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1 Introduction

We consider only finite graphs without loops or multiple edges. Our terminology and
notation are standard except as indicated. A good reference for undefined terms is [28].
We mention only that given graphs G, H with disjoint vertex sets, we will denote their
disjoint union by G ∪ H , and their join by G + H .

We generally use the standard abbreviation for integer sequences; e.g., (4, 4, 4, 4,

4, 5, 5, 6) will be denoted 455261. An integer sequence π = (d1 ≤ · · · ≤ dn) is called
graphical if there exists a graph G having π as its vertex degree sequence; in that
case, G is called a realization of π . If P is a graph property, such as ‘hamiltonian’
or ‘k-connected’, we call a graphical sequence π forcibly P if every realization of π

has property P . If π = (d1 ≤ · · · ≤ dn) and π ′ = (d ′
1 ≤ · · · ≤ d ′

n) are integer
sequences, we say π ′ majorizes π , denoted π ′ ≥ π , if d ′

i ≥ di for 1 ≤ i ≤ n. There
is an analogous definition and notation for π ′ minorizes π .

Historically, the vertex degrees of a graph have been used to provide sufficient condi-
tions for the graph to have certain properties, such as hamiltonicity or k-connectedness.
In particular, sufficient conditions for π to be forcibly hamiltonian were given by sev-
eral authors in [21,33,49], culminating in the following theorem of Chvátal [30].

Theorem 1.1 (Chvátal [30]) Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence, with
n ≥ 3. If

di ≤ i ⇒ dn−i ≥ n − i, for 1 ≤ i ≤ 1
2 (n − 1), (1)

then π is forcibly hamiltonian.

Unlike its predecessors, Theorem 1.1 has the property that if a sequence π fails
to satisfy condition (1) for some index i , then π is majorized by the sequence π ′ =
i i (n−i −1)n−2i (n−1)i , with nonhamiltonian realization G ′ = Ki +(Ki ∪Kn−2i ). As
we will see in Sect. 2, this key property implies that condition (1) in Theorem 1.1 is the
best of an entire important class of degree conditions for π to be forcibly hamiltonian.

Sufficient conditions for π to be forcibly k-connected have been given by several
authors in [25,26], culminating in the following theorem of Bondy [21] (though the
form in which we present it is due to Boesch [20]).

Theorem 1.2 (Bondy [21]) Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence, with
n ≥ 2 and 1 ≤ k ≤ n − 1. If

di ≤ i + k − 2 ⇒ dn−k+1 ≥ n − i, for 1 ≤ i ≤ 1
2 (n − k + 1), (2)

then π is forcibly k-connected.
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If the sequence π fails to satisfy (2) for some index i , then π is majorized by
π ′ = (i + k − 2)i (n − i − 1)n−k−i+1(n − 1)k−1, with not-k-connected realization
G ′ = Kk−1 + (Ki ∪ Kn−k−i+1). Thus (2) is the best condition for π to be forcibly
k-connected in precisely the same way (1) is the best condition for π to be forcibly
hamiltonian.

Our goal in this paper is to survey degree conditions, for a wide variety of graph
properties, that are best in precisely the same sense as conditions (1) and (2) above. In
Sect. 2, we present a formal framework which allows us—at least in principle—to iden-
tify and construct such degree conditions, and to evaluate their inherent complexity. In
Sect. 3, we apply this framework, and consider best degree conditions for the follow-
ing graph properties and parameters: edge-connectivity (Sect. 3.1), binding number
(Sect. 3.2), toughness (Sect. 3.3), existence of factors (Sect. 3.4), existence of paths
and cycles (Sect. 3.5), and independence number, clique number, chromatic number,
and vertex arboricity (Sect. 3.6). In Sect. 4, we consider best degree conditions for π

to be forcibly P1 ⇒ P2. Such conditions represent the least amount of degree strength
that needs to be added to P1 to get a sufficient condition for P2, and are especially
interesting when P1 is a necessary condition for P2. We will focus in Sect. 4 on the situ-
ation where P2 is ‘hamiltonian’, and P1 belongs to the set { ‘traceable’, ‘2-connected’,
‘1-binding’, ‘contains a 2-factor’, ‘1-tough’ } of prominent necessary conditions for
hamiltonicity. In Sect. 5, we consider situations where P1 does not imply P2, but the
best degree condition for P1 implies the best degree condition for P2. Such results
may be considered improvements in a degree sense over what is true structurally.

2 Framework for Best Monotone Degree Conditions

A graph property P is increasing (decreasing) if whenever a graph G has P , so
does every edge-augmented supergraph (edge-deleted subgraph) of G. Thus ‘hamil-
tonian’ and ‘k-connected’ are increasing properties, while ‘k-colorable’ is a decreasing
property. In the rest of this section, we assume P is an increasing graph property; a
completely analogous development can be given for decreasing graph properties.

Given a graph property P , consider a theorem T which declares certain graphical
sequences forcibly P , rendering no decision on the remaining graphical sequences.
Such a theorem T is called a (forcibly) P-theorem. Thus Theorem 1.1 is a hamiltonian
theorem.

A P-theorem T is monotone if whenever T declares a graphical sequence π

forcibly P , T declares every graphical π ′ ≥ π forcibly P .
A P-theorem T is P-optimal (or optimal, if P is understood) if every graphical

sequence which T does not declare forcibly P is not forcibly P . Note that Theorem 1.1
is not optimal in this sense; e.g., Theorem 1.1 does not declare π = (2k)4k+1 forcibly
hamiltonian for any k ≥ 1, but all such π are forcibly hamiltonian [48].

A P-theorem T is P-weakly-optimal (or weakly optimal, if P is understood) if every
graphical sequence which T does not declare forcibly P is majorized by a graphical
sequence that is not forcibly P . As noted in the previous section, Theorem 1.1 is
weakly optimal in this sense.

A monotone P-theorem that is also P-weakly-optimal is a ‘best’ monotone P-
theorem in the following sense.
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4 Graphs and Combinatorics (2015) 31:1–22

Theorem 2.1 Let T, T0 be monotone P-theorems, and let T0 be P-weakly-optimal.
Then any graphical sequence declared forcibly P by T is also declared forcibly P
by T0.

Proof Suppose to the contrary that T declares some graphical sequence π forcibly P ,
but T0 does not. Since T0 is P-weakly-optimal, there exists a graphical π ′ ≥ π which
is not forcibly P . But since T is monotone and declares π forcibly P , T must declare
π ′ ≥ π forcibly P , a contradiction. ��

Since Theorem 1.1 is monotone and weakly optimal, Theorem 1.1 is a best
monotone hamiltonian theorem. Similarly, Theorem 1.2 is a best monotone k-
connected theorem.

By Theorem 2.1, all best monotone P-theorems declare the same set of graphical
sequences forcibly P; we denote this set of graphical sequences by BM(P). So in
terms of their effect, all best monotone P-theorems are equivalent.

