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a b s t r a c t

We consider the synchronization problem for a class of directed networks where the agents receive
relative output information from their neighbors, but lack independent information about their own
state or output (they are non-introspective) and are unable to exchange internal controller states with
their neighbors. We consider three classes of networks defined by the properties of the agent dynamics:
homogeneous networks, where the agents are governed by identical linear models; heterogeneous
networks, where the agents are governed by non-identical linear models; and networks with nonlinear
and time-varying agent dynamics. In each case, the linear part of the dynamics is assumed to beminimum-
phase. Our approach is based on a combination of low-gain and high-gain design techniques.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The phenomenon of synchronizationhas attracted a great deal of
interest in recent years, due to its ubiquity in nature and potential
technological applications in areas such as formation flying,
cooperative control, and distributed sensor fusion. Influentialwork
on the study of synchronization criteria was done byWu and Chua
(1995a,b), who used the Kronecker product to analyze systems
of coupled oscillators. More recently, synchronization has been
widely studied as a control problem, where the goal is to ensure
synchronization in amulti-agent system by designing control laws
that couple each agent to the system as a whole. The difficulty of
this control problem lies in the limited information available to
each agent—typically in the form of measurements of its own state
or output relative to that of neighboring agents.
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Some of the work on synchronization is focused on state syn-
chronization based on diffusive state coupling, progressing from
single- and double-integrator agent dynamics (e.g., Olfati-Saber &
Murray, 2003, 2004; Ren & Atkins, 2007) to more general agent
dynamics (e.g., Tuna, 2008a; Yang, Roy,Wan, & Saberi, 2011). State
synchronization based on diffusive partial-state coupling has also
been considered by several authors (e.g., Pogromsky & Nijmeijer,
2001; Pogromsky, Santoboni, & Nijmeijer, 2002; Tuna, 2008b). In
this context, Li, Duan, Chen, and Huang (2010) introduced a dis-
tributed observer that has been expanded upon by several au-
thors (e.g., Yang, Stoorvogel, & Saberi, 2011c). This type of observer
makes additional use of the network by allowing the agents to ex-
change information with their neighbors about their internal es-
timates, effectively requiring another layer of communication. On
the other hand, Seo, Shim, and Back (2009) presented a low-gain
control design that does not require the exchange of internal states,
provided the poles of the agent dynamics are located in the closed
left-half complex plane.

The works cited above are concerned with homogeneous
networks, where the agents are governed by identical dynamical
models. A limited amount of work has also been done on heteroge-
neous networks, where the agents are governed by non-identical
dynamical models. In a heterogeneous network, the agents’ inter-
nal states may not be comparable to each other; thus, one often
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aims to achieve output synchronization—that is, agreement on some
partial-state output.

Some work on heterogeneous networks has focused primarily
on synchronization criteria (e.g., Grip, Saberi, & Stoorvogel, 2013a;
Xiang & Chen, 2007; Zhao, Hill, & Liu, 2011); other work has been
more design-oriented (Bai, Arcak, & Wen, 2011; Chopra & Spong,
2008; Kim, Shim, & Seo, 2011; Wieland, Sepulchre, & Allgöwer,
2011; Yang, Saberi, Stoorvogel, & Grip, 2011). Most designs for
heterogeneous networks are based on either modifying the agent
dynamics via pre-compensators and local feedbacks, in order to
emulate a homogeneous network (Bai et al., 2011; Chopra & Spong,
2008; Yang et al., 2011); or on synchronizing an embedded identi-
cal model via the network and then regulating the actual output
toward the embedded model output (Kim et al., 2011; Wieland
et al., 2011). In either case, the agents are assumed to be introspec-
tive, meaning that they have access to information about their own
state or output in addition to the information received from the
network. The authors have recently considered themore challeng-
ing case of heterogeneous non-introspective agents, and developed
a methodology based on a distributed high-gain observer (Grip,
Yang, Saberi, & Stoorvogel, 2012). However, like several other de-
signs for heterogeneous networks (Wieland et al., 2011; Yang et al.,
2011), it was assumed that the agents can exchange internal con-
troller states with neighboring agents in the network, in the same
manner as in Li et al. (2010).

Some authors have also studied synchronization in networks
with nonlinear agent dynamics (e.g., Arcak, 2007; Chopra & Spong,
2008; Igarashi, Hatanaka, Fujita, & Spong, 2009; Pogromsky & Ni-
jmeijer, 2001; Pogromsky et al., 2002; Xiang & Chen, 2007; Zhao,
Hill, & Liu, 2010; Zhao et al., 2011). Explicit control designs for non-
linear networks have largely centered on the relatively strict as-
sumption of passivity. Passivity can in some cases be ensured by
first applying local pre-feedbacks to the system; however, this re-
quires the system to be introspective.

1.1. Topics of this paper

In this paper, we shall address several combinations of the chal-
lenges mentioned above. We start by considering state synchro-
nization in a homogeneous network with partial-state coupling,
where the agents are non-introspective and unable to exchange
controller states with neighboring agents. This represents a practi-
cally significant scenario; for example, one may have multiple ve-
hicles capable of measuring relative distance to their neighbors,
but without knowledge of their own absolute position or velocity
(i.e., they are non-introspective), and without an additional com-
munication channel for exchanging controller states. Our approach
is based on a combination of low- and high-gain design techniques,
and solves the synchronization problem subject to the condition
that the invariant zeros of the agent dynamics are in the open left-
half complex plane. This is in contrast to the pure low-gain ap-
proach of Seo et al. (2009), where the same condition was placed
on the poles of the agent dynamics.

Next, we expand our design to encompass a class of nonlin-
ear time-varying systems that can be transformed to a particular
canonical form, where the nonlinearities appear in a lower-
triangular pattern. This canonical form does not require the agent
dynamics to be passive (or even stable). We discuss in detail when
and how a given nonlinear time-varying system can be trans-
formed to this canonical form. Finally, we show how the same
design principles can be applied to output synchronization of het-
erogeneous networks without additional assumptions regarding
the agent dynamics.

We focus only on single-input single-output (siso) agent dy-
namics, while noting that the same principles can be applied to
many appropriately chosen classes of multiple-input multiple-
output (mimo) systems. Results from this paper were partially
presented at the 2013 European Control Conference and the 2014
American Control Conference (Grip, Saberi, & Stoorvogel, 2013b,
2014).

1.2. Notation and definitions

For a matrix A, A′ denotes its transpose and A∗ denotes its
conjugate transpose. The Kronecker product between A and B is
denoted by A ⊗ B. We denote by [X1; . . . ; Xn] the vector or matrix
obtained by stacking X1, . . . , Xn.

Definition 1. We say that a matrix pair (A, C) contains the matrix
pair (S, R) if there exists a matrix Π such that ΠS = AΠ and
CΠ = R.

