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Abstract

This paper presents some basic design conceptsfdesign of open distributed systems.
These concepts should form the basis for the dpustat of effective design methodolo-
gies. The paper discusses how design concepts,asuictteraction, action and causality
relation, can be used for modelling and structubegaviours of functional entities in a
distributed environment. The paper also address®e £onsequences of the application
of these design concepts such as the choice ofidayggelements and operations to repre-
sent behaviour structure, the structuring of thegteprocess, and the definition of design
operations for behaviour refinement.

Keywords design concepts, interactions, actions, causalgtions, behaviour specifica-
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1 Introduction

Many research activities on systematic approaches to distributiednsydesign are being
carried out, such as the investigation of design methods, the developmeniceptaal
frameworks (e.g. ODP [5]), and the development of Formal Descripticdmitpies (FDTS).
These activities should be carried out in the scope of a comprehdasiga methodology,
based on common principles and objectives.

The results obtained with a design methodology are largely determined lohdice,
correct understanding and precise definition of its basic design cord€ljs Basic design
concepts model elementary and common characteristics of diffgstatsimplementations,
abstracting from characteristics which are irrelevant touhddmental purpose of the system.
In this way, basic design concepts facilitate the designer to eenadiucture and refine the
essential characteristics of a system.

This paper introduces and discusses the concepts necessary to motteictun@ Hehav-
iours of functional entities in a distributed environment. In particsarelaborate on the



concepts of interaction, action and causality relation. This papeadisesses some conse-
guences of the introduction of these concepts, such as the choice of laalgmagets and
operations to represent behaviour structure, the structuring of the desigsspiantd the defi-
nition of design operations for behaviour refinement.

The remaining of this paper is structured as follows: section 2is#ies the interaction
concept and its representation by three standard FDTSs, section Btpresae improved
architectural insights related to the interaction concept and desctiss basic concepts of
action and causality relation, section 4 applies these conceptsrte thefibasic design opera-
tions of action refinement and causality refinement, section 5rdbest our ideas with an
example, and section 6 presents some conclusions and directions for further research.

2 Theinteraction concept

The concepts of interaction and temporal ordering are important comcépésdesign of
open distributed systems. FDTs such as LOTOS, Estelle and SDiojfidbe able to repre-
sent these concepts. The key role of the interaction concept can baaowibysadopting a
design approach in which open distributed systems are designed fromittigodedf the
interaction systems between their distributed parts.

2.1 Interaction systems

Our approach to system design is based on a careful consideratiosydtdm concept. A
generic definition of a system can be found in Webster’s dictionary:

A system is a regularly interacting or interdependent group of items
forming a unified whole.

This definition indicates two different perspectives of a system: agratesl and a distrib-
uted perspective. The integrated perspective considers a systemhale @r black box. This
perspective only defineghatfunction is performed by a system. The distributed perspective
defineshow this function is performed by an internal structure defined in terdhsystem
parts and their relationships. Figure 1 depicts both system perspectives.

system F = function of system (part)
| = interaction

system part

sy

I3

Integrated perspective Distributed perspective

Figure 1: Integrated and distributed perspectiveaafystem

Repeated application of these system perspectives provides adbastep-down design
approach. Initially one defines the system functions. Subsequently, onesdedwethese
system functions can be provided in terms of sub-functions provided by gyatemnirom a
distributed perspective. This process can be applied recursivelyittettidied system parts,
until a direct mapping onto available implementation components becomes possible.



This design approach can be directly applied in case the relationstvijgebeystem parts
are rather straightforward, such that interactions between these parts candzeigedlicitly
by their composition. However, in case the relationships between systésmare more
complex, the interactions between these parts should be explicitly d&sidreconcept of
interaction system is introduced for this purpose.

Definition
An interaction system is defined as the mechanism that makesténaction between
system parts possible [11]. An interaction system divides each system part in ttian&inc

» anapplication function which uses the interaction system to communicate with applica-
tion functions of other system parts; and

» a protocol function which provides the functionality of the interaction system between
system parts in cooperation with the protocol functions of other system parts.