In the following three paragraphs, we describe a generic way to construct—at least
in principle—best monotone P-theorems. Consider the partially-ordered set Gn whose
elements are the graphical sequences of length n, and whose partial-order relation is
degree majorization. The graphical sequences of length n that are not forcibly P induce
a subposet of Gn , denoted Pn . A maximal element in Pn is called a (P, n)-sink. The
set of all (P, n)-sinks will be denoted S(P, n).

Given a graphical sequence π = (a1 ≤ · · · ≤ an), note that π fails to satisfy the
degree condition C(π) defined by

C(π) : d1 ≥ a1 + 1 ∨ · · · ∨ dn ≥ an + 1;

indeed, C(π) is the weakest monotone degree condition which ‘blocks’π (i.e., whichπ

fails to satisfy). We call C(π) the Chvátal-type condition for π . In the sequel, we will
usually write C(π) in the more traditional form

d1 ≤ a1 ∧ · · · ∧ d j−1 ≤ a j−1 ⇒ d j ≥ a j + 1 ∨ · · · ∨ dn ≥ an + 1,

for some j < n.
If π ∈ Pn , then by definition there exists π ′ ∈ S(P, n) majorizing π , and thus π

fails to satisfy C(π ′). Put differently, if a graphical n-sequence π satisfies the degree
condition

∧
π∈S(P,n) C(π), then π is forcibly P; i.e., the theorem T with degree

condition
∧

π∈S(P,n) C(π) is a forcibly P-theorem. But certainly T is monotone,
and T is also P-weakly-optimal (if π fails to satisfy the degree condition of T , then π

is majorized by some π ′ ∈ S(P, n) ⊆ Pn which is not forcibly P). Thus T is a best
monotone P-theorem.

In practical terms, it may be almost impossible to identify the precise set of sinks
S(P, n). Fortunately, it is not necessary to make this precise identification to get a
best monotone P-theorem: If one can merely identify a set A of non-P graphs on n
vertices whose set of degree sequences

∏
(A) contains all of S(P, n) (so S(P, n) ⊆∏

(A) ⊆ Pn), then—as above—the theorem with degree condition
∧

π∈∏
(A) C(π)

will also be a best monotone P-theorem. Although it is typically difficult to find even
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such a set A, we will see in the following sections that this is possible for a remarkable
number of graph properties.

Finally, we note that |S(P, n)| may be considered the ‘inherent complexity’ of a
best monotone theorem on n vertices. More precisely, we have the following.

Theorem 2.2 When the degree condition of a best monotone P-theorem on n vertices
is expressed as a conjunction

∧
C(π) of P-weakly-optimal Chvátal-type conditions,

the conjunction must contain at least |S(P, n)| such conditions.

Proof It suffices to show that any π ∈ S(P, n) satisfies
∧

π ′∈S(P,n)−{π} C(π ′); for
then the conjunction must contain each Chvátal-type condition C(π), as π ranges
over S(P, n). Suppose to the contrary that some sink πa = (a1 ≤ · · · ≤ an) violates
C(πb), where πb = (b1 ≤ · · · ≤ bn) is another sink. Then ai ≤ bi , for 1 ≤ i ≤ n,
and so πa ≤ πb, contradicting the assumption that πa is a sink. ��

3 Best Monotone Conditions for Graph Properties P

3.1 Edge-Connectivity

We noted in Sect. 1 that Bondy [21] (see also Boesch [20]) gave a best monotone
condition for k-vertex-connectedness (Theorem 1.2). While Theorem 1.2 is also a
sufficient condition for k-edge-connectedness, it is not a best monotone condition
when k ≥ 2.

A best monotone condition for 2-edge-connectedness was given in [6].

Theorem 3.1 (Bauer et al. [6]) Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence. If

d1 ≥ 2; (3a)

di−1 ≤ i − 1 ∧ di ≤ i ⇒ dn−1 ≥ n − i ∨ dn ≥ n − i + 1, for 3 ≤ i < 1
2 n;
(3b)

dn/2 ≤ 1
2 n − 1 ⇒ dn−2 ≥ 1

2 n ∨ dn ≥ 1
2 n + 1, if n is even, (3c)

then π is forcibly 2-edge-connected.

For the weak optimality of Theorem 3.1, let G(n, i), i ≥ 1, denote disjoint
cliques Ki and Kn−i joined by a single edge. If π fails to satisfy (3a), then π is
majorized by the degrees of G(n, 1). If π fails to satisfy (3b) for some i , then π is
majorized by the degrees of G(n, i). If π fails to satisfy (3c), then π is majorized by the
degrees of G(n, n/2). Since none of these graphs is 2-edge-connected, Theorem 3.1
is weakly optimal.

Kriesell [42] and Yin and Guo [62] independently established a best monotone
condition for 3-edge-connectedness, which had been conjectured in [6].

Theorem 3.2 (Kriesell [42], Yin and Guo [62]) Let π = (d1 ≤ · · · ≤ dn) be a
graphical sequence. If

d1 ≥ 3; (4a)
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di−2 ≤ i − 1 ∧ di ≤ i ⇒ dn−2 ≥ n − i ∨ dn ≥ n − i + 1, for 4 ≤ i < 1
2 n; (4b)

di−1 ≤ i − 1 ∧ di ≤ i + 1 ⇒ dn−2 ≥ n − i ∨ dn ≥ n − i + 1, for 4 ≤ i < 1
2 (n − 1);

(4c)

di−2 ≤ i − 1 ∧ di ≤ i ⇒ dn−1 ≥ n − i ∨ dn ≥ n − i + 2, for 4 ≤ i < 1
2 n; (4d)

dn/2 ≤ 1
2 n − 1 ⇒ dn−4 ≥ 1

2 n ∨ dn ≥ 1
2 n + 1, if n is even; (4e)

d(n−3)/2 ≤ 1
2 (n − 3) ⇒ dn−3 ≥ 1

2 (n + 1) ∨ dn ≥ 1
2 (n + 3), if n is odd; (4f)

dn/2 ≤ 1
2 n − 1 ⇒ dn−3 ≥ 1

2 n ∨ dn−1 ≥ 1
2 n + 1 ∨ dn ≥ 1

2 n + 2, if n is even, (4g)

then π is forcibly 3-edge-connected.

The increase in the number of conditions in Theorem 3.2 when k = 3, compared
to Theorem 3.1 when k = 2, is notable. Indeed, we now prove that the number
of weakly optimal Chvátal-type conditions in a best monotone condition for k-edge-
connectedness grows superpolynomially in k, for n sufficiently large. A more involved
proof of this was given previously by Kriesell [42].

By Theorem 2.2, it suffices to prove the following.

Theorem 3.3 Let k ≥ 2, and let n ≥ 4k − 2 be an even integer. Then there are at
least p(k − 1) k-edge-connected sinks in Gn, where p denotes the integer partition

function, so that p(r) ∼ 1

4
√

3r
eπ

√
2r
3 [37].