Remark 1. Definition 1 implies that for any initial condition ω(0)
of the system ω̇ = Sω, yr = Rω, there exists an initial condition
x(0) of the system ẋ = Ax, y = Cx, such that y(t) = yr(t) for all
t ≥ 0.1

2. Network communication

The networks that will be considered in this paper consist of N
siso agents, with the state and output of agent i ∈ {1, . . . ,N} de-
noted by xi and yi, respectively. The agents are non-introspective;
hence, agent i does not have access to its own state or output. The
only information available to each agent is a linear combination of
its own output relative to that of the other agents:

ζi =

N
j=1

aij(yi − yj),

where aij ≥ 0 and aii := 0.
The communication topology of the network can be described

by a directed graph (digraph) G with nodes corresponding to the
agents in the network and edges given by the coefficients aij. In
particular, aij > 0 implies that an edge exists from agent j to i, in
which case j is called a parent of agent i and agent i is called a childof
agent j. The weight of the edge equals the magnitude of aij. We say
that there exists a directed path from node i to node j if G contains a
sequence of edges originating at node i and terminating at node j.

We shall make use of the matrix G = [gij], where gii =
N

j=1 aij,
and gij = −aij for j ≠ i. The matrix G is known as the Laplacian of
G and has the property that all the row sums are zero. In terms of
the coefficients of G, ζi can be rewritten as

ζi =

N
j=1

gijyj.

We shall later refer to the notion of a directed tree containedwithin
the network graph G . A directed tree is a subgraph of G in which
every node has exactly one parent, except a single root node with
no parents. Moreover, there must be a directed path from the root
node to every other node in the tree. A directed spanning tree is a
directed tree containing all the nodes of the graph.

1 See Lunze (2011) for a discussion of system inclusion and its role in network
synchronization.
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3. Homogeneous networks of linear agents

We start by considering a homogeneous network of N siso
agents on the form

ẋi = Axi + Bui, xi ∈ Rn, ui ∈ R, (1a)
yi = Cxi, yi ∈ R. (1b)

Note that no a priori couplings exist between the agents. Our
goal is to design the input ui based on available information to
achieve state synchronization among the agents, meaning that
limt→∞(xi − xj) = 0 for all i, j ∈ {1, . . . ,N}. We make the fol-
lowing assumption regarding the agent dynamics.

Assumption 1. The triple (A, B, C) is minimum-phase and of
relative degree ρ ≥ 1.

Assumption 1 implies that the triple (A, B, C) is invertible,
stabilizable, and detectable (see, e.g., Saberi, Stoorvogel, & Sannuti,
2006, Ch. 3).

Assumption 2. The graph G contains a directed spanning tree.

Assumption 2 implies that the Laplacian G has a single eigenvalue
at the origin and that all the other eigenvalues are located in the
open right-half complex plane (Ren & Beard, 2005). For control
design, the only information assumed available is a lower bound
τ > 0 on the real parts of the non-zero eigenvalues.

3.1. Special coordinate basis

We assume without loss of generality that the triple (A, B, C) is
given in the special coordinate basis (scb) (Sannuti & Saberi, 1987).
This means that xi can be decomposed as xi = [xia; xid], where
xia ∈ Rn−ρ and xid ∈ Rρ , and where

ẋia = Aaxia + Ladyi, (2a)
ẋid = Adxid + Bd(ui + Edaxia + Eddxid), (2b)
yi = Cdxid. (2c)

The matrices Ad ∈ Rρ×ρ , Bd ∈ Rρ×1, and Cd ∈ R1×ρ have the
special form

Ad =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

 , Bd =


0
...
0
1

 ,
Cd =


1 0 · · · 0


.

(3)

Furthermore, the eigenvalues of Aa are the invariant zeros of
(A, B, C).

If the agent dynamics is not in the scb, then it can be trans-
formed to the scb via nonsingular state and input transformations.
Suppose that the agent dynamics is given by ˙̄xi = Āx̄i + B̄ūi, yi =

C̄ x̄i, where (Ā, B̄, C̄) satisfies Assumption 1. Then there are nonsin-
gular matrices Γx and Γu such that, by defining x̄i = Γxxi and ūi =

Γuui, we obtain the system (1) with A = Γ −1
x ĀΓx, B = Γ −1

x B̄Γu,
and C = C̄Γx, where the triple (A, B, C) is in the scb. The trans-
formations Γx and Γu can be calculated using available software,
either numerically (Liu, Chen, & Lin, 2005) or symbolically (Grip &
Saberi, 2010).
3.2. Control design

Let δ ∈ (0, 1] and ε ∈ (0, 1] denote a low-gain and a high-gain
parameter, respectively. It is easy to see that (Ad, Bd, Cd) is control-
lable and observable. Let therefore K be chosen such that Ad − KCd
is Hurwitz. Furthermore, let Pδ = P ′

δ > 0 be the solution of the
algebraic Riccati equation

PδAd + A′

dPδ − τPδBdB′

dPδ + δI = 0, (4)

where, as mentioned in Section 3, τ > 0 is a lower bound on the
real parts of the eigenvalues of the Laplacian G. Define Fδ = −B′

dPδ .
Next, define a high-gain scaling matrix

Sε := diag(1, . . . , ερ−1), (5)

and define the feedback and output injection matrices

Fδε = ε−ρFδSε, Kε = ε−1S−1
ε K . (6)

Now, for each i ∈ {1, . . . ,N}, define the following dynamic con-
troller:
˙̂xia = Aax̂ia + LadCdx̂id, (7a)
˙̂xid = Adx̂id + Bd(Edax̂ia + Eddx̂id)+ Kε(ζi − Cdx̂id), (7b)

ui = Fδε x̂id. (7c)

Remark 2. Note that the internal dynamics of the controller (7)
has the form of an observer; however, it is not driven by the output
yi of agent i (which is unavailable), but by ζi =

N
j=1 gijyj. The

estimate x̂i := [x̂ia; x̂id] can therefore be interpreted as an estimate
of

N
j=1 gijxj.

Theorem 1. Consider the network with agents described by (1) and
the dynamic controller described by (7). Under Assumptions 1 and
2 there exists a δ∗

∈ (0, 1] such that, for each δ ∈ (0, δ∗
], there exists

an ε∗(δ) ∈ (0, 1] such that, for all ε ∈ (0, ε∗(δ)], limt→∞(xi − xj) =

0 for all i, j ∈ {1, . . . ,N}.

Proof. For each i ∈ {1, . . . ,N −1}, let x̄i = [x̄ia; x̄id] := xN −xi and
ˆ̄xi = [ˆ̄xia; ˆ̄xid] := x̂N − x̂i, where x̂i = [x̂ia; x̂id]. The synchronization
objective is achieved if x̄i → 0 for all i ∈ {1, . . . ,N−1}. Computing
˙̄xi by subtracting ẋi from ẋN , we obtain
˙̄xia = Aax̄ia + LadCdx̄id,

˙̄xid = Adx̄id + Bd(Fδε ˆ̄xid + Edax̄ia + Eddx̄id).

