spike bias (cf results,
figures 2 and 3). For this reason, all CFPs and SPRs were
normalized to their mean value during CCh treatment in order
to observe the extent to which the CFPs exceed the SPRs
before and after the CCh phase (i.e. during periods of intense
bursting patterns). This measure is indicative of the magni-
tude of the multiple input spike bias in the CFPs and it pro-
vides a good metric for evaluating the different information
provided by CFP versus SPR (see results, figure 4).

Then we a statistically assessed the effects of pharma-
cological manipulations. In general both CFPs and SPRs
between various electrode pairs have a wide range of
strengths and may differ by a factor of 1000 or more. To
determine the effect of changing dynamic conditions on
connectivity strength, we treated the cultures with CCh/
ghrelin as described below. Application of these substances
strongly reduced bursting and transformed the activity pat-
terns to mainly dispersed firing. Because we were interested
in the average rather than the absolute value of the effect of
changing dynamic conditions on the connectivity strength,
provided by our SPR, the strengths of all functional con-
nections were normalized to their mean value during baseline,
before averaging across all electrode pairs (see results, fig-
ures 5 and 6).

Pharmacological manipulation

For all cultures, we first estimated the functional connectivity
in the baseline phase for about 2 h, using SPRs as explained
above. We then replaced 300 μL of the medium by 300 μL of
CCh (40 μM, Sigma, St. Louis, MO, USA), a selective cho-
linergic agonist leading to a final CCh concentration of
20 μM. Next, we repeated the analysis to monitor changes in

the SPRs during the CCh phase, lasting 18–26 h. Finally, we
completely refreshed the medium twice to wash out the CCh
and repeated the analysis during this washout phase, for
3–46 h. To assess the stability of functional connectivity
within each of the three phases, we divided the control, CCh
and washout recordings of all experiments into data blocks of
215 spiking events each, yielding on average ∼100 blocks per
phase.

In addition, we acutely applied ghrelin (2 μM, Abcam,
Cambridge, UK), another neurotransmitter that has been
shown to have a moderate excitatory effect on cortical neu-
rons [25]. We investigated the effect on SPRs, and burstiness,
MFR, burst duration, burst intensity and DF (see under
Activity recording and analysis). These additional experi-
ments aimed to reproduce the acute change in firing dynamics
from bursting to more dispersed firing, and to show that this
change is not specific to CCh. The baseline and ghrelin phase
of the experiments lasted one hour each. We did not study the
long term effects of ghrelin or the effects of washout.

All results are shown as the mean ± the standard error of
the mean, unless indicated otherwise.

Results

We investigated the shape of the autocorrelation curves for all
electrodes under control conditions. The autocorrelation
indicates the probability of recording a second (or further) AP
after a short delay. In approximately 20% of all active elec-
trodes, the CFPi,i[τ] curve was flat after an initial refractory
period. In 80% of all electrodes, we found curves that clearly
showed a peak at certain latencies and harmonics. For
example, in figure 1(A), the peak in the autocorrelation occurs
at t= 18 and 36 ms. Such peaks in the autocorrelation mean
that most electrodes are likely to record more than one spikes
in the CFP analysis interval of 500 ms. Thus, when deriving
correlograms between two recording electrodes i and j, sub-
sequent spikes detected by electrode j may be interpreted as a
response to different spikes recorded at electrode i, as illu-
strated in figure 1. Thus, CFP curves are usually biased by
multiple correlated spikes from presynaptic neuron(s) at
electrode i. Figure 1(C) shows an example of the spike counts
at electrode j at latencies of 0–50 ms, the fitted standard
function (equation (3)) to obtain the CFP curve, the estimated
SPR, and the convolution of the SPR with the autocorrelation.

We pharmacologically manipulated the dynamical state
of the network to evaluate its effects on the CFPs and SPRs.
We added CCh to the bath during seven experiments and
ghrelin during nine. In general, we observed that bursting
activity patterns were transformed into more dispersed firing
when either one of these modulatory agents was applied.
Figure 2 shows a typical example of the response, char-
acterized by an overall increased firing rate and more dis-
persed firing after the administration of the agent.
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CCh experiments

To quantify the different dynamic network states, we calcu-
lated the network wide MFR, burst intensity (i.e. the fre-
quency of spikes within a burst), burst duration and DF, the
fraction of spikes outside the bursts (see methods). During
baseline, the MFR was 1.3 ± 1.3 spikes s−1/electrode. Upon
CCh application, the MFR increased by 90 ± 9%. The average
burst intensity dropped to 55 ± 2%, while the DF increased by
31 ± 2%. Mean burst duration increased by 113 ± 7%. After
CCh washout, none of these measures showed any obvious
trend away from the pre-CCh values (figure 3).