Similarly to systems, interaction systems can be also consideradah integrated and a
distributed perspective. Figure 2 depicts both perspectives of an interaction. system
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Figure 2: Integrated and distributed perspectivanfinteraction system

The integrated perspective of an interaction system is calleehdce Traditionally a
service is defined as the observable behaviour of the service proriteams of the interac-
tions that may occur at the interfaces of the service provideth@ncklationships between
these interactions. In section 3.5 we give a more precise intéignetd the concepts of
service and service provider.

The integrated perspective abstracts from the individual protocoidasand their coop-
eration. The composition of protocol functions is considered as a whohe imtegrated
perspective, similarly to the system from the integrated perspective as depiEtgure 1.

The distributed perspective of an interaction system is calf@dtacol A protocol is a
more detailed definition of the service, which defihessthe interaction system supports the
service, in terms of the contribution of the individual protocol functiongtagidcooperation.
Distributed protocol functions cooperate via some communication mechawisich is
called themeans of interactiorof the protocol functions. Figure 2 represents the abstract
means of interaction between protocol functions by arrows interconnecting them.

Design approach

Repeated application of the service and protocol concepts forms theobastop-down
design approach for interaction systems. The protocol functions of systentgra be again
decomposed into protocol layer functions and lower level protocol funciibedower level
protocol functions, and their means of interaction, constitute one orlovesze level interac-



tion systems. Similar to the original interaction system, theserl@vel interaction systems
can be considered as a service and a protocol, and further decomposed.

Figure 3 illustrates a specific example in which an interaction systemamgesed into a
layer of protocol functions and a single lower level interaction syskéis corresponds to the
decomposition of a service into Protocol Entities (PEs) and a iLbesxel Service (LLS),
such as in the OSI/RM [4]. Recursive decomposition of the lower $eveice renders a stack
of protocol layers, until a lower level service that is supported byahla implementation
components is reached. In the OSI/RM this lower level service is the servicetedpgpothe
transmission medium.

[] application function

service [ protocol layer function service

Iower PE1 PE2 pE3 | |-
level
serwce

Flgure 3: Alternative representations of servicelgmotocol systems

LLS

A system design approach based on the design of interaction systemtisusaply suited
for service and protocol systems, in which the interaction betwgstem parts plays an
important role.

2.2 Interaction characteristics

The interaction concept is a basic building brick for the design ahitten systems. The
modelling power of the interaction concept provides a designer withbihity to model the
relevant characteristics of interaction systems at suitdideaation levels. We define an
interaction as:

a unit of common activity shared by multiple system parts, through
which cooperation between these system parts takes place for the
purpose of establishing and exchanging information.

This section discusses the following basic characteristicstefaictions: reliability, time
and value establishment.

Reliability
The interaction concept represents some unit of behaviour aba@straction level that
cannot be split at this abstraction level. This property is called atommndtisanherent to the

choice of an interaction as a basic design concept. The atomicity tgrapposes that an
interaction should be implemented reliably, such that:

 either an interaction happens, which means that all involved systésncpa refer to the
interaction occurrence and to the information values that have been established;

* or an interaction does not happen, which means that none of the potéantialiyed
system parts can refer to the interaction occurrence or to any inkmmmaatues that could
have been established in the interaction.

The reliability requirement is based on the fundamental assumption theitga sleould be
considered as prescriptionfor implementation. A designer should be able to assume that
some activity on information that is defined at an abstract leaelalso be made to happen in



the implementation. At an abstract level a designer neither w@its concerned with the
many different ways in which an implementation may provide some greddsehaviour, nor
with the many different ways in which an implementation may fail to provide this lmelavi

Consequently a designer may only define some shared activity by measimgieanter-
action if this activity can be implemented reliably. If thealele implementation of an interac-
tion that models an activity cannot be guaranteed, this activity shoutdodelled by a
composition of multiple interactions, making unreliability explicit.

Time

The interaction concept only considers the moment of time at whicftexaction occurs,
which is defined as the first moment of time when all of the inebsyestem parts can refer to
the information values that have been established. The interactiogpt@onsidered in this
paper abstracts from other time aspects that may be associated wigraction, such as the
starting time or duration of an interaction. This is motivated by tleel n@ modelwhat is
established by all possible implementations of an interactionywaedit can be referred to,
rather than how this is achieved.