Noting that the row sums of G are zero, we have ζN − ζi = −
N

j=1

(gij − gNj)yj =
N

j=1(gij − gNj)(yN − yj) =
N−1

j=1 ḡijCdx̄jd, where
ḡij = gij − gNj, i, j ∈ {1, . . . ,N − 1}. It follows that we can write

˙̂x̄ia = Aa ˆ̄xia + LadCd ˆ̄xid,

˙̂x̄id = Ad ˆ̄xid + Bd(Eda ˆ̄xia + Edd ˆ̄xid)+

N−1
j=1

ḡijKεCdx̄jd − KεCd ˆ̄xid.

Next, define ξia = x̄ia, ξ̂ia = ˆ̄xia, ξid = Sε x̄id, and ξ̂id = Sε ˆ̄xid. Then,
using the identities SεAdS−1

ε = ε−1Ad, SεBd = ερ−1Bd, and CdS−1
ε =

Cd, we have

ξ̇ia = Aaξia + Viadξid,
˙̂
ξ ia = Aaξ̂ia + V̂iadξ̂id, (8a)

εξ̇id = Adξid + BdFδ ξ̂id + V εidaξia + V εiddξid, (8b)

ε
˙̂
ξ id = Adξ̂id + V̂ εidaξ̂a + V̂ εiddξ̂id

+

N−1
j=1

ḡijKCdξjd − KCdξ̂id, (8c)
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where Viad = V̂iad = LadCd, V εida = V̂ εida = ερBdEda, and V εidd =

V̂ εidd = ερBdEddS−1
ε . Clearly ∥Viad∥ and ∥V̂iad∥ are ε-independent,

while ∥V εida∥ and ∥V̂ εida∥ are O(ε). Moreover, ∥ερBdEddS−1
ε ∥ ≤

∥BdEdd∥∥diag(ερ, . . . , ε)∥ ≤ ε∥BdEdd∥, and hence ∥V εidd∥ and
∥V̂ εidd∥ are O(ε).

Define Ḡ = [ḡij], i, j ∈ {1, . . . ,N − 1}. It follows from the
proof of Zhang and Tian (2009, Lemma 1) that the eigenvalues of
Ḡ are the nonzero eigenvalues of G. Let ξa = [ξ1a; . . . ; ξ(N−1)a],
ξ̂a = [ξ̂1a; . . . ; ξ̂(N−1)a], ξd = [ξ1d; . . . ; ξ(N−1)d], and ξ̂d =

[ξ̂1d; . . . ; ξ̂(N−1)d]. Then

ξ̇a = (IN−1 ⊗ Aa)ξa + Vadξd,
˙̂
ξ a = (IN−1 ⊗ Aa)ξ̂a + V̂adξ̂d,

εξ̇d = (IN−1 ⊗ Ad)ξd + (IN−1 ⊗ BdFδ)ξ̂d + V εdaξa + V εddξd,

ε
˙̂
ξ d = (IN−1 ⊗ Ad)ξ̂d + V̂ εdaξ̂a + V̂ εddξ̂d

+ (Ḡ ⊗ KCd)ξd − (IN−1 ⊗ KCd)ξ̂d,

where Vad = diag(V1ad, . . . , V(N−1)ad), and V̂ad, V εda, V̂
ε
da, V

ε
dd, and V̂ εdd

are similarly defined. DefineU such thatU−1ḠU = J , where J is the
Jordan form of Ḡ, and let νa = (JU−1

⊗ In−ρ)ξa, ν̃a = νa − (JU−1
⊗

In−ρ)ξ̂a, νd = (JU−1
⊗ Iρ)ξd, and ν̃d = νd − (U−1

⊗ Iρ)ξ̂d. Then

ν̇a = (IN−1 ⊗ Aa)νa + Wadνd,

˙̃νa = (IN−1 ⊗ Aa)ν̃a + Wadνd − Ŵad(νd − ν̃d),

εν̇d = (IN−1 ⊗ Ad)νd + (J ⊗ BdFδ)(νd − ν̃d)

+ W ε
daνa + W ε

ddνd,

ε ˙̃νd = (IN−1 ⊗ Ad)ν̃d + (J ⊗ BdFδ)(νd − ν̃d)

+ W ε
daνa − Ŵ ε

da(νa − ν̃a)

+ W ε
ddνd − Ŵ ε

dd(νd − ν̃d)− (IN−1 ⊗ KCd)ν̃d,

where Wad = (JU−1
⊗ In−ρ)Vad(UJ−1

⊗ Iρ), Ŵad = (JU−1
⊗ In−ρ)

V̂ad(U ⊗ Iρ), W ε
da = (JU−1

⊗ Iρ)V εda(UJ
−1

⊗ In−ρ), W ε
dd = (JU−1

⊗

Iρ)V εdd(UJ
−1

⊗ Iρ), Ŵ ε
da = (U−1

⊗ Iρ)V̂ εda(UJ
−1

⊗ In−ρ), and Ŵ ε
dd =

(U−1
⊗ Iρ)V̂ εdd(U ⊗ Iρ). Finally, let Na and Nd be defined such that

ηa := Na[νa; ν̃a] = [ν1a; ν̃1a; . . . ; ν(N−1)a; ν̃(N−1)a], and ηd :=

Nd[νd; ν̃d] = [ν1d; ν̃1d; . . . ; ν(N−1)d; ν̃(N−1)d]. Then

η̇a = Ãaηa + W̃adηd, (9a)

εη̇d = Ãδηd + W̃ ε
daηa + W̃ ε

ddηd, (9b)

where Ãa = (I2(N−1) ⊗ Aa),

Ãδ = IN−1 ⊗


Ad 0
0 Ad − KCd


+ J ⊗


BdFδ −BdFδ
BdFδ −BdFδ


,

and

W̃ad = Na


Wad 0

Wad − Ŵad Ŵad


N−1
d ,

W̃ ε
ds = Nd


W ε

ds 0
W ε

ds − Ŵ ε
ds Ŵ ε

ds


N−1

s , s ∈ {a, d}.

Due to its upper block-triangular structure, the eigenvalues of Ãδ
are the eigenvalues of the matrices

Āδ :=


Ad + λBdFδ −λBdFδ
λBdFδ Ad − KCd − λBdFδ


, (10)

for each eigenvalue λ of Ḡ along the diagonal of J . Following along
the lines of Seo et al. (2009), we shall show that Āδ is Hurwitz for
all sufficiently small δ. Let P = P ′ > 0 be the solution of the Lya-
punov equation P(Ad − KCd) + (Ad − KCd)

′P = −I , and define
P̄δ = diag(Pδ,
√

∥Pδ∥P) and X̄δ = P̄δ Āδ+ Ā∗

δ P̄δ . We denote by X11 =

PδAd+A′

dPδ−2Re(λ)F ′

δFδ , X12 = λF ′

δFδ+λ
∗
√

∥Pδ∥F ′

δB
′

dP , X21 = X∗

12,
and X22 =

√
∥Pδ∥(P(Ad − KCd − λBdFδ) + (Ad − KCd − λBdFδ)∗P)

the ρ × ρ blocks of X̄δ . Using (4), we know that since Re(λ) ≥ τ ,
X11 = −δI − (2Re(λ) − τ)F ′