Next, we divided all CCh experiments into data blocks of
215 spikes, which yielded 19 ± 14 (mean ± SD) data blocks in
the baseline phase, 201 ± 151 in the carbachol phase, and
95 ± 138 after carbachol washout. To directly compare the
CFPs and SPRs under various dynamic conditions, we nor-
malized the CFPs and SPRs to their mean values during the
agent’s phase. Figure 4 shows normalized CFP and SPR
values before, during and after CCh washout. On average,
CFPs were larger than SPRs in the phases before CCh

application (40 ± 19% larger) and after washout (50 ± 10%
larger). A two-tailed paired t-test showed that CFPs and SPRs
differed significantly (p< 0.01), even though this test included
the values during CCh, which naturally did not differ
(p> 0.75) due to the applied normalization.

We investigated whether changes in the SPR values were
correlated to the burstiness of our cultures (see figure 5). We
found that in the control phase, SPRs were fairly constant,
with an average coefficient of variation (CV; standard
deviation as a percentage of the mean value) of 33 ± 13
(SD)%. During CCh treatment, the SPRs dropped to 37 ± 5
(SD)% of their baseline value and the relative CV increased
slightly to 41 ± 14 (SD)%. After CCh washout, the normal-
ized SPRs increased with respect to the baseline, showing a
significant overshoot (17 ± 8 (SD)%), while the CV dropped
again to 36 ± 12 (SD)%. The BI dropped from 0.53 ± 0.04
(SD) during baseline to 0.23 ± 0.04 (SD). After washout, BI
returned towards baseline. The tendency to remain below
baseline was not significant (Wilcoxon signed rank: p> 0.06).
Normalized SPRs also increased after washout, but they
showed significant overshoot, i.e. after washout (see figure 5).
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Figure 2. Example of the acute effect of moderate excitation on recorded firing patterns in a 10 day old cortical culture. We recorded the
activity before (A) and after moderate pharmacological excitation as induced by ghrelin (B). In both panels, the upper horizontal traces show
the activity recorded at the indicated electrode number while the bottom trace indicates the summed activity of all electrodes in 1 s bins. Each
tick represents an action potential. Typically, baseline firing patterns contained periods of seemingly uncorrelated spiking as well as
synchronized network bursts. Carbachol induced a similar transformation of the activity pattern into more dispersed firing.



Ghrelin experiments

In nine cultures, we applied another neuromodulator, ghrelin,
to compare the reduced burstiness and SPRs observed during
CCh treatment. Again we observed a ∼50% decrease in the
BI (figure 6). In three experiments, we recorded sufficient
APs to calculate the SPRs, which decreased by ∼30% on
average. Four of the nine experiments had enough bursts to
calculate the other parameters (i.e. MFR, burst intensity, burst
duration and DF). The results were comparable to those
during CCh application: the firing rate and dispersed fraction
increased by 150% and 60% respectively, while burst inten-
sities and durations were not noticeably affected (data not
shown).

Discussion

Network excitability is obviously closely related to excitatory
network connectivity, and there exist several measures to
quantify connectivity. However, currently available cross-
correlation based methods yield connectivity measures that

Phys. Biol. 11 (2014) 036005 J le Feber et al
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Figure 3. Analysis of burst patterns before (t< 0, white background),
during (0 < t< 20 h, green) and after carbachol application (t> 20 h,
blue). Data was collected from six experiments. The mean firing rate
(MFR) was calculated in 2 h bins. Burst intensity was the mean firing
rate during bursts. Burst duration was the time between the onset and
cessation of bursts. The dispersed fraction indicates the fraction of all
spikes that were fired outside the identified bursts periods. All values
were normalized to their baseline values. Error bars indicate the
standard error of the mean, and refer to the differences between
experiments.

Figure 4. Differences in the mean normalized conditional firing
probability (CFP) and single pulse response (SPR), coinciding with
changing dynamic network states. In seven cultures, the strength of
all persisting connections was normalized to their mean value during
carbachol treatment. Average CFPs (solid bars) and SPRs (hatched)
are shown before (hours 0–2 of the experiments), during (hours
2–21) and after carbachol application (hours 22–28). Mean
values ± SD are shown. * indicates significant differences (two-tailed
paired t-test: p< 0.01).