Value establishment

An interaction models the establishment of information values teasteared by all the
system parts involved in the interaction. Each individual system pgrimpose conditions
on the information values that can be established.

An information value can be established if all conditions that gpesed on this value can
be satisfied. Therefore, an interaction models the result of aiaggotetween the condi-
tions of all involved system parts. An interaction cannot happen if thepagigon of the
conditions on its information values is not satisfied by any values.

Considering the negotiation of an individual information value between twensysrts,
three basic forms of value establishment can be identified:

» value checkingwhen both system parts require that a single prescribed valueeabin
information type should be established;

» value passingwhen one system part requires that some prescribed value of a certain infor-
mation type is established, while the other system part allows &ny @gathat type to be
established;

» value generationwhen both system parts allow multiple alternative values ofrtaice
information type to be established.

Various combinations of these basic interaction conditions are pog3ilsleermore, they
can be extended in a straightforward way to the interaction betweenth@or two system
parts. For example, one system part may prescribe a single valgemdéin information type,
a second part may allow a set of values of that information typeg aliilird part is willing to
accept any value of that information type.

In case the superposition of all interaction conditions implies rindtiple values are
possible, a non-deterministic choice is made between these values.

2.3 LOTOSrepresentation

The FDT LOTOS [1], [8] supports the specification of interactibesveen system parts,
and the specification of their temporal ordering and value dependentpnstdps. The
semantics of a LOTOS interaction, which is calleceaent corresponds to the definition of
the interaction concept discussed above.



An event is specified in terms of the synchronization of mulgplent offersAn event
offer of some system part defines the contribution of this systemmgarms of its interaction
conditions. The matching of event offers from different system paiidsan interaction is
specified in LOTOS by prescribing that such offers be made at enoormabstract location.
This abstract location is called tbeent gate

The following specification illustrates an interaction in LOTOSyicl consists of the
parallel composition of three event offers:

g!3 ?b:Bool; By || g ?x:Nat !true; B, || g ?y:Nat ?b:Bool [(y ge 1) and (y le 5)]; Bs

In this example, if an interaction at gajehappens then values of sortNat (natural
number) andr ue of sortBool (boolean) are established.

Specification of interaction systems

The service of Figure 2 can be specified in LOTOS in terms aflibervable behaviour of
the service provider. The observable behaviour of a system partrisalefy the event offers
of that system part at the interfaces with its environment, anei#nships between these
event offers. In this case, the service provider and the applidatictions constitute each
others environment.

LOTOS processes allow the specification of the observable behaviour of systenT pa
following LOTOS specification presents a definition of the top-ldataviour structure of
the interaction system service. The abstract locations of théar#e between the service
provider and application functions are represented by the eventgatasdc.

specification Service : noexit:=

behavi our
Servi ceProvi der[a, b, c]

where ...

endspec (* Service *)

The protocol of Figure 3 can be specified in LOTOS in terms otdneposition of the
observable behaviour of the protocol layer functions or protocol entitiesharabservable
behaviour of the lower level service. The environment of the protocol layer functionstsonsi
of the application functions and the lower level service.

The following LOTOS specification defines the top-level behaviour stre®f the inter-
action system protocol. Since a protocol implements a service, theidnghaf the protocol
should be observable equivalent to the behaviour of the implemented service.

process Protocol[a,b,c] : noexit:=
hide x,y,z in ( PEl[a,x] ||| PE2[b,y] ||| PE3[c,z] )
| [x,y,z]| LowerLevel Service[x,y, z]
where ...
endproc (* Protocol *)

24 Estelleand SDL representation

The FDTs Estelle and SDL [8] support the specification of theeminaf asynchronous
interaction as basic design concept. Asynchronous interactions acsogilalsandinterac-
tionsin SDL and Estelle, respectively.

An asynchronous interaction corresponds to an instance of message exchewega be
system parts. This implies that system parts do not directyaictt but via some medium.
Both Estelle and SDL us#annelsas medium to allow communication between system parts.
These channels are infinite queues which avoids deadlock of the synchrateusasthines
that are used by these languages to model the behaviour of system parts.

Figure 4 depicts an example of an Estelle interaction and of an SDL signal.