Proof Construct a family of p(k−1) edge-maximal not k-edge-connected graphs on n
vertices as follows: Begin with disjoint copies X, Y of Kn/2. Let a1 + a2 + · · · + a j

be any partition of k − 1, and choose vertices x1, x2, . . . , x j ∈ X . Add k − 1 edges
between X and Y so that ai of these edges are incident at xi ∈ X , for 1 ≤ i ≤ j ,
and the edges are incident to k − 1 distinct vertices in Y . Call the resulting graph
G(a1, . . . , a j ), noting that it has minimum degree δ(G(a1, . . . , a j )) = 1

2 n − 1.
To complete the proof, it suffices to show

Claim. π(G(a1, . . . , a j )) is a k-edge-connected sink in Gn .
Proof of the Claim. Let G = G(a1, . . . , a j ). Suppose to the contrary that π(G)

is majorized by π(H) �= π(G), where H is an edge-maximal not k-edge-connected
graph, necessarily consisting of two disjoint cliques X, Y such that |X | + |Y | = n
and |E(X, Y )| = k − 1. We may assume |X | > |Y |, so that |Y | < 1

2 n (if |X | = |Y |,
then π(G) and π(H) have the same degree sum and π(H) could not majorize π(G)).

We consider two cases.

Case 1. |Y | ≥ k
Since |Y | > k − 1 = |E(X, Y )|, some vertex y ∈ Y is not incident to any edge in

E(X, Y ). So dH (y) ≤ |Y |−1 < 1
2 n−1 = δ(G), and π(H) would not majorize π(G).

Case 2. |Y | ≤ k − 1
Then any y ∈ Y satisfies dH (y) ≤ |E(X, Y )| + (|Y | − 1) ≤ (k − 1) + (k − 2) =

2k − 3 = 1
2 (4k) − 3 ≤ 1

2 (n + 2) − 3 = 1
2 n − 2 < 1

2 n − 1 = δ(G). Again, π would
not majorize π(G).

This proves the Claim, and completes the proof of Theorem 3.3. ��
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In light of Theorem 3.3, it would be desirable to have a simple, though not best
monotone, condition for k-edge-connectedness that is at least better than Theorem 1.2
as a sufficient condition for k-edge-connectedness. The following such condition was
given in [6].

Theorem 3.4 (Bauer et al. [6]) Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence
and let k ≥ 1 be an integer. If

d1 ≥ k; (5a)

di−k+1 ≤ i − 1 ∧ di ≤ i+k − 2 ⇒ dn ≥ n − i + k − 1, for k + 1 ≤ i ≤ ⌊ 1
2 n

⌋
,

(5b)

then π is forcibly k-edge-connected.

A sufficient condition for k-edge-connectedness stronger than Theorem 3.4 was
given by Yin and Guo [62], though their degree condition is substantially more involved
than conditions (5a) and (5b). We refer the reader to [62] for details.

3.2 Binding Number

The concept of the binding number of a graph was first used by Anderson [2, p. 185],
and then given its present definition by Woodall [59].

Given S ⊆ V (G), let N (S) ⊆ V (G) denote the neighbor set of S. Let

S = { S ⊆ V (G) | S �= ∅ and N (S) �= V (G) }.

The binding number of G, denoted bind(G), is defined by

bind(G) = min
S∈S

|N (S)|
|S| .

In particular, bind(Kn) = n −1, for n ≥ 1. A set S ∈ S for which the above minimum
is attained is called a binding set of G. For b ≥ 0, we call G b-binding if bind(G) ≥ b.
Cunningham [32] has shown that computing bind(G) is tractable.

A number of theorems in the literature guarantee that a graph G has a certain prop-
erty if bind(G) is appropriately bounded from below. The following three theorems
exhibit the best possible lower bound on bind(G) to guarantee that G has the indicated
property.

Theorem 3.5 (Anderson [2]) If |V (G)| is even and bind(G) ≥ 4/3, then G contains
a 1-factor.

Theorem 3.6 (Woodall [59,60]) If bind(G) ≥ 3/2, then G is hamiltonian.

Theorem 3.7 (Shi [52]) If bind(G) ≥ 3/2, then G contains a cycle of length l, for
3 ≤ l ≤ |V (G)|.
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Other graph properties which are guaranteed by lower bounds on binding number
include the existence of an f -factor [34,41,61], the existence of a k-clique [40,46],
and k-extendability [29,51].

In [10], a best monotone condition was given for a graph to be b-binding, first for
0 < b ≤ 1 and then for b ≥ 1.

Theorem 3.8 (Bauer et al. [10]) Let 0 < b ≤ 1 and let π = (d1 ≤ · · · ≤ dn) be a
graphical sequence, with n ≥ �b + 1� = 2. If

di ≤ �bi� − 1 ⇒ dn−�bi�+1 ≥ n − i, for 1 ≤ i ≤
⌊ n

b + 1

⌋
; (6a)

d�n/(b+1)�+1 ≥ n −
⌊ n

b + 1

⌋
, (6b)

then π is forcibly b-binding.

If π fails to satisfy (6a) for some i , then π is majorized by the degrees of K�bi�−1 +(
Kn−i−�bi�+1 ∪ Ki

)
. If π fails to satisfy (6b), then π is majorized by the degrees

of Kn−�n/(b+1)�−1 + K�n/(b+1)�+1. Since neither graph is b-binding, Theorem 3.8 is
weakly optimal.

Theorem 3.9 (Bauer et al. [10]) Let b ≥ 1, and let π = (d1 ≤ · · · ≤ dn) be a
graphical sequence, with n ≥ �b + 1�. If

di ≤ n −
⌊n − i

b

⌋
− 1 ⇒ d�(n−i)/b�+1 ≥ n − i, for 1 ≤ i ≤

⌊ n

b + 1

⌋
; (7a)

d�n/(b+1)�+1 ≥ n −
⌊ n

b + 1

⌋
, (7b)

then π is forcibly b-binding.

If π fails to satisfy (7a) for some i , then π is majorized by the degrees of
Kn−�(n−i)/b�−1 + (

K�(n−i)/b�−i+1 ∪ Ki
)
. If π fails to satisfy (7b) (which is the same

as (6b)), then π is majorized by the degrees of Kn−�n/(b+1)�−1 + K�n/(b+1)�+1. Since
neither graph is b-binding, Theorem 3.9 is weakly optimal.

3.3 Toughness

The concept of toughness in graphs was introduced by Chvátal in [31]. Let ω(G)

denote the number of components in a graph G. For t ≥ 0, we call G t-tough if
t · ω(G − X) ≤ |X |, for every X ⊆ V (G) with ω(G − X) ≥ 2. The toughness of G,
denoted τ(G), is the maximum t ≥ 0 such that G is t-tough (taking τ(Kn) = n − 1,
for n ≥ 1). Thus if G is not complete, then

τ(G) = min
{ |X |

ω(G − X)

∣
∣
∣ X ⊆ V (G) with ω(G − X) ≥ 2

}
.