Figure 5. Effect of carbachol on single pulse responses (SPRs) and
burstiness index. After two hours of baseline recording (t < 0, white
background), seven cultures were exposed to 20 μM carbachol for at
least 20 h (0 < t< 20 h, green background). The culture medium was
then refreshed twice to wash out the carbachol and another twenty
hours of data was recorded (t > 20 h, blue background). The
burstiness index was calculated as defined in [1].



are biased by the dynamic state of the network (multiple input
spike bias). In a linear approximation, this multiple input
spike bias may be removed by deconvolution of the auto-
correlation. This mathematical manipulation allowed us to
obtain the SPR which is independent of the dynamic network
state. However, nonlinear components of synaptic transmis-
sion, such as facilitation and short term depression, still
affected SPRs. Indeed, dynamic state (bursting) induced
changes affected SPRs significantly less than CFPs, but its
influence on SPRs was not entirely zero. Unbiased by mul-
tiple input spikes, SPRs provide a cleaner measure of network
excitability than traditional cross-correlation based methods.
Theoretically, the remaining effect of dynamic network state
on SPRs better reflects differences in network excitability
than the shifts in CFP values. We compared SPRs to burst
characteristics to validate that network bursting is more
intense when network excitability is (too) high.

CFPs as well as SPRs were determined for all pairs of
electrodes, which cannot always be directly translated into
pairs of neurons. Some studies applied spike sorting algo-
rithms, usually based on differences in the shapes of APs. At
some electrodes the shape of recorded APs was highly
reproducible, but often wave shapes varied, depending on
background activity in the network, possibly due to

superimposed local field potentials. Occasionally we recorded
APs of decaying amplitude during a single burst. These fac-
tors make it troublesome to use spike sorting as a tool to
discriminate between different neurons. For the analyses in
this paper, it was not necessary to discriminate between spikes
from different neurons. Rather, we used the small groups of
neurons which were in good contact with the electrodes as the
unit to determine functional connectivity, as also reported in
other papers [1, 30, 31].

To avoid inverse convolution, we convolved the standard
function in equation (3) with the autocorrelation during each
iteration step in the fitting procedure. This approach assumes
that the SPRs share the same general shape of CFP’s, as
depicted in figure 1. This assumption was supported by the
observation that the electrodes that had a flat autocorrelation
(∼20%) under control conditions, showed probability curves
with the same shape as the electrodes with nonflat auto-
correlations (80%) [23]. Besides the initiating electrode i, the
responding electrode j may also record more than one spike in
the analysis interval. Obviously, the firing rate of j also
depends on the dynamic network state. However, this does
not introduce additional bias because only those spikes
recorded at electrode j that are time locked to spikes recorded
at electrode i contribute to the strength of a functional con-
nection (Mi,j in equation (3)); other spikes at electrode j only
affect the value of the offset parameter.

It is well known, that short term plasticity affects
synaptic strengths in a frequency dependent manner, and that
individual input spikes therefore do not induce a consistent
SPR. However, under stationary dynamic conditions, the SPR
stabilizes when averaged over relatively large time windows.
We used data blocks of 215 spikes, which lasted ∼20 min on
average. Such periods are large enough to contain numerous
network bursts, as well as multiple phases of seemingly
uncorrelated firing. This resulted in reliable, reproducible
SPRs over consecutive windows, as indicated by the low
intra-individual CV during the two hour control phase
(∼33%, figure 5). During and after CCh application, the CVs
were slightly higher, possibly reflecting an initial adaptation
after a sudden change in the dynamics, or due to the longer
duration of these recording periods (∼24 versus ∼2 h).
However, the CVs were still relatively low, indicating that the
effects of short term plasticity mechanisms on connectivity
were fairly constant within each phase.