Estelle interaction SDL signal

module A module B block A block B
channel g(A,B);
by A: g
output MGG | when ——
Msg(3) + TTTTIIIIIIIIII:  Msg [Msg]

Figure 4: Examples of asynchronous interaction stele and SDL

In contrast with asynchronous interaction, the interaction concept wdrs€c2 defines
synchronousinteraction between system parts, since synchronization betweeysteens
parts involved in an interaction is needed to perform a common activity.

Synchronous model of asynchronousinteraction

Asynchronous interaction between two system parts can be modelledybghaosous
interaction between the sending part and a channel followed by a synchrotevastion
between the channel and the receiving part. A LOTOS specificatitinsomodel is given
below which assumes that a single value (ofsar} is communicated between a sending and
a receiving system part.

speci fication Asynchronouslnteraction : noexit:=

behavi our
Sendi ngPart[gl] |[gl]| Channel[g1,92] |[92]| ReceivingPart[g2]

wher e
process SendingPart[gl]:noexit:= ... gl!3; ... endproc (* SendingPart *)
process ReceivingPart[g2]:noexit:= ... g2?x:Nat; ... endproc (* ReceivingPart *)
process Channel [gl,g2]:noexit:= ... gl?x:Nat; g2!x; ... endproc (* Channel *)

endspec (* Asynchronousl nteraction *)

In order to model synchronous interaction between distributed parts sonpesition of
multiple asynchronous interactions has to be designed. For example, a kemgdshecha-
nism can be used to implement a synchronous interaction. Therefore, aganguah is
based on an asynchronous interaction model can only be used to specify specific implementa-
tions of synchronous interactions.

Specification of interaction systems

The observable behaviour of a system part can be specified in termsdtikenm Estelle
and a block in SDL, by defining the input and output interactions or signdato$ystem
part, and the relationships between these interactions or signpéstiesly. This implies that
the service of Figure 2 can be specified in Estelle and SDLrmmstef a synchronous state
machine relating input and output interactions or signals, respectively.

Interfaces between system parts should be defined in Estelle dndySbeans of asyn-
chronous interactions through infinite queues. Therefore implementatiahsdamply to
Estelle or SDL specifications must implement sufficiently longugseas the means of inter-
action between system parts. Figure 5 illustrates the localaogsr between the application
functions and the service in terms of their implementation with queues.

The above discussion also applies to the specification in Estelendf the protocol of
Figure 3. The decomposition of the service implies the introduction of dsaveteveen the
protocol layer functions and the lower level service.



[] application function

interaction system:
implementation of local service interface,
which uses (infinite) queues as means
of interaction.

Figure 5: Specification of service interfaces indle and SDL

2.5 Consequences of interaction representations

The interaction representation of LOTOS and Estelle/SDL haperiant consequences
for the structuring of system behaviours. These are discussed below.

Modelling power

A synchronous interaction model has a higher modelling power than an asynchronous
interaction model. Asynchronous interactions can be modelled by a composisipmcofo-
nous interactions at a corresponding abstraction level, but synchronoustioiecan only be
implemented by a composition of asynchronous interactions at a moredietbdtraction
level.

For example, the relevant characteristics of the administratioonoiection endpoint iden-
tifiers (CEI) can be specified at an abstract level in L8TQOsing the negotiation types of
value checking, value passing and value generation. An Estelle or SDL spiecifean only
represent implementations of these negotiation types, which impltebéhepecification may
contain many irrelevant details about the way in which CEI administration is pedform

For example, the flow control by backpressure feature of the OSI Transport Seruice
be represented in Estelle and SDL since the introduction of infiniéees between system
parts make it impossible to represent that a system part blocks another atdHarant

Abstraction levels

Because of the modelling power of a synchronous interaction model, the FDT LO@OS ca
be used to represent designs at multiple different and relatedciostrievels. This makes
LOTOS a broad-spectrum specification language [3].

The FDTs Estelle and SDL are particularly suited for the seprtation of designs at the
lower abstraction levels, such as designs in which an explicit desiggnoteto implement the
communication between system parts by means of queues has already been taken.