In [7], it was shown that computing τ(G) is NP-hard.
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Toughness has been especially prominent in connection with the existence of long
cycles in graphs. Indeed, it was a longstanding conjecture that every 2-tough graph
is hamiltonian. But Bauer, Broersma, and Veldman [5] disproved this conjecture by
constructing

( 9
4 − ε

)
-tough nonhamiltonian graphs. Unfortunately, the methods in [5]

do not extend to higher levels of toughness, and it remains an open question whether
there exists a constant t0 ≥ 9/4 such that every t0-tough graph is hamiltonian.

In [4], a best monotone condition for a graph to be t-tough was given for t ≥ 1.

Theorem 3.10 (Bauer et al. [4]) Let t ≥ 1, n ≥ �t� + 2, and π = (d1 ≤ · · · ≤ dn)

be a graphical sequence. If

d�i/t� ≤ i ⇒ dn−i ≥ n − �i/t�, for t ≤ i <
tn

t + 1
, (8)

then π is forcibly t-tough.

If π fails to satisfy (8) for some i , then π is majorized by the degrees of Ki +(
K�i/t� ∪ Kn−i−�i/t�

)
which is not t-tough. Thus Theorem 3.10 is weakly optimal.

Note also that condition (8) of Theorem 3.10 reduces to condition (1) of Theorem 1.1
when t = 1.

By Theorem 3.10, a best monotone t-tough condition on degree sequences of
length n requires fewer than n weakly optimal Chvátal-type conditions, for t ≥ 1.
But this changes markedly as t → 0. In particular, for any integer k ≥ 2, a best
monotone 1

k -tough condition on degree sequences of length n requires at least f (k)n
weakly optimal, Chvátal-type conditions, where f (k) grows superpolynomially as
k → ∞. This is implied by Theorem 2.2 and the following result [4, Lemma 4.2].

Theorem 3.11 (Bauer et al. [4]) Let n = m(k + 1), where k ≥ 2 and m ≥ 9 are

integers. Then the number of 1
k -tough sinks in Gn is at least

p(k − 1)

5(k + 1)
n, where p is

the integer partition function.

The superpolynomial growth in the complexity of a best monotone t-tough theorem
as t → 0 suggests the desirability of having a simple t-tough theorem, for 0 < t < 1.
The following was given in [4].

Theorem 3.12 (Bauer et al. [4]) Let 0 < t < 1, n ≥ �1/t�+2, and π = (d1 ≤ · · · ≤
dn) be a graphical sequence. If

di ≤ i − �1/t� + 1 ⇒ dn−i+�1/t�−1 ≥ n − i, for �1/t� ≤ i < 1
2

(
n + �1/t�−1

);
(9a)

di ≤ i − 1 ⇒ dn ≥ n − i, for 1 ≤ i ≤ 1
2 n, (9b)

then π is forcibly t-tough.
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10 Graphs and Combinatorics (2015) 31:1–22

3.4 Factors

The deficiency of a graph G, denoted def(G), is the number of vertices unmatched
under a maximum matching in G. In particular, G has a 1-factor if and only if def(G) =
0. We call G β-deficient if def(G) ≤ β.

In [44] (see also [22]), a best monotone condition was given for a graph to be
β-deficient.

Theorem 3.13 (Las Vergnas [44]) Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence,
and let 0 ≤ β ≤ n with n ≡ β (mod 2). If

di+1 ≤ i − β ⇒ dn+β−i ≥ n − i − 1, for 1 ≤ i ≤ 1
2 (n + β − 2), (10)

then π is forcibly β-deficient.

If π fails to satisfy (10) for some i , then π is majorized by the degrees of Ki−β +(
Ki+1 ∪ Kn−2i+β−1

)
, which is not β-deficient. Thus Theorem 3.13 is weakly optimal.

Taking β = 0 in Theorem 3.13, we obtain a best monotone condition for a graph
to contain a 1-factor.

In [3], a best monotone condition was given for a graph to contain a 2-factor. We
now give a slightly better form of the condition.

Theorem 3.14 (Bauer et al. [3]) Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence,
with n ≥ 3. If (setting d0 = 0)

d(n+1)/2 ≥ 1
2 (n + 1), if n is odd; (11a)

dn/2−1 ≥ 1
2 n ∨ dn/2+1 ≥ 1

2 n + 1, if n is even; (11b)

di ≤ i ∧ di+1 ≤ i + 1 ⇒ dn−i−1 ≥ n − i − 1 ∨ dn−i ≥ n − i,

for 0 ≤ i ≤ 1
2 (n − 3); (11c)

di−1 ≤ i ∧ di+2 ≤ i + 1 ⇒ dn−i−3 ≥ n − i − 2 ∨ dn−i ≥ n − i − 1,

for 1 ≤ i ≤ 1
2 (n − 5), (11d)

then π forcibly contains a 2-factor.

If π fails to satisfy (11a), then π is majorized by the degrees of K(n−1)/2+K(n+1)/2.
If π fails to satisfy (11b), then π is majorized by the degrees of K(n−2)/2 +(

K(n−2)/2 ∪
K2

)
. If π fails to satisfy (11c) for some i , then π is majorized by the degrees of

Ki + (
Ki+1 ∪ Kn−2i−1

)
with an edge added joining Ki+1 and Kn−2i−1. If π fails to

satisfy (11d) for some i , then π is majorized by the degrees of Ki +
(
Ki+2 ∪ Kn−2i−2

)

with three independent edges joining Ki+2 and Kn−2i−2. Since none of these graphs
contains a 2-factor, Theorem 3.14 is weakly optimal.

We conjecture that the number of weakly optimal Chvátal-type conditions in a
best monotone condition for a graph to contain a k-factor grows rapidly with k. More
precisely, we put forth the following (cf. Theorem 3.3 and Theorem 3.11).

Conjecture 3.15 Let f (k, n) denote the number of k-factor sinks in Gn. Then there
exist a, b > 0 such that if n ≥ ak + b, then f (k, n) grows superpolynomially in k.
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3.5 Paths and Cycles

In Sect. 1, we noted that Theorem 1.1 gives a best monotone condition for hamiltonicity.
A graph G is k-hamiltonian if for all X ⊆ V (G) with |X | ≤ k, the induced subgraph

〈V (G)− X〉 is hamiltonian. Thus ‘0-hamiltonian’ is the same as ‘hamiltonian’. A best
monotone condition for k -hamiltonicity was first given in [30] (although the form in
which we present it is from [22] and [45]). Of course, Theorem 1.1 is the special case
k = 0.

Theorem 3.16 (Chvátal [30]) Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence with
n ≥ 3, and let 0 ≤ k ≤ n − 3. If

di ≤ i + k ⇒ dn−i−k ≥ n − i, for 1 ≤ i < 1
2 (n − k), (12)

then π is forcibly k-hamiltonian.

If π fails to satisfy (12) for some i , then π is majorized by the degrees of Ki+k +(
Ki ∪ Kn−2i−k

)
, which is not k-hamiltonian. Thus Theorem 3.16 is weakly optimal.