Cholinergic stimulation changed firing patterns from
bursting into more dispersed activity (see figure 2). This was
partially demonstrated in previous studies [11–32], possibly
due to reduced signal propagation. It has been shown that
ACh suppresses the spread of excitation in visual cortex, and
that the site of the cholinergic action is presynaptic [33].
These observations are in agreement with the hypothesis that
short term depression decreases network excitability [34].
Kimura et al [33] concluded that the predominant role of Ach
is to change the overall state of cortical circuits, or specifi-
cally, to shift the dynamics of cortical circuits from being
predominantly influenced by intrinsic activity to being influ-
enced by thalamocortical input. This conclusion agrees with
our finding that predominant intrinsic activity patterns
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Figure 6. The effect of ghrelin on burstiness and single pulse
responses. One hour of data was recorded prior to ghrelin
administration (green background) and the burstiness index (BI) was
calculated for nine experiments and averaged (top panel). Only three
experiments contained enough action potentials to calculate the
SPRs (bottom) and evaluate the effect of ghrelin (red background)
on excitability. The BIs were calculated for each 5 min bin while the
SPRs were calculated from periods of variable length that contained
215 spikes. Values across the three experiments were pooled using
15 min bins.



(network bursts) largely disappeared upon cholinergic acti-
vation. The CCh phase showed a slowly fading effect on most
parameters, as shown in figure 3, possibly due to adaptation
of the neurons or degradation or depletion of the CCh. Our
wash out procedure not only removed the remaining CCh
from the medium, but also other neuronal substances that are
important for network functioning, such as brain derived
neurotropic factor. The latter may also affect the activity level
and pattern, obscuring the interpretation of post-CCh data.
Therefore, we could not draw stronger conclusions than the
observation that, none of these measures showed an obvious
difference from pre-CCh values after washout. Because of the
difficult interpretation of the data recorded after washout, we
did not include this phase in the ghrelin experiments that were
done after the experiments with CCh.

We used CCh, rather than ACh because CCh is resistant
to hydrolyzing enzymes and could be present in the medium
during the 24 h CCh phase, and the effects on the cortical
networks are comparable at medium concentrations. Appli-
cation of a medium concentration of CCh (10–50 μM) causes
a switch from synchronized bursting to more asynchronous
single spike mode of spontaneous firing pattern through
muscarinic receptor activation, while ACh application at
concentration of 10–50 μM inhibits synchronized bursting
[35]. Although this general effect of cholinergic activation is
well known, the underlying mechanism of action is still under
debate. In an intracellular study, Klink and Alonso demon-
strated several sub threshold changes during CCh modulation,
in addition to changes in the frequency of intrinsic firing and
AP shape [36]. Differences in sub threshold dynamics dis-
appear under ttx blockade, indicating that sodium influx is
involved, but its exact role remains unclear. Their results
point towards increased intrinsic bursting in some cells rather
than more dispersed firing, suggesting that the mechanism
behind the desynchronizing effect of cholinergic activation is
not at the cellular level. Here we hypothesize that desyn-
chronization may be a network phenomenon. Mild excitation
of networks with little or no ongoing activity may induce a
higher degree of short term depression in recurrent excitatory
synapses and thus reduce network excitability. This hypoth-
esis is supported by the finding that ghrelin also desynchro-
nized network activity, very similar to CCh. Furthermore,
Wagenaar et al [1] showed that the firing patterns of isolated
cortical networks also transformed to more dispersed firing
when the firing rate was increased by closed loop electrical
stimulation. In that study, the BI decreased almost linearly
with the array wide firing rate. However, complete transfor-
mation required a much larger increase in firing rate than the
CCh induced increase in our study. Seemingly adverse results
obtained by Leondopulos et al showed that chronic electrical
stimulation induced shorter and more intense bursts [37].
However, in their experiments, burstiness was evaluated after
cessation of the electrical stimuli.

Application of either neuromodulators increased the
network wide activity, while reducing the incidence of syn-
chronized firing and strength of the functional connections.
Our results do not provide direct evidence to discriminate
cause and effect. Less synchronized firing might result from