δFδ ≤ −δI − τF ′

δFδ , and we also have
X22 = −

√
∥Pδ∥(I+λPBdFδ+λ∗F ′

δB
′

dP) = −
1
2

√
∥Pδ∥I−

√
∥Pδ∥( 12 I+

λPBdFδ + λ∗F ′

δB
′

dP). It follows that

X̄δ ≤ −


δI 0

0
1
2


∥Pδ∥I


−


F ′

δ 0
0 I


W


Fδ 0
0 I


,

where the blocks of W are given by W11 = τ , W12 = −λFδ −

λ∗
√

∥Pδ∥B′

dP , W21 = W ∗

12, and W22 =
√

∥Pδ∥( 12 I + λPBdFδ +

λ∗F ′

δB
′

dP).
We only need to show that W is positive semidefinite. To this

end, let x = [x1; x2], x1 ∈ C, x2 ∈ Cρ , be an arbitrary vector. Then
we have that x∗Wx is greater than or equal to


|x1| ∥x2∥

 τ −|λ|(∥Fδ∥ +


∥Pδ∥∥PBd∥)

⋆


∥Pδ∥(
1
2

− 2|λ|∥PBd∥∥Fδ∥)

 
|x1|
∥x2∥


,

where ⋆ denotes a symmetric element. The first-order principal
minor of the above matrix is τ > 0. The second-order princi-
pal minor is 1

2τ
√

∥Pδ∥ − 2τ
√

∥Pδ∥|λ|∥PBd∥∥Fδ∥ − |λ|2(∥Fδ∥ +
√

∥Pδ∥∥PBd∥)
2. Since all the eigenvalues of Ad are in the closed left-

half complex plane, we know by the properties of Riccati-based
low-gain design that Pδ → 0 as δ → 0 (Lin, 1999, Lemma 2.2.6).
Noting that ∥Fδ∥ is O(∥Pδ∥), we see that the second and third term
of the above expression are O(∥Pδ∥), and thus they are dominated
by the first term for all sufficiently small δ. It follows thatW is pos-
itive definite for all sufficiently small δ and X̄δ is therefore negative
definite. Letting δ be small enough that this holds for all eigenval-
ues λ of Ḡ, we can therefore conclude that Ãδ is Hurwitz.

Let P̃δ = P̃∗

δ > 0 be the solution of the Lyapunov equation
P̃δ Ãδ + Ã∗

δ P̃δ = −I2(N−1)ρ , and let P̃a = P̃ ′
a > 0 be the so-

lution of the Lyapunov equation P̃aÃa + Ã′
aP̃a = −I2(N−1)(n−ρ),

which exists because Ãa is Hurwitz. Consider the Lyapunov func-
tion V = εη∗

d P̃δηd + εη∗
a P̃aηa, for which we have

V̇ = −∥ηd∥
2
+ 2Re(η∗

d P̃δW̃
ε
daηa)

+ 2Re(η∗

d P̃δW̃
ε
ddηd)− ε∥ηa∥

2
+ 2εRe(η∗

a P̃aW̃adηd)

≤ −(1 − 2εγ1)∥ηd∥2
− ε∥ηa∥

2
+ 2εγ2∥ηd∥∥ηa∥,

where εγ1 ≥ ∥P̃δW̃ ε
dd∥ and εγ2 ≥ ∥P̃δW̃ ε

da∥ + ε∥P̃aW̃ad∥. Let ε be
chosen small enough that 1 − 2εγ1 ≥

1
2 . Then

V̇ ≤ −

∥ηd∥ ∥ηa∥

  1
2

−εγ2

−εγ2 ε

 
∥ηd∥
∥ηa∥


.

The first-order principal minor of the above matrix is 1
2 > 0. The

second-order principal minor is 1
2ε−ε2γ 2

2 , which is positive for all
ε < 1/(2γ 2

2 ). It follows that ηa → 0 and ηd → 0, which implies
x̄i → 0 for all i ∈ {1, . . . ,N − 1}. �

In addition to selecting a gain matrix K to ensure that Ad − KCd
is Hurwitz, our design methodology requires choosing sufficiently
low parameters δ and ε as indicated by Theorem 1. Although it is
possible to derive analytical upper bounds on δ and ε, these bounds
are likely to be conservative, and the parameters should instead be
treated as tuning parameters.
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4. Homogeneous networks of nonlinear time-varying agents

In this section we consider nonlinear time-varying agents that
can be represented on the following canonical form:

ẋia = Aaxia + Ladyi, (11a)
ẋid = Adxid + φd(t, xia, xid)+ Bd(ui + Edaxia + Eddxid), (11b)
yi = Cdxid, (11c)

where Aa is Hurwitz and Ad, Bd, and Cd have the special form shown
in (3). The system (11) differs from (2) only in the presence of
a time-varying nonlinearity φd(t, xia, xid). We make the following
assumption about this nonlinearity.

Assumption 3. The function φd(t, xia, xid) is continuously differ-
entiable and Lipschitz continuous with respect to (xia, xid), uni-
formly in t , and piecewise continuous with respect to t . Moreover,
the nonlinearity has the following lower-triangular structure:

∂φdj(t, xia, xid)
∂xidk

= 0, ∀k > j, (12)

where φdj(t, xia, xid) denotes the j’th element of φd(t, xia, xid) and
xidk denotes the k’th element of xid.

The canonical form in (11) is similar to various types of chained,
lower-triangular canonical forms common in the context of high-
gain observer design and output feedback control (see, e.g., Khalil
& Praly, 2014). Among the practically relevant types of systems
encompassed by this canonical form are mechanical systems with
nonlinearities occurring at the acceleration level.

4.1. Control design

Let Kε and Fδε be designed as in Section 3.2, and define the
following dynamic controller:

˙̂xia = Aax̂ia + LadCdx̂id, (13a)
˙̂xid = Adx̂id + φd(t, x̂ia, x̂id)+ Kε(ζi − Cdx̂id)

+ Bd(Edax̂ia + Eddx̂id), (13b)

ui = Fδε x̂id. (13c)

Theorem 2. Consider the network with agents described by (11) and
the dynamic controller described by (13). Under Assumptions 2 and
3 there exists a δ∗

∈ (0, 1] such that, for each δ ∈ (0, δ∗
], there exists

an ε∗(δ) ∈ (0, 1] such that, for all ε ∈ (0, ε∗(δ)], limt→∞(xi − xj) =

0 for all i, j ∈ {1, . . . ,N}.

Proof. Define x̄i and ˆ̄xi as in the proof of Theorem 1. By Taylor’s
theorem (see, e.g., Nocedal &Wright, 1999, Theorem 11.1), we can
write φd(t, xNa, xNd)−φd(t, xia, xid) = Φia(t)x̄ia +Φid(t)x̄id, where
Φia(t) andΦid(t) are given by

Φia(t) =

 1

0

∂φd

∂xia
(t, xia + px̄ia, xid + px̄id) dp,

Φid(t) =

 1

0

∂φd

∂xid
(t, xia + px̄ia, xid + px̄id) dp.