A graph is traceable if it contains a hamiltonian path. A best monotone condition
for traceability was given in [30]. More generally, G is k-path-coverable if V (G) can
be covered by k or fewer vertex-disjoint paths. In particular, ‘1-path-coverable’ is the
same as ‘traceable’. A best monotone condition for k-path-coverability was obtained
independently in [22] and [45].

Theorem 3.17 (Bondy and Chvátal [22], Lesniak [45]) Let π = (d1 ≤ · · · ≤ dn) be
a graphical sequence and let k ≥ 1. If

di+k ≤ i ⇒ dn−i ≥ n − i − k, for 1 ≤ i < 1
2 (n − k), (13)

then π is forcibly k-path-coverable.

Ifπ fails to satisfy (13) for some i , thenπ is majorized by the degrees of Ki +
(
Ki+k∪

Kn−2i−k
)
, which is not k-path-coverable (adding k complete vertices to a graph which

is k-path coverable results in a hamiltonian graph, while adding k complete vertices
to the above graph results in a graph which is not even 1-tough). Thus Theorem 3.17
is weakly optimal.

A graph is hamiltonian-connected if every pair of vertices is joined by a hamiltonian
path. A best monotone condition for hamiltonian-connectedness was given in [19,
Chapter 10, Theorem 12].

Theorem 3.18 (Berge [19]) Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence with
n ≥ 4. If

di−1 ≤ i ⇒ dn−i ≥ n − i + 1, for 2 ≤ i < 1
2 (n + 1), (14)

then π is forcibly hamiltonian-connected.

If π fails to satisfy (14) for some i , then π is majorized by the degrees of Ki +(
Ki−1 ∪ Kn−2i+1

)
, which is not hamiltonian-connected (there is no hamiltonian path

joining two vertices in Ki ). Thus Theorem 3.18 is weakly optimal.
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A graph G is k-edge-hamiltonian if any collection of vertex-disjoint paths with at
most k edges altogether belong to a hamiltonian cycle in G. A best monotone condition
for k-edge-hamiltonicity was given in [43] (see also [19, Chapter 10, Theorem 8]).

Theorem 3.19 (Kronk [43]) Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence with
n ≥ 3, and let 0 ≤ k ≤ n − 3. If

di−k ≤ i ⇒ dn−i ≥ n − i + k, for k + 1 ≤ i < 1
2 (n + k), (15)

then π is forcibly k-edge-hamiltonian.

If π fails to satisfy (15) for some i , then π is majorized by the degrees of Ki +(
Ki−k ∪ Kn−2i+k

)
, which is not k-edge-hamiltonian (consider a path in Ki with k

edges). Thus Theorem 3.19 is weakly optimal.
A graph G is pancyclic if it contains an l-cycle for any l such that 3 ≤ l ≤ |V (G)|.

We have the following best monotone condition for π to be forcibly pancyclic.

Theorem 3.20 Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence with n ≥ 3. If

di ≤ i ⇒ dn−i ≥ n − i, for 1 ≤ i < 1
2 n; (16a)

dn ≥ 1
2 n + 1, if n is even, (16b)

then π is forcibly pancyclic.

Proof In [17], it is shown that if π satisfies (16a), then G is pancyclic or bipartite. But
if G is bipartite, then, since G is hamiltonian by (16a) and Theorem 1.1, n is even and
both bipartition sets have 1

2 n vertices. Thus dn ≤ 1
2 n, which contradicts (16b). ��

If π fails to satisfy (16a) for some i , then π is majorized by the degrees of Ki +(
Ki ∪ Kn−2i

)
, which has no n-cycle. If π fails to satisfy (16b), then π is majorized

by the degrees of Kn/2,n/2, which has no odd length cycles. Thus Theorem 3.20 is
weakly optimal.

3.6 Independence Number, Clique Number, Chromatic Number, and Vertex
Arboricity

We consider best monotone conditions for a graphical sequence π to be forcibly
p(G) ≤ k or forcibly p(G) ≥ k, where p denotes any of the graph parameters
α (independence number), ω (clique number), χ (chromatic number), or a (vertex
arboricity). Note that if p ∈ {ω, χ, a}, then p(G) ≤ k is a decreasing property and
p(G) ≥ k is an increasing property (so that we seek upper bounds on π in the first
case and lower bounds in the second); while if p = α then it is the other way around.

We begin with best monotone conditions for upper bounds p(G) ≤ k. We consider
first best monotone conditions for α(G) ≤ k and ω(G) ≤ k. Since ω(G) ≤ k ⇔
α(G) ≤ k, the development is analogous for α and ω; we do only α.
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Theorem 3.21 Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence, and k ≥ 1 an
integer. If

dk+1 ≥ n − k, (17)

then π is forcibly α(G) ≤ k.

Proof Suppose π satisfies (17), but has a realization G with α(G) ≥ k + 1. If S ⊆
V (G) is an independent set with |S| ≥ k + 1, then each vertex in S has degree at most
n − k − 1, and thus dk+1 ≤ n − k − 1, contradicting (17). ��

If π fails to satisfy (17), then π is majorized by the degrees of G ′ = Kk+1+Kn−k−1,
with α(G ′) = k + 1 > k. Thus Theorem 3.21 is weakly optimal.

We also note that the optimal condition for α(G) ≤ k is tractable. We begin with
the following result of Rao [50].

Theorem 3.22 (Rao [50]) A graphical sequence π has a realization G with α(G) ≥ k
if and only if π has a realization in which vertices with the k smallest degrees form an
independent set.

Using Theorem 3.22, it is easy to determine whether or not π = (d1 ≤ · · · ≤ dn)

is forcibly α(G) ≤ k: Iteratively consider k = 1, 2, . . . , n − 1. To decide if π has a
realization with k + 1 independent vertices, form the graph H = Kk+1 + Kn−k−1,
letting v1, . . . , vk+1 (resp., vk+2, . . . , vn) denote the vertices of Kk+1 (resp., Kn−k−1).
Assign degree di to vi for 1 ≤ i ≤ n, and determine if H contains a subgraph H ′ with
the assigned degrees. If so, then π has a realization G with α(G) ≥ k +1, and π is not
forcibly α(G) ≤ k. Otherwise, by Theorem 3.22, π is forcibly α(G) ≤ k. Tutte [54]
proved the existence of H ′ is equivalent to the existence of a 1-factor in a graph that
can be efficiently constructed from H and d1, . . . , dn .

Structural conditions guaranteeing χ(G) ≤ k (that G is k-colorable) have a long
and rich history [23,35,53,58]. Regarding degree conditions, we first note the trivial
bound χ(G) ≤ 
(G) + 1, and thus

Theorem 3.23 The graphical sequence π = (d1 ≤ · · · ≤ dn) is forcibly χ(G) ≤
dn + 1.

A best monotone condition for χ(G) ≤ k was given by Welsh and Powell [56].

Theorem 3.24 (Welsh and Powell [56]) Let π = (d1 ≤ · · · ≤ dn) be a graphical
sequence. Then π is forcibly

χ(G) ≤ max
1≤ j≤n

min{ n − j + 1, d j + 1 }.