Specification styles

LOTOS makes it possible to express the observable behaviour of som past in
terms of a set of constraints. The synchronous interaction conaeps &l express the condi-
tions of an interaction in terms of the conjunction of multiple comggacharacterizing the
constraint-orientedpecification style. Other specification styles supported by LOgi®@$he
monolithig resource-oriente@ndstate-orientedpecification styles ([12]).

Estelle and SDL specifications can only be written in resourested and state-oriented
specification styles. Queues between system parts can be consadegesheral purpose
resources.



Design approaches

The choice between an asynchronous or synchronous interaction model ¢ tceldite
choice of a design approach. Section 2.1 discussed two dual approacties design of
distributed systems: the design of system parts and the design of interaction systems.

An asynchronous interaction model suits the design of loosely coupled patsmwhich
communicate by exchanging messages. Therefore, the FDTs Estellearl@DLOTOS
support the design of system parts. The FDT LOTOS requires, howevekpligt model-
ling of the communication medium between system parts.

A synchronous interaction model suits the abstract design of strongly ceygteth parts.
Interaction systems may define complex interaction structures asichdnbn conditions
between system parts. Therefore, the FDT LOTOS supports the desigerattion systems
in a more general manner than the FDTs Estelle and SDL. Théicgteam of synchroniza-
tion between system parts can only be achieved in Estelle and S&Xplogitly defining the
mechanism that implements this synchronization, forcing the desigiogrenthe abstraction
level of the specification.

3 New developments

The concepts of interaction and temporal ordering allow one to desigactite systems
in terms of the observable behaviour of the system parts that contribute to thepraivibe
interaction system service. The interaction concept does not allot oleéine the common
behaviour of these system parts as it is discussed in the seqtietriare, the concept of
temporal ordering does not allow the definition of some important dependdatgnships,
such as true concurrency, between interactions.

These limitations have motivated the introduction of the following twacbdssign
conceptsaction and causality relation Application of these concepts has consequences for
the design methodology: more general behaviour structuring techniques abéepbshav-
iour and entity domains can be identified, and generic design milestones can be defined.

3.1 Theaction concept
An action is defined as:

a unit of activity that is performed by a system part, which takes place
for the purpose of establishing information.

The action concept models the relevant characteristics of sdiviéyan the real world.
An action is the most abstract model of an activity, and cannot batstbig abstraction level
at which the action is defined. Similarly to an interaction, aroachould be implemented
reliably; i.e. either it happens and reference can be made to all infornietios éstablished,
or it does not happen and no reference can be made to any informationgtmahave been
established.

A more detailed model of an activity can be obtained by decomposing tivityaato
multiple sub-activities and their relationships. The relevant chaistatsrof these sub-activi-
ties can be modelled by distinct actions. Therefore, the actioceptis independent of the
abstraction level or granularity at which specific activities are matielle

Figure 6 depicts an example of an activity that is modelled at tiferedit abstraction
levels. At the highest abstraction level the outcome of the acisvityodelled by a single
action. A more detailed model defines how this outcome is achieved by a composition of f



related sub-activities, which are modelled by four distinct actiongitively these represen-
tations can be considered consistent if the outcome of sub-aetaygforms to the outcome
of its corresponding acticmand to the outcome of the most abstract action

action a' _
outcome of action a'

conforms to
action ¢ outcome of action a
action a conforms to
outcome of sub-activity a
action d conforms to
action b outcome of activity a'

—

S~ A
sub-activity ¢

sub-activity a~~ >
sub-activityﬂty a'

Figure 6: Example of activity modelling

sub-activity d

We consider each instance of activity to be unique and we assumeetban unambigu-
ously refer to an action by using an action identifier. Other relevaaracteristics of an
activity are defined by the following attributes:

* location the logical or physical location where an action occurs;

* time the moment of time when all the values of information establishaadl action can be
referred to by other actions;

* action valuesthe values of information that are established in an action;

» retained valuesthe values of information established in other actions that happened

before, and kept by this action for further reference;

» probability: the probability that an action occurs once all conditions for its paoce are
satisfied.

Some examples of actions with their attributes are presented below.
a (t3:Time, vy:Nat)

b (I:Location, t,:Time, vy:Value, p,:Probability)

¢ (Ie:Location, v.:Value, r.:RetainedValue)

Integrated interaction

An action may represent antegrated interactionwhich abstracts from the individual
interaction contributions or responsibilities of the involved systens.pahis implies that an
interaction can be considered as a possible implementation doftian. 8However, some
actions are not abstractions of interactions, since some acteynsonh be distributed over
multiple system parts at lower abstraction levels.