Due to the Lipschitz property of the nonlinearity, the elements
of Φia(t) and Φid(t) are uniformly bounded, and the lower-
triangular structure of the nonlinearity implies thatΦid(t) is lower-
triangular. Similarly, we have φd(t, x̂Na, x̂Nd) − φd(t, x̂ia, x̂id) =
Φ̂ia(t)ˆ̄xia + Φ̂id(t)ˆ̄xid, for matrices Φ̂ia(t) and Φ̂id(t) with the same
properties. We can now write

˙̄xia = Aax̄ia + LadCdx̄id,
˙̂x̄ia = Aa ˆ̄xia + LadCd ˆ̄xid,

˙̄xid = Adx̄id + Φia(t)x̄a + Φid(t)x̄d

+ Bd(Fδε ˆ̄xid + Edax̄ia + Eddx̄id),
˙̂x̄id = Ad ˆ̄xid + Φ̂ia(t)ˆ̄xa + Φ̂id(t)ˆ̄xd + Bd(Eda ˆ̄xia + Edd ˆ̄xid)

+

N−1
j=1

ḡijKεCdx̄id − KεCd ˆ̄xid.

Next, defining ξia, ξid, ξ̂ia, and ξ̂id as in the proof of Theorem 1, we
get the same system equations as in (8), but with V εida := ερBdEda +
εSεΦia(t), V̂ εida := ερBdEda + εSεΦ̂ia(t), V εidd := ερBdEddS−1

ε +

εSεΦid(t)S−1
ε , and V̂ εidd := ερBdEddS−1

ε +εSεΦ̂id(t)S−1
ε . Clearly∥V εida∥

and ∥V̂ εida∥ are O(ε). It is shown in the proof of Theorem 1 that the
first term of V εidd and V̂ εidd is O(ε). Moreover, the second term is O(ε)
due to the lower-triangular structure ofΦid and Φ̂id (see, e.g., Grip
& Saberi, 2014). The proof can now be completed in the same way
as the proof of Theorem 1. �

4.2. Transforming nonlinear time-varying systems to the canonical
form

Our design for nonlinear time-varying agents requires the sys-
tem to be given in the particular canonical form (11). Given an ar-
bitrary nonlinear time-varying system, one would therefore like
to know (i) whether it is possible to transform it to this canon-
ical form; and (ii) how the appropriate transformation can be
constructed. If we limit ourselves to linear state and input trans-
formations, then both questions are simultaneously answered by
the following theorem.

Theorem 3. Consider the nonlinear time-varying system

˙̄xi = Āx̄i + B̄ūi + φ̄(t, x̄i), x̄i ∈ Rn, ūi ∈ R, (14a)

yi = C̄ x̄i, yi ∈ R, (14b)

where (Ā, B̄, C̄) is minimum-phase and of relative degree ρ ≥ 1; and
where φ̄(t, x̄i) is continuously differentiable and Lipschitz continuous
with respect to x̄i, uniformly in t, and piecewise continuous with
respect to t. Let Γx ∈ Rn×n andΓu ∈ R be nonsingular state and input
transformations such that the triple (A, B, C) = (Γ −1

x ĀΓx,Γ
−1
x B̄Γu,

C̄Γx) is in the scb, and define x̄i = Γxxi and ūi = Γuui. Then either

• the systemwith state xi, input ui, and output yi satisfies the canon-
ical form (11); or

• there exists no set of linear, non-singular state and input trans-
formations that take the system to the canonical form.

Proof. First, note that the linear portion of (11) is in the scb.
Thus, all we have to show is that all transformations that take the
linear portion of the system to the scb are equivalent with respect
to satisfying Assumption 3. Consider therefore the system (11)
satisfyingAssumption 3, and let (A, B, C)denote the corresponding
linear triple. Let Γ̃x and Γ̃u denote state and input transformations
such that (Ã, B̃, C̃) = (Γ̃ −1

x AΓ̃x, Γ̃
−1
x BΓ̃u, CΓ̃x) is also in the scb.

Define xi = Γ̃xx̃i, and ui = Γ̃uũi, and partition x̃i as x̃i = [x̃ia; x̃id],
where x̃ia ∈ Rn−ρ and x̃id ∈ Rρ . Then we can write

˙̃xia = Ãax̃ia + L̃adyi + φ̃a(t, x̃ia, x̃id),
˙̃xid = Adx̃id + φ̃d(t, x̃ia, x̃id)+ Bd(ũi + Ẽdax̃ia + Ẽddx̃id),
yi = Cdx̃id,
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and we need to show that φ̃a(t, x̃ia, x̃id) = 0 and that φ̃d(t, x̃ia, x̃id)
satisfies (12).

Let Γ̃x =


Γxaa Γxad
Γxda Γxdd


be partitioned according to the dimen-

sions of xia and xid, and define OK (A, C) = [C ′, . . . , (CAK−1)′]′, for
matrices A and C of compatible dimensions. Note that Oρ(Ã, C̃) =

Oρ(A, C) = [0,Oρ(Ad, Cd)] = [0, Iρ]. On the other hand, Oρ(Ã,
C̃) = Oρ(A, C)Γ̃x = [0, Iρ]Γ̃x = [Γxda,Γxdd]. It follows that
Γxda = 0 and Γxdd = Iρ , which implies that x̃id = xid.

Next, we have Γ̃xB̃ = BΓ̃u, which implies ΓxadBd = 0, meaning
that column ρ of Γxad is zero. Furthermore, we have Γ̃xÃ = AΓ̃x,
which implies ΓxaaL̃adCd + Γxad(Ad + BdẼdd) = AaΓxad + LadCd. It
follows that (ΓxaaL̃ad − Lad)Cd = AaΓxad − ΓxadAd. Let 1 < k ≤ ρ
and note that column k on the left-hand side of the last equation
is zero. Suppose that column k of Γxad is also zero (note that this
holds for k = ρ) which implies that column k of AaΓxad is zero.
Since column k of ΓxadAd is equal to column k− 1 of Γxad, it follows
that this column is also zero. By induction, Γxad = 0, and hence
xia = Γxaax̃ia. It now follows that φ̃a(t, x̃ia, x̃id) = 0 and that
φ̃d(t, x̃ia, x̃id) satisfies (12). �

5. Heterogeneous networks of linear agents

We now consider heterogeneous networks of linear agents,
where each agent i ∈ {1, . . . ,N} is described by

ẋi = Aixi + Biui, xi ∈ Rni , ui ∈ R, (15a)
yi = Cixi, yi ∈ R. (15b)

We make the following assumption about the agent models.

Assumption 4. For each i ∈ {1, . . . ,N}, the triple (Ai, Bi, Ci) is
minimum-phase and of relative degree ρi ≥ 1.

Unlike the previous sections, our focus here will be on regulated
output synchronization, where the goal is to ensure synchroniza-
tion of the outputs toward a reference trajectory generated by an
autonomous exosystem

ẇ = Sw, w ∈ Rnr (16a)
yr = Rw, yr ∈ R. (16b)

Because unobservable and asymptotically stable modes play no
role asymptotically, we assume without loss of generality that
(S, R) is observable and that the eigenvalues of S are in the closed
right-half complex plane.