Reexpressing Theorem 3.24 with an equivalent Chvátal-type degree condition, we
have the following.

Theorem 3.25 Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence, and let 1 ≤ k ≤ n.
If (setting d0 = 0)

dn−k ≤ k − 1, (18)

then π is forcibly χ(G) ≤ k.
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If π fails to satisfy (18), then π is minorized by the vertex degrees of G = Kk+1 ∪
Kn−k−1, with χ(G) = k + 1 > k. Thus Theorem 3.25 is weakly optimal.

Analogous to the bound χ(G) ≤ 
(G) + 1, we have a(G) ≤ ⌊ 1
2
(G)

⌋ + 1 [27],
and thus we get the following.

Theorem 3.26 Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence. Then π is forcibly
a(G) ≤ ⌊ 1

2 dn
⌋ + 1.

A best monotone condition for a(G) ≤ k was given in [36]; it is analogous to
Theorem 3.24.

Theorem 3.27 (Hakimi and Schmeichel [36]) Let π = (d1 ≤ · · · ≤ dn) be a graphi-
cal sequence. Then π is forcibly

a(G) ≤ max
1≤ j≤n

min
{ ⌈ 1

2 (n − j + 1)
⌉
,
⌈ 1

2 (d j + 1)
⌉ }

.

Reexpressing Theorem 3.27 with an equivalent Chvátal-type degree condition, we
have the following.

Theorem 3.28 Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence, and let 1 ≤ k ≤
1
2 n. If

dn−2k ≤ 2k − 1, (19)

then π is forcibly a(G) ≤ k.

If π fails to satisfy (19), then π is minorized by the vertex degrees of G = K2k+1 ∪
Kn−2k−1, with a(G) = k + 1 > k. Thus Theorem 3.28 is weakly optimal.

We turn next to best monotone conditions for lower bounds p(G) ≥ k. The most
prominent degree condition for α(G) ≥ k, although not best monotone, is indepen-
dently due to Caro [24] and Wei [55]. An elegant probabilistic proof appears in [1,
p. 81] (see also [57, p. 428]).

Theorem 3.29 (Caro [24], Wei [55]) Let π = (d1 ≤ · · · ≤ dn) be a graphical

sequence. Then π is forcibly α(G) ≥ ∑n
j=1

1

d j + 1
.

A best monotone condition for α(G) ≥ k was given by Murphy [47]. Let π =
(d1 ≤ · · · ≤ dn) be a graphical sequence. Define f : Z

+ → {d1, d2, . . . , dn,∞}
recursively as follows: Set f (1) = d1. If f (i) = d j , then set

f (i + 1) =
{

d j+ f (i)+1, if j + f (i) + 1 ≤ n;
∞, otherwise;

while if f (i) = ∞, then f (i + 1) = ∞.
Murphy’s condition is the following.

Theorem 3.30 (Murphy [47]) Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence.
Then π is forcibly α(G) ≥ max{ i ∈ Z

+ | f (i) < ∞}.
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Example If π = 15426273, then f (1) = d1 = 1, f (2) = d3 = 1, f (3) = d5 = 1,
f (4) = d7 = 4, f (5) = d12 = 7, and f (6) = f (7) = · · · = ∞. The calculation of
the f (i) can be nicely visualized, as shown above.

So by Theorem 3.30, π is forcibly α(G) ≥ 5 (the number of circled vertices). �
By comparison, Theorem 3.29 guarantees only that π in the above example is

forcibly α(G) ≥ 4. Indeed, Theorem 3.30 can be arbitrarily better than Theorem 3.29:
For the graphical sequence π = 112233 · · · dd with d ≡ 0 (mod 4), Theorem 3.29

(resp., Theorem 3.30) guarantees that π is forcibly α(G) ≥ ∑d
i=1(1 − 1

i + 1
) ∼

d − ln d (resp., α(G) ≥ d).
To see that Theorem 3.30 is weakly optimal for α(G) ≥ k, suppose Theorem 3.30

fails to guarantee that π is forcibly α(G) ≥ k. Consider the degree sequence
π ′ = f (1) f (1)+1 f (2) f (2)+1 · · · f (k − 2) f (k−2)+1ll+1, where l denotes the num-
ber of degrees in π with index greater than f (k − 1). Note that l ≤ f (k − 1),
since l ≥ f (k − 1) + 1 implies f (k) < ∞, contradicting that Theorem 3.30 does
not declare π forcibly α(G) ≥ k. Thus π ′ minorizes π . But π ′ has realization
G ′ = K f (1)+1 ∪ · · · ∪ K f (k−2)+1 ∪ Kl+1 consisting of k − 1 disjoint cliques, with
α(G ′) = k − 1 < k. Thus Theorem 3.30 is weakly optimal for α(G) ≥ k.

Using Theorem 3.30, we can easily obtain best monotone conditions for ω(G) ≥ k
and χ(G) ≥ k. Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence, and define
g(π) = max{ i ∈ Z

+ | f (i) < ∞} as above (so that π is forcibly α(G) ≥ g(π)).
Define h : { Graphical Sequences } → Z

+ by h(π) = g(π), where π = ((n − 1) −
dn ≤ · · · ≤ (n − 1) − d1) is the degree sequence complementary to π . If G, G are
arbitrary realizations of π, π , then h(π) = g(π) ≤ α(G) = ω(G) ≤ χ(G). Since g
is monotone decreasing, h is monotone increasing. So to prove that ω(G) ≥ h(π) and
χ(G) ≥ h(π) are best monotone lower bounds, it suffices to show these lower bounds
are weakly optimal. But if h(π) = g(π) ≤ k − 1, then as above there exists a π ′
minorizing π with a realization G

′
consisting of k − 1 disjoint cliques. So π ′ ≥ π has

a realization G ′ = G
′

that is a complete (k − 1)-partite graph. Thus ω(G ′), χ(G ′) =
k − 1 < k, and the above lower bounds for ω and χ are weakly optimal.

Finally, if P is the property a(G) ≥ k, it was proved in [15] that |S(P, n)|
grows superpolynomially in n. Indeed, |S(P, n)| ≥ D

(⌊ n

k − 1

⌋)
if k − 1 divides

n, where D(m) denotes the number of different degree sequences of unlabeled m-
vertex trees. We refer the reader to [15] for details. But D(m) = p(m − 2) [19,
Chapter 6, Theorem 8] grows superpolynomially in m, where p is the integer partition
function. Thus, any best monotone condition for P will be inherently complex.

4 Best Monotone Degree Conditions for Implications P1 ⇒ P2

In this section, we consider best monotone degree conditions for P1 ⇒ P2, where
P1, P2 are monotone increasing graph properties. Conditions of this type were first
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considered in [16]. A framework for such considerations is given in Sect. 2 upon
substituting P1 ⇒ P2 for P throughout. Best monotone P1 ⇒ P2 conditions are
particularly interesting when P1 is a necessary condition for P2, since they provide
the minimum degree strength which needs to be added to P1 to get a sufficient condition
for P2.