Following this more general interpretation of an interaction than thejigea in section
2.2, interaction contributions have the same attributes as actionsepuiffer in the defini-
tion of the constraints on the establishment of the attribute valigeseR depicts an example
of an actiora that is implemented as an interacteshared by three behaviours. In order to
distinguish interactions from actions, interaction identifiers are underlined.
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behaviour B,
a (ty:Time, v :Nat)
[ta>tot1, v420]

behaviour B
a (t;:Time, v :Nat)
[totl <ty <tpt+3,
v,0{0,1,2}]

==

behaviour B,

behaviour B3
a (t;:Time, v :Nat)
[ta <to+3, va < 3]

a (t;:Time, v :Nat)
[0<v,<10]

Figure 7: Example of an integrated interaction

3.2 Behaviour definitions

The occurrence of an action generally depends on the occurrence or nonngecofre
other actions. Causality relations are introduced to represent tiegsmndencies. The
causality relation of an actiam defines the enabling condition a&f in terms of actions that
must have occurred, its enabling actions, actions that must not haveed¢dtsridisabling
actions, and conditions on the attributes values of the enabling actioneresthints on the
attribute values of actiosy. Action a, is called theesultaction.

Two basic causality relations are distinguished:

 the enabling relation, - a;, which defines that the occurrence of actgris a condition
for the occurrence of actian. Only in case, has occurred, is allowed to occurg, can
refer to the attribute values aj.

 the disabling relationa, - a;, which defines that the non-occurrence of actgns a
condition for the occurrence of actiap. As long asa, does not occur before or simulta-
neously withay, a; is allowed to occur; ik, occurs and; has not occurred before &;
disables or excludes the occurrenceof

More complex causality relations can be composed from these twadlasiens using the
logical operatorand (0) andor (0), which are interpreted according to the rules of boolean
logic, once occurrences and non-occurrences of actions are considexemnas proposi-
tions! Some examples of causality relations with two enabling or disahdiimna are given
below:

* a, 0ag - a;: botha, andag must have happened befagis allowed to happen. Since
botha, andag enablea,, actiona; can refer to the attribute values of both actions;

* a,Uag - aq: eitheray, or ag or both must have happened befayés allowed to happen.
Action a4 is enabled by eithe, or az, but not both, even in the case that baftandas

have happened befoeg. This implies that in an implementation a mechanism that estab-

lishes what action actually enablegis necessary. This mechanism chooses betagen
andag in case both actions have happened bedpréction a; can only refer to attribute
values of the action that enabled it;

* a, 0 ag - a;: the occurrence di, and the non-occurrence af are both conditions for
the occurrence ady;

1. We stress that is not equivalent to the negationaoih the boolean sense. Suppose that acti@arglb both
occur. In this casa - b implies that; <tp, wherety andty, represent the time of occurrenceaaindb, re-
spectively. Intuitively, the negation of this rétat would represent the case in whigle t,. However,

"a - bimplies that; > ty,. This specific choice of implicit time conditiom$ been motivated by the need to
define behaviour patterns such as disabling aniteho
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* a,0"ag - & the occurrence daf, or the non-occurrence ag or both are conditions for
the occurrence dd;.

Figure 8 depicts the graphical representations of the elementarglityauslations
discussed above. Actions and causality relations are represenieteasand arrows between
circles, respectively. An interaction is represented as aesgguohcircle, where each segment
represents a contribution to the interaction. An example of such a represecdatioa found
in Figure 11.