weaker functional connections or, vice versa, the strength of
functional connectivity may appear to decrease when fewer
network bursts occur and therefore fewer spikes will fall
within the 500 ms analysis interval. During bursts, however,
synaptic strengths usually decrease due to short term synaptic
depression; bursts in isolated networks are terminated by
synaptic depression, refractoriness and cellular adaptation,
rather than by activation of the inhibitory system [14]. In cats,
evoked excitatory postsynaptic potentials (EPSPs) in the
neocortex increased around seizure onset and returned to
baseline between seizures [13]. It has been shown that func-
tional connections reflect to a certain extent synaptic prop-
erties [24]. Therefore, it is probable that functional
connections weaken during each burst. During periods of
dispersed firing, most neurons fire at a low frequency, with
inter spike intervals that exceed the decay time of short term
synaptic depression. Nevertheless, most synapses, as well as
most functional connections, will be stronger than during
dispersed firing than during bursts. Thus, periods without
extensive bursting should yield relatively strong functional
connections, and it seems unlikely that reduced bursting (as
seen during CCh or ghrelin treatment) would lead to weaker
functional connectivity. Therefore, the most probable expla-
nation is that the average connectivity strength decreased and
consequently, synchronized firing decreased as well. This
view is supported by the finding that muscarinic receptor
activation reduced the size of EPSPs in diverse cortical
synapses [38]. Likewise, computer modeling showed that the
effects of ACh could be reproduced by decreased synaptic
conductances between cortical pyramidal cells [39]. A critical
factor is the average firing frequency, which should be high
enough to induce short term synaptic depression. The baseline
firing frequency of ∼1.3 spikes s−1/electrode yields average
inter spike intervals of ∼800 ms, which is on the order of the
decay time of short term synaptic depression [40]. CCh
application almost doubled the MFR, thus reducing the mean
inter spike interval to values that frequently induce short term
depression.

There are other mechanisms, besides those mentioned
above, that affect network excitability. Homeostatic
mechanisms have been described that generate more sensitive
excitatory synapses and less or weaker inhibitory synapses
(15–17). A prolonged period of insufficient activity will lead
to strengthened excitatory connectivity which may result in a
hyper excitable network that generates bursting firing patterns
when activated. However, if homeostatic synaptic scaling
were the dominant mechanism, excitability should have been
lower after 24 h of cholinergic stimulation, which contradicts
our results. Furthermore, the changes in the SPR and BI
appeared almost instantaneously, which does not correspond
to the time constant of synaptic scaling. Therefore, it seems
unlikely that excitability changes result from synaptic scaling.

As a third possible explanation cholinergic or ghreliner-
gic stimulation might activate the inhibitory system, which
then limits excitatory activity and impedes excessively syn-
chronized firing. In general, ACh has an excitatory effect on
excitatory cortical neurons and enhances the response of these
neurons to other excitatory inputs. The excitatory effect as
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well as the subsequent relaxation, is however much slower
than that produced by glutamate or other excitatory amino
acids, with a time constant of ∼30 s. In a small percentage of
neurons, Ach has been reported to be inhibitory. However,
this is (almost) always caused by cholinergic excitation of
inhibitory interneurons. Low threshold spiking interneurons
are rapidly excited via activation of nicotinic receptors,
whereas fast spiking inhibitory neurons were inhibited via
muscarinic activation [41]. Thus, the predominant effect of
cholinergic input would depend on the constitution of inhi-
bitory neuronal types in the culture. If low threshold spiking
neurons were to dominate, a rapid inhibition may be expected
upon CCh application, which might initially outweigh the
slow excitation. However, we observed increased network
activity immediately after CCh application. Moreover, the
reduced excitability lasted throughout the period of choli-
nergic activation. Therefore, it seems improbable that induced
inhibition caused the reduced excitability. This conclusion is
further supported by the finding that 10 day old cultures also
showed more dispersed firing during activation. In 10 day old
cultures, the inhibitory system is still in a very premature state
of development.

Currently, hyper excitability is usually treated at the
cellular level with medication that aims to reduce excitation or
to enhance inhibition. Meanwhile, network activation, rather
than inhibition, has hardly been explored to treat hyper
excitability. Our findings support the hypothesis that hyper
excitability may also result from insufficient network activa-
tion, and consequently may be treated by (moderate) network
activation. In this case, traditional antiepileptic drugs targeted
at reduction of activity, merely treat the symptoms and may in
fact even deteriorate the hyper excitable network state. Sti-
mulation techniques such as deep brain stimulation and vagal
nerve stimulation have been shown to provide possible
solutions to patients with refractory epilepsy [42, 43]. The
mechanism of action behind these techniques remains largely
unclear, but may involve moderate activation as used in this
study.

In conclusion, we theoretically derived a parameter
(SPRs) that excludes multiple input spike bias and therefore
provides a cleaner measure of network excitability than
conventional cross-correlation based measures such as CFPs.
We validated that a change in the dynamic network state due
to moderate pharmacological network activation affected the
SPRs less than the CFPs. Whereas the differences between
CFP values partially reflected multiple input spike bias, its
persisting effect on SPRs indicates that mild activation
decreases network excitability. This agrees with the reduced
bursting observed after cholinergic or ghrelinergic activation
and suggests that mild activation may offer yet unexplored
opportunities to treat hyper excitability.
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