In this section, we will focus on best monotone degree conditions for P1 ⇒ P2—
some proved, some conjectured—when P2 is ‘hamiltonian’, and P1 belongs to the
set { ‘traceable’, ‘2-connected’, ‘1-binding’, ‘contains a 2-factor’, ‘1-tough’ } of well-
known necessary conditions for hamiltonicity.

We begin with two results which are essentially immediate corollaries of Theo-
rem 1.1.

Theorem 4.1 Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence, with n ≥ 3. If

di ≤ i ⇒ dn−i ≥ n − i, for 1 ≤ i ≤ 1
2 (n − 1), (20)

then every traceable realization of π is hamiltonian.

Note that (20) is the same degree condition as in Theorem 1.1. If π fails to sat-
isfy (20) for some i , then π is majorized by the degrees of Ki + (

Ki ∪ Kn−2i
)
,

which is traceable and nonhamiltonian. Thus Theorem 4.1 is weakly optimal for
traceable ⇒ hamiltonian.

Theorem 4.2 Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence, with n ≥ 3. If

di ≤ i ⇒ dn−i ≥ n − i, for 2 ≤ i ≤ 1
2 (n − 1), (21)

then every 2-connected realization of π is hamiltonian.

If π fails to satisfy (21) for some i , then π is majorized by the degree sequence of
Ki + (

Ki ∪ Kn−2i
)
, which is 2-connected (since i ≥ 2) and nonhamiltonian. Thus

Theorem 4.2 is weakly optimal for 2-connected ⇒ hamiltonian.
We have the following best monotone condition for 1-binding ⇒ hamiltonian [16].

Theorem 4.3 (Bauer et al. [16]) Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence,
with n ≥ 3. If (setting d0 = 0)

di ≤ i ⇒ dn−i ≥ n − i, for 1 ≤ i ≤ 1
2 (n − 2); (22a)

di−1 ≤ i ⇒ dn−i ≥ 1
2 (n + 1), for 1 ≤ i ≤ 1

2 (n − 3), if n is odd, (22b)

then every 1-binding realization of π is hamiltonian.

If π fails to satisfy (22a) (resp., (22b)) for some i , then π is majorized by the degrees
of Ki +

(
Ki ∪Kn−2i

)
(resp., Ki +

(
Ki−1∪2K(n+1)/2−i

)
), which are each 1-binding and

nonhamiltonian. Thus Theorem 4.3 is weakly optimal for 1-binding ⇒ hamiltonian.
Since 1-binding is also a necessary condition for a graph to contain a 1-factor, the

following is of some interest [14].
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Theorem 4.4 (Bauer et al. [14]) Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence,
with n even. If (setting d0 = 0)

di ≤ i ∧ di+2 j+1 ≤ i + 2 j ⇒ dn−i ≥ n − (i + 2 j + 1),

for 1 ≤ i ≤ 1
2 (n − 6) and 1 ≤ j ≤ 1

4 (n − 2i − 2); (23a)

dn/2−5 ≥ 1
2 n − 3 ∨ dn/2+4 ≥ 1

2 n − 1, if n ≥ 10, (23b)

then every 1-binding realization of π contains a 1-factor.

If π fails to satisfy (23a) for some i, j (resp., (23b)), then π is majorized by the
degree sequence of Ki +

(
Ki ∪K2 j+1∪Kn−2i−2 j−1

)
(resp., Kn/2−4+(

Kn/2−5∪3K3
)
)

which are each 1-binding without a 1-factor. Thus Theorem 4.4 is weakly optimal for
1-binding ⇒ 1-factor.

For 1 < b < 3/2, a best monotone degree condition for b-binding ⇒ hamiltonian
is not currently known. An asymptotically best minimum degree condition for

b-binding ⇒ hamiltonian when 1 < b < 3/2, namely δ(G) ≥
(2 − b

3 − b

)
n,

was established in [18]. A somewhat involved best monotone degree condition for
b-binding ⇒ 1-tough was given in [16], where it was conjectured that this condition
is also a best monotone degree condition for b-binding ⇒ hamiltonian. We refer the
reader to [16] for details.

A best monotone degree condition for 2-factor ⇒ hamiltonian is also not cur-
rently known. As the graph K1 + 2K(n−1)/2 shows, a best minimum degree con-
dition for 2-factor ⇒ hamiltonian is Dirac’s hamiltonian condition δ(G) ≥ 1

2 n.
On the other hand, we have the following best monotone degree condition for
2-factor ⇒ 1-tough [13].

Theorem 4.5 (Bauer et al. [13]) Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence,
with n ≥ 3. If (setting d0 = 0)

di ≤ i ⇒ dn−i ≥ n − i, for 1 ≤ i ≤ 1
2 (n − 3); (24a)

di−1 ≤ i ⇒ dn−i ≥ 1
2 (n + 1), for 1 ≤ i ≤ 1

2 (n − 5), if n is odd; (24b)

di−1 ≤ i ⇒ dn/2−1 ≥ 1
2 n ∨ dn−i ≥ 1

2 n + 1,

for 1 ≤ i ≤ 1
2 (n − 4), if n is even, (24c)

then every realization of π with a 2-factor is 1-tough.

If π fails to satisfy (24a), (24b), or (24c), resp., for some i , then π is majorized
by the degree sequence of Ki + (

Ki ∪ Kn−2i
)
, Ki + (

Ki−1 ∪ 2K(n+1)/2−i
)
, or Ki +

(
Ki−1 ∪ Kn/2−i ∪ Kn/2+1−i

)
, resp., where each graph contains a 2-factor, but is not

1-tough. Thus Theorem 4.5 is weakly optimal for 2-factor ⇒ 1-tough.
We put forth the following conjecture.
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Conjecture 4.6 The degree condition in Theorem 4.5 is a best monotone degree con-
dition for 2-factor ⇒ hamiltonian.

A best monotone condition for 1-tough ⇒ hamiltonian is again not currently
known. However, a best minimum degree condition for 1-tough ⇒ hamiltonian was
given by Jung [39] (see also [11]).

Theorem 4.7 (Jung [39]) Let G be a 1-tough graph on n ≥ 11 vertices. If δ(G) ≥
1
2 n − 2, then G is hamiltonian.

In [38], Hoàng gave the following simple, but not best monotone, degree condition
for 1-tough ⇒ hamiltonian, and noted the difficulty of determining the 1-tough ⇒
hamiltonian sinks.

Theorem 4.8 (Hoàng [38]) Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence, with
n ≥ 3. If

di ≤ i ∧ dn−i+1 ≤ n − i − 1 ⇒ d j + dn− j+1 ≥ n, for 1 ≤ i < j ≤ ⌈ 1
2 n

⌉
,

then every 1-tough realization of π is hamiltonian.

Corollary 4.9 Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence, with n ≥ 3. If

di ≤ i ⇒ dn−i+1 ≥ n − i, for 1 ≤ i ≤ 1
2 (n − 1),

then every 1-tough realization of π is hamiltonian.