To achieve regulated output synchronization, at least some of
the agents must have knowledge of their output relative to that of
the exosystem. We therefore assume that each agent has access to
the quantity

ψi = ιi(yi − yr), ιi =


1, i ∈ I ,
0, otherwise,

where I ⊂ {1, . . . ,N} represents a subset of the agents. We
replace Assumption 2 with the following assumption.

Assumption 5. Every node of G is amember of a directed treewith
its root contained in I .

For the purpose of the derivations in this section we define the
matrix Ḡ := G + diag(ι1, . . . , ιN). Note that, according to Lemma
7 of Grip et al. (2012), the eigenvalues of Ḡ are all in the open
right-half complex plane.We shall assume knowledge of a positive
lower bound on the real part of the eigenvalues of Ḡ, and for the
remainder of the section, τ > 0 represents such a lower bound.
5.1. Special case

We begin by solving the regulated synchronization problem for
a special case where

(1) for each i ∈ {1, . . . ,N}, the pair (Ai, Ci) contains (S, R); and
(2) the triples (Ai, Bi, Ci) for i ∈ {1, . . . ,N} are of a common

relative degree ρ ≥ 1.

In Section 5.2 we shall show that our original problem formulation
can be transformed to this special case by first augmenting the
agents with dynamic pre-compensators.

We can assumewithout loss of generality that each agentmodel
is given in the scb, and thus xi can be partitioned as xi = [xia; xid],
where xia ∈ Rni−ρ and xid ∈ Rρ , and where

ẋia = Aiaxia + Liadyi, (17a)
ẋid = Adxid + Bd(ui + Eidaxia + Eiddxid), (17b)
yi = Cdxid. (17c)

The matrices Ad, Bd, and Cd have the special form in (3), and the
eigenvalues of Aia are the invariant zeros of the triple (Ai, Bi, Ci),
which are all in the open left-half complex plane.

Let Kε and Fδε be designed as in Section 3.2, and define the
following dynamic controller:

˙̂xid = Adx̂id + Kε(ζi + ψi − Cdx̂id), (18a)

ui = Fδε x̂id. (18b)

Theorem 4. Consider the heterogeneous network with agents de-
scribed by (17) and the dynamic controller described by (18). Sup-
pose that for each i ∈ {1, . . . ,N}, the pair (Ai, Ci) contains (S, R)
and the triple (Ai, Bi, Ci) is of relative degree ρ ≥ 1. Then, under As-
sumptions 4 and 5, there exists a constant δ∗

∈ (0, 1] such that, for
each δ ∈ (0, δ∗

], there exists an ε∗(δ) ∈ (0, 1] such that, for all
ε ∈ (0, ε∗(δ)], limt→∞(yi − yr) = 0 for all i ∈ {1, . . . ,N}.

Proof. For each i ∈ {1, . . . ,N}, let x̄i = xi −Πiω, whereΠi is such
that ΠiS = AiΠi, CiΠi = R in accordance with Definition 1. Then
˙̄xi = Aixi −ΠiSω + Biui = Aixi − AiΠiω + Biui = Aix̄i + Biui. Fur-
thermore, the output synchronization error ei = yi − yr is given by
ei = Cixi − Rω = Cixi − CiΠiω = Cix̄i. Since the dynamics of the x̄i
system with output ei is governed by the same triple (Ai, Bi, Ci) as
the dynamics of agent i, we can decompose it in the same way as
in (17), by writing x̄i = [x̄ia; x̄id], where

˙̄xia = Aiax̄ia + Liadei,
˙̄xid = Adx̄id + Bd(ui + Eidax̄ia + Eiddx̄id),

and ei = Cdx̄id. Define ξia = x̄ia, ξid = Sε x̄id and ξ̂id = Sε x̂id. Then it
is easy to confirm that we can write

ξ̇ia = Aiaξia + Viadξid,

εξ̇id = Adξid + BdFδ ξ̂id + V εidaξia + V εiddξid,

where Viad = LiadCd, V εida = ερBdEida, and V εidd = ερEiddS−1
ε . We also

have ei = Cdξid. Furthermore, noting that
N

j=1 gij = 0, we can
write ζi +ψi =

N
j=1 gijyj + ιi(yi −yr) =

N
j=1 gij(yj −yr)+ ιi(yi −

yr) =
N

j=1 ḡijej, where ḡij represents the coefficients of thematrix
Ḡ = G + diag(ι1, . . . , ιN). We therefore have

ε
˙̂
ξ id = Adξ̂id + K

N
j=1

ḡijCdξjd − KCdξ̂id.
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Let ξa = [ξ1a; . . . ; ξNa], ξd = [ξ1d; . . . ; ξNd], and
ξ̂d = [ξ̂1d; . . . ; ξ̂Nd].
Then

ξ̇a = Ãaξa + Vadξd,

εξ̇d = (IN ⊗ Ad)ξd + (IN ⊗ BdFδ)ξ̂d + V εdaξa + V εddξd,

ε
˙̂
ξ d = (IN ⊗ Ad)ξ̂d + (Ḡ ⊗ KCd)ξd − (IN ⊗ KCd)ξ̂d,

where Ãa = diag(Aia, . . . , ANa), and where Vad, V εda, V
ε
dd are defined

in the same way as in the proof of Theorem 1. Note that ∥Vad∥ is
ε-independent, whereas ∥V εda∥ and ∥V εdd∥ are O(ε).

Let U be defined such that U−1ḠU = J , where J is the Jordan
form of the matrix Ḡ. Define νa = ξa, νd = (JU−1

⊗ Iρ)ξd, and
ν̃d = νd − (U−1

⊗ Iρ)ξ̂d. Then we have

ν̇a = Ãaνa + Wadνd,

εν̇d = (IN ⊗ Ad)νd + (J ⊗ BdFδ)(νd − ν̃d)+ W ε
daνa + W ε

ddνd,

ε ˙̃νd = (IN ⊗ Ad)ν̃d + (J ⊗ BdFδ)(νd − ν̃d)

+ W ε
daνa + W ε

ddνd − (IN ⊗ KCd)ν̃d,

where Wad = Vad(UJ−1
⊗ Iρ), W ε

da = (JU−1
⊗ Iρ)V εda, and W ε

dd =

(JU−1
⊗Iρ)V εdd(UJ

−1
⊗Iρ). Letting ηa = νa, and lettingNd be defined

such that ηd = Nd[νd; ν̃d] := [ν1d; ν̃1d; . . . ; νNd; ν̃Nd], we obtain
dynamics on the same form as (9), where Ãδ is defined as before,
and where

W̃ad =

Wad 0


N−1

d , W̃ ε
da = Nd


W ε

da
W ε

da


,

W̃ ε
dd = Nd


W ε

dd 0
W ε

dd 0


N−1

d .