A best monotone condition for 1-tough ⇒ 2-factor was given in [12].

Theorem 4.10 (Bauer et al. [12]) Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence,
with n ≥ 3. If (setting d0 = 0)

di ≤ i + j ∧ di+2 j+1 ≤ i + j + 1

⇒ dn−i−3 j−1 ≥ n − i − 2 j − 1 ∨ dn−i− j ≥ n − i − 2 j,

for 0 ≤ i ≤ 1
2 (n − 7) and 1 ≤ j ≤ 1

5 (n − 2i − 2); (25a)

di ≤ i + 2 ∧ di+4 ≤ i + 3 ⇒ dn−i−6 ≥ 1
2 n − 1 ∨ dn−i−2 ≥ 1

2 n,

for 0 ≤ i ≤ 1
2 (n − 18), if n ≥ 18 is even; (25b)

di ≤ i + 1 ∧ di+2 ≤ i + 2 ∧ di+3 ≤ i + 3 ⇒ dn−i−5 ≥ 1
2 n − 1

∨ dn−i−1 ≥ 1
2 n, for 0 ≤ i ≤ 1

2 (n − 16), if n ≥ 16 is even; (25c)

dn/2−5 ≥ 1
2 n − 2 ∨ dn/2 ≥ 1

2 n − 1 ∨ dn/2+3 ≥ 1
2 n + 1, if n ≥ 10 is even,

(25d)

then every 1-tough realization of π contains a 2-factor.

If π fails to satisfy (25a) for some i, j , then π is majorized by the degrees of
Ki+ j + (

Ki+2 j+1 ∪ Kn−2i−3 j−1
)

with Ki+2 j+1 and Kn−2i−3 j−1 joined by 2 j + 1
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independent edges. If π fails to satisfy (25b) for some i , then π is majorized by the
degrees of Ki+2+(

Ki+4∪2Kn/2−i−3
)

with Ki+4 joined to the two copies of Kn/2−i−3
by four independent edges, three of the edges to one copy, and one to the other. If π

fails to satisfy (25c) for some i , then π is majorized by the degrees of Ki+1 + (
Ki+3 ∪

2Kn/2−i−2
)

with x, y, z ∈ V (Ki+3) joined by three independent edges to one copy of
Kn/2−i−2, and x joined by one edge to the other copy. If π fails to satisfy (25d), then π

is majorized by the degree sequence of Kn/2−3 + (
Kn/2−1 ∪ K3 ∪ K1

)
with Kn/2−1

joined by four independent edges to K3 ∪ K1. Each of these graphs is 1-tough and does
not contain a 2-factor. Thus Theorem 4.10 is weakly optimal for 1-tough ⇒ 2-factor.

We conclude this section with the following question.

Query Is the degree condition in Theorem 4.10 also a best monotone degree condition
for 1-tough ⇒ hamiltonian?

5 Improving Structural Results in a Best Monotone Sense

Recall from Sect. 2 that if P is a graph property and π is a graphical sequence, then
π ∈ BM(P) if and only if every graphical sequence π ′ ≥ π is forcibly P . Let P1, P2
be graph properties. If P1 ⇒ P2 and π ∈ BM(P1), then π is forcibly P2. But more is
true [8].

Theorem 5.1 (Bauer et al. [8]) Let P1, P2 be graph properties such that P1 ⇒ P2.
Then π ∈ BM(P1) ⇒ π ∈ BM(P2).

In the remainder of this section we will abbreviate π ∈ BM(P1) ⇒ π ∈ BM(P2)

(equivalent to BM(P1) ⊆ BM(P2)) by BM(P1) ⇒ BM(P2).
For example, since 3/2-binding ⇒ hamiltonian by Theorem 3.6, we have

BM(3/2-binding) ⇒ BM(hamiltonian) (26)

by Theorem 5.1. We may think of (26) as a best monotone analogue of the structural
implication 3/2-binding ⇒ hamiltonian.

Our interest in this section will be in implications of the form BM(P1) ⇒ BM(P2)

when the analogous structural implication P1 ⇒ P2 does not hold. In that case, we will
call BM(P1) ⇒ BM(P2) an improvement in a best monotone sense of the structural
P1 �⇒ P2. In the remainder of this section, we illustrate the possibility of obtaining
such improvements with several examples.

1. Although hamiltonian ⇒ 1-tough, the converse 1-tough ⇒ hamiltonian fails to
hold. But the converse does hold in a best monotone sense, i.e., BM(1-tough) ⇒
BM(hamiltonian), by Theorem 3.10 (t = 1) and Theorem 1.1.

2. Although a(G) ≤ k ⇒ χ(G) ≤ 2k, the converse χ(G) ≤ 2k ⇒ a(G) ≤ k is not
true. But the converse is true in a best monotone sense, i.e., BM(χ(G) ≤ 2k) ⇒
BM(a(G) ≤ k), by Theorem 3.25 and Theorem 3.28.

3. As noted in Sect. 3.2, the bound bind(G) ≥ 3/2 in Theorem 3.6 is best possible, and
thus there is no structural implication of the form b-binding ⇒ hamiltonian, for any
b < 3/2. But this implication does hold in a best monotone sense for b > 1 [10].
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Theorem 5.2 (Bauer et al. [10]) If b > 1, then BM(b-binding)⇒ BM(hamiltonian).

The hypothesis b > 1 in Theorem 5.2 is best possible: If

π =
(⌊ 1

2 n
⌋ − 1

)�n/2�−1(
n − ⌊ 1

2 n
⌋)n−2�n/2�+2(

n − 1
)�n/2�−1

,

then π ∈ BM(1-binding) by Theorem 3.9, but π �∈ BM(hamiltonian), since π fails to
satisfy Theorem 1.1 for i = ⌊ 1

2 n
⌋ − 1.

4. The following was proved in [9].

Theorem 5.3 (Bauer et al. [9]) Let G be a graph with bind(G) ≥ 2. Then

τ(G) ≥

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3/2, if bind(G) = 2;
2, if bind(G) = 9/4, or bind(G) = 2 + 1/(2m − 1),

for some m ≥ 2;
2 + 1/m, if bind(G) = 2 + 2/(2m − 1), for some m ≥ 2;
bind(G), otherwise.

Moreover, these bounds are best possible for every value of bind(G) ≥ 2.

Thus, the structural implication b-binding ⇒ b-tough fails to hold for infinitely
many b ≥ 2. But this implication is true in a best monotone sense for all b ≥ 2 [8].

Theorem 5.4 (Bauer et al. [8]) If b ≥ 2, then BM(b-binding) ⇒ BM(b-tough).

The hypothesis b ≥ 2 in Theorem 5.4 is best possible: If m ≥ 2 and π = (2m −
3)m−2(2m−2)2(3m−4)2m−3, then taking b = 2−1/m, we have π ∈ BM(b-binding)

by Theorem 3.9, but π �∈ BM(b-tough), since π fails to satisfy Theorem 3.10 for
i = 2m − 3.
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