The remainder of the proof now proceeds in the same way as the
proof of Theorem 1, to show that x̄i → 0, which implies ei → 0,
thus achieving output synchronization. �

5.2. Recovering the special case via pre-compensators

We now show how to recover the special case specified in
the previous section, by augmenting each original agent with two
dynamic pre-compensators.
Pre-Compensator 1. The purpose of the first pre-compensator is to
add modes from the exosystem to agent i, so that the augmented
agent dynamics contains the exosystem. Toward this end, start by
constructing a state transformation Σi ∈ Rni×ni taking the pair
(Ai, Ci) to the Kalman observable canonical form:

Σ−1
i AiΣi =


Ai11 0
Ai21 Ai22


, CiΣi =


Ci1 0


,

where Ai11 ∈ Rn̄i×n̄i and (Ai11, Ci1) is observable. Next, let

Oi =

 Ci1 −R
...

...

Ci1A
n̄i+nr−1
i11 −RS n̄i+nr−1

 . (19)

Let qi denote the dimension of the null space of Oi, and define
ri = nr − qi. Furthermore, let Λiu ∈ Rn̄i×qi and Φiu ∈ Rnr×qi be
chosen such that

Oi


Λiu
Φiu


= 0, rank


Λiu
Φiu


= qi.

The matrix Φiu has full column rank because (Ai11, Ci1) is observ-
able (see Grip et al., 2012, App. D). Let thereforeΦio be chosen such
that Φi := [Φiu,Φio] is nonsingular. We can now state the follow-
ing lemma, which is proven in the Appendix.
Lemma 1. We have that

Φ−1
i SΦi =


Si11 Si12
0 Si22


, (20)

where Si11 ∈ Rqi×qi , Si12 ∈ Rqi×ri , and Si22 ∈ Rri×ri , and where
Ai11Λiu = ΛiuSi11. Furthermore, there exists a nonsingular
transformation Γi ∈ Rri×ri taking Si22 to the companion form

Γ −1
i Si22Γi =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−si1 −si2 · · · −siri

 .
Based on Lemma 1, let Aip1 denote the above companion form of
Si22, and define Bip1 = [0; . . . ; 0; 1] and Cip1 = [1, 0, . . . , 0], so
that (Aip1, Bip1) is controllable and (Aip1, Cip1) is observable. We de-
fine the following dynamic pre-compensator:

żi1 = Aip1zi1 + Bip1vi, (21a)

ui = Cip1zi1, (21b)

where vi ∈ R is a new input.
Pre-Compensator 2. The purpose of the second pre-compensator
is to make the relative degree of the augmented system equal
to some fixed ρ, which is chosen such that ρ ≥ ρi + ri for all
i ∈ {1, . . . ,N}, where ρi is the relative degree of (Ai, Bi, Ci). De-
fine the matrices

Aip2 =


0 Iρ−ρi−ri−1
0 0


,

Bip2 = [0; . . . ; 0; 1], and Cip2 = [1, 0, . . . , 0]. Define the following
dynamic pre-compensator:

żi2 = Aip2zi2 + Bip2υi, (22a)

vi = Cip2zi2, (22b)

where υi ∈ R is a new input.2
By stacking the original state and the state of the two pre-

compensators as χi = [xi; zi1; zi2], we obtain the following aug-
mented agent dynamics with input υi:

χ̇i = Aiχi + Biυi, (23a)
yi = Ciχi, (23b)

where

Ai =

Ai BiCip1 0
0 Aip1 Bip1Cip2
0 0 Aip2


, Bi =

 0
0

Bip2


,

Ci =

Ci 0 0


.

The following result recovers the result of Theorem 4 for general
systems satisfying Assumption 4.

Theorem 5. The augmented agent dynamics (23) satisfies Assump-
tion 4, andmoreover, for each i ∈ {1, . . . ,N}, (i) the pair (Ai, Ci) con-
tains (S, R); and (ii) the triple (Ai,Bi, Ci) is of relative degree ρ > 0.

Proof. Since the pre-compensators are zero-free and have their
poles in the right-half complex plane, no pole-zero cancellations
occur in the augmented system, and hence it has the same invari-
ant zeros as the original system and satisfies Assumption 4. The
relative degree of the two pre-compensators are ri and ρ − ρi − ri.

2 In the special casewhere ρ−ρi−ri = 0, the pre-compensator is defined simply
as vi = υi .
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The relative degree of augmented dynamics is therefore ρi + ri +
ρ − ρi − ri = ρ.

To show that (Ai, Ci) contains (S, R), we start by showing that
there existsΠi such thatΠiS = Ai1Πi, Ci1Πi = R, where

Ai1 =


Ai BiCip1
0 Aip1


, Ci1 =


Ci 0


.

Post-multiplying by Φi and defining Π̄i := ΠiΦi, it can be seen
from the proof of Lemma 1 that we get the equivalent expression
Π̄i11 Π̄i12
Π̄i21 Π̄i22

 
Si11 Si12
0 Si22


=


Ai BiCip1
0 Aip1

 
Π̄i11 Π̄i12
Π̄i21 Π̄i22


,


Ci 0

 
Π̄i11 Π̄i12
Π̄i21 Π̄i22


=


RΦiu RΦio


.

From Lemma 1 we have Ai11Λiu = ΛiuSi11. As remarked in Sec-
tion 3, the pair (Ai, Ci) is detectable, and hence the eigenval-
ues of the matrix Ai22 are in the open left-half complex plane.
Since the eigenvalues of Si11 are in the closed right-half complex
plane, we can therefore find a solution Xi of the Sylvester equation
XiSi11 = Ai22Xi + Ai21Λiu (see, e.g., Saberi, Stoorvogel, & Sannuti,
2000, App. 2.A). It follows that
Λiu
Xi


Si11 =


Ai11 0
Ai21 Ai22

 
Λiu
Xi


.

Letting Π̄i11 = Σi[Λiu; Xi], we therefore have Π̄i11Si11 = AiΠ̄i11.
Furthermore, using the identity Ci1Λiu = RΦiu from (A.1), we have
CiΠ̄i11 = [Ci1, 0][Λiu; Xi] = Ci1Λiu = RΦiu.

Let Π̄i21 = 0. Next, consider the equations Π̄i11Si12 +Π̄i12Si22 =

AiΠ̄i12 + BiΞi, CiΠ̄i12 = RΦio with unknowns Π̄i12 and Ξi. This
set of regulator equations is solvable if the Rosenbrock system ma-
trix


Ai − λI Bi

Ci 0


has rank ni + 1 for each λ that is an eigenvalue

of Si22 (Saberi et al., 2000, Corollary 2.5.1). The normal rank of this
matrix is ni+1, because the system is right-invertible (Saberi, San-
nuti, & Chen, 1995, Proposition 3.1.6). The matrix retains its nor-
mal rank for each λ that is an eigenvalue of Si22, since these are
all in the closed right-half complex plane while the invariant ze-
ros of (Ai, Bi, Ci) are all in the open left-half complex plane. Fi-
nally, consider the equations Π̄i22Si22 = Aip1Π̄i22, Cip1Π̄i22 = Ξi

with unknown Π̄i22. To see that these can be solved, note that we
can equivalently write Π̃i22Si22 = Si22Π̃i22, Cip1Γ

−1
i Π̃i22 = Ξi,

where Π̃i22 = ΓiΠ̄i22. Letting Ōi denote the observability matrix of
the pair (diag(Si22, Si22), [Cip1Γ

−1
i ,−Ξi]), it follows from the Cay-

ley–Hamilton theorem that

rank Ōi = rank

 Cip1Γ
−1
i −Ξ
...

...

Cip1Γ
−1
i Sri−1

i22 −ΞiS
ri−1
i22

 ≤ ri.

The first ri columns of the above matrix constitute the observabil-
ity matrix of the observable pair (Si22, Cip1Γ

−1
i ), and it follows that

Π̃i22 can be chosen such that Ōi[Π̃i22; I] = 0; that is, [Π̃i22; I] spans
the unobservable subspace of (diag(Si22, Si22), [Cip1Γ

−1
i ,−Ξi]).

Then Cip1Γ
−1
i Π̃i22 = Ξi and

Si22 0
0 Si22

 
Π̃i22
I


=


Π̃i22
I


Si22,

which implies Si22Π̃i22 = Π̃i22Si22. Combining the above expres-
sions, we have
Π̄i11 Π̄i12
Π̄i21 Π̄i22

 
Si11 Si12
0 Si22


=


Π̄i11Si11 Π̄i11Si12 + Π̄i12Si22

0 Π̄i22Si22


=


AiΠ̄i11 AiΠ̄i12 + BiΞi

0 Aip1Π̄i22


=


Ai BiCip1
0 Aip1

 
Π̄i11 Π̄i12
Π̄i21 Π̄i22



Fig. 1. Example network graph, with a directed spanning tree rooted at node 2
illustrated with bold arrows.

and
Ci 0

 
Π̄i11 Π̄i12
Π̄i21 Π̄i22


=


CiΠ̄i11 CiΠ̄i12


=


RΦiu RΦio


.

Defining Bi1 = [0; Bip1], we can write

Ai =


Ai1 Bi1Cip2
0 Aip2


, Ci =


Ci1 0


.

It is now straightforward to see that the matrixΠ∗

i := [Πi; 0] ver-
ifies that the pair (Ai, Ci) contains (S, R). �

6. Example

Consider a network of N = 10 agents, illustrated in Fig. 1. This
network has a directed spanning tree rooted at node 2, and thus it
satisfies Assumption 2. The real part of the non-zero eigenvalues
are bounded below by approximately 0.76. For design purposes,
we assume that a lower bound τ = 0.6 is known. We shall first
consider a homogeneous linear example and then a homogeneous
nonlinear and time-varying example. A heterogeneous example is
given in a conference paper by Grip et al. (2013b).

Consider the linear agent model described by the matrices

A =


−1 1 −1

−0.1 0 1.1
−0.1 1 −0.9


, B =

0
1
1


, C =


1 1 −1


.

This model is of relative degree ρ = 2 and has an invariant zero
at −2, and hence it satisfies Assumption 1. It also has a pole at
λ ≈ 0.66, and thus it is exponentially unstable. By using the state
and input transformations

Γx =

1 0 0
0 1 1
1 0 1


, Γu = 1,

the agent dynamics is transformed to the scb (2):

ẋia = −2xia + yi,

ẋid =


0 1
0 0


xid +


0
1

 
ui + xia +


0 0.1


xid


,

yi =

1 0


xid.

For the remainder of the example,we shallwork onlywith this rep-
resentation. We start the design by selecting K = [3; 2], to place
the poles of Ad − KCd at −1 and −2. Next, we find the solution of
the algebraic Riccati equation (4) for a given δ ∈ (0, 1], and we
compute Kε = ε−1S−1

ε K and Fδε = ε−2FδSε for a given ε ∈ (0, 1].
Finally, we implement the controller (7)with the computed values.
After some trial and error, we find that δ = 10−5 and ε = 0.07
ensures synchronization, which yields Kε ≈ [42.86; 408.15] and
Fδε = [−0.83, − 1.67]. Fig. 2 shows the synchronization error
yi − y10 in the output channel for agents 1, . . . , 9.
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Fig. 2. Synchronization errors for linear example.

Fig. 3. Agent outputs for nonlinear example.

Next, we consider the agent model

ẋia = −2xia + yi,

ẋid =


0 1
0 0


xid +


0
1


(ui + φd(t, xia, xid)),

yi =

1 0


xid,

where φd(t, xia, xid) = 0.3 sin(t)xia + sin(0.1xid1) + 2 ln(1 +

x2id2). It is easy to see that this model is in the canonical form
(11) and that the nonlinearity satisfies Assumption 3. We follow
the same procedure for finding Kε and Fδε , and implement the
controller (13). We find that δ = 10−5 and ε = 1 ensures
synchronization, which yields Kε = [3; 2] and Fδε ≈ [−0.0041,
−0.1167]. Fig. 3 shows the simulated agent outputs y1, . . . , y10,
which clearly synchronize.3

7. Concluding remarks

In this paper we have addressed the output synchronization
problem for classes of directed networks that present a num-
ber of challenges, including unstable, nonlinear time-varying, and
heterogeneous agent dynamics; agents’ lack of information about
their own state or output; and agents’ inability to exchange con-
troller states.

In each of the designs, an observer gain K and a control gain
Fδ are designed based on the matrices Ad, Bd, and Cd alone, which
are uniquely defined by the agents’ relative degree. Consequently,
the controllers do not make full use of the available information
about the agent dynamics, and they may dominate intrinsically
stabilizing dynamics through the use of unnecessarily low or high
gain. Design methodologies that better exploit the dynamics of
the agents are likely to lead to improved performance and are
an interesting topic for future research. Generalizations to broad
classes of mimo systems is another area that will be addressed in
future work.

3 The simulations were carried out using the Dormand–Prince variable-step
integration method implemented in Matlab/Simulink.
Appendix. Proof of Lemma 1

The columns of [Λiu;Φiu] span the unobservable subspace of
the pair (diag(Ai11, S), [Ci1,−R]), which is diag(Ai11, S)-invariant,
and hence there exists a Si11 ∈ Rqi×qi such that
Ai11 0
0 S

 
Λiu
Φiu


=


Λiu
Φiu


Si11,


Ci1 −R

 
Λiu
Φiu


= 0. (A.1)

It follows that Ai11Λiu = ΛiuSi11. Moreover, SΦiu = ΦiuSi11, which
means that

S

Φiu Φio


=


Φiu Φio

 
Si11 Si12
0 Si22


,

for some matrices Si12 and Si22. This, in turn, implies (20). Next,
because (S, R) is observable, we have rank


S − λI

R


= n for all

eigenvalues λ of S, which implies that rank(S − λI) = n − 1 for
all eigenvalues of S. Due to the triangular form obtained via the
similarity transform in (20), we therefore have rank(Si22 − λI) =

ri − 1 for all eigenvalues λ of Si22. It follows from this that Si22 is a
non-derogatory matrix that can be transformed to the companion
form (Golub & van Loan, 1996, Section 7.4.6).
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