The logical operatorand (0) andor (0) are represented explicitly, which allows a direct
representation of a parentheses structure that may be used ixttia¢ netation to indicate
the priority of the logical operators. Furthermore, this notation doeprescribe the use of a
conjunctive or disjunctive canonical form. For example, the reported notation in [13] required
that a causality condition is written in the form of a disjunctiorcadjunctions of action
occurrences and non-occurrences.

ap ag ay ap a a
<>—’<> Q\ a; Q\ a; Q\ a; O\ a;
ar, — ag D—’O D‘PQ D—PQ D—’O
° a4 O O od O
Q-0 = % % %
_‘az — al az Dag - al as D_‘ag — a ap DaS - ap as D_'a3 - ap

Figure 8: Elementary causality relations

A behaviour can be defined by the causality relations of all itsrectSome actions are
enabled from the beginning of the behaviour (initial actions), and have d@icoisthrt which
corresponds to true. Figure 9 depicts the graphical representation ofvetirkeown behav-
iour patterns, and their shorthand notation. The context of these behavietngatterms of
possible other conditions fay anda, are not explicitly represented in Figure 9.

-0
Ok \—»Q a; —»Q a;
a; a, AN |
»Q—’O _>Q ao 4@ a, —}O ar
(a) sequential ordering (b) independence (c) disabling of a; by a,
of a; and a, between a; and a, (+ shorthand)
—0O -0
\—»Q . »Ja ﬁ aa >0
N4 | |
/N | - |
/ S .
—d») a —»@ ap —0¥)a —»Oa
(d) choice between a; and a, (e) arbitrary interleaving of a; and a,
(+ shorthand) (+ shorthand)

Figure 9: Some well-known behaviour patterns

The textual behaviour representation of arbitrary interleaving is givew.bEhe causality
relations of actions; anda, represent that eithep is enabled by, or a; is enabled by,.

B ::{ as D_‘az — ay,
a;07a; - ap}
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3.3 Behaviour structuring

Generally, the purpose of structuring behaviours is twofold: (i) toawgthe comprehen-
sibility of the design, or (ii) to be used as a prescription for implgation. The definition of
behaviours in the preceding section is limited to the monolithic defndi finite behaviours.
Structuring techniques also allow the definition of repetitive behaviours.

Causality-oriented behaviour structuring

The definition of causality relations between actions can be generalidesl definition of
causality relations between behaviours. This allows the structurmgahplex behaviour in
terms of less complex sub-behaviours and their relationships. Furthepnedefined sub-
behaviours can be reused through instantiation, and repetitive behaviolnes regoresented
through recursive behaviour instantiation. This structuring technique, whiatallisd
causality-oriented structuringnakes use of:

* entry points which are points in a behaviour from which actions of that behavioubean
enabled by conditions involving actions of other behaviours,

» exit points which are causality conditions in a behaviour that can be used to enable actions
of other behaviours.

Behaviours can be composed by relating their exit and entry points, which are indicated by
the keywordsexit and entry, respectively. A behaviour may have multiple exit and entry
points.

Figure 10 depicts the causality-oriented composition of a unidirectisoahrionous
datagram service. Actiomeq andind represent a data request and a data indication service
primitive, respectively. Sub-behavio,; models the first instance of communication, in
which a transit delay smaller than a certain vallmetween the occurrence ofex and its
correspondingnd is established. Sub-behavidéirmodels subsequent instances of communi-
cation such that the interval between two consecutig® (nds) is equal to a certain constant
value At. This requirement implies that the transit delay is kept conatamtell. Repeated
instantiation ofB' is represented by adding an apostrophe to the behaviour and action identi-
fiers.

Byata \|/ Byata := { start — Bjsjt(entry) }
B . —
Init red(treq:Vreq) ‘/) Binit := { entry - red(treq:Vreq):
g iNd(ting Vina) T req(treq:Vreq)
[tind<treq*d: Vind=Vreq] ind(ting,Vind)[tind<treq*9: Vind=Vreql:
: P red(treq:Vreq) — B'(ENtry1(treq)),
B req'(tveq:V'req) ind(t‘rqu‘re(; ~ B(entry,; re;])}
[t'req:treq"'At] - ind»Vind 2\lind
i ind'(t'ing:V'ing) T B':={ entry;(treq) -
[ting=tina At V'ing=V'reql . . .
req'(tveq:V'req)[treq=treq tAtl-
B" req"(t'reqV'req) entrys(ting) Jreq'(tveqV'req) —
[t"req=Creq At - ind'(t'ing,V'ind) [t ind=tind +At],
ind"(t"ingV"ing) req'(treq:V'req) — B"(entry;(tyeq)).
[ing=tind*At V'ing=V"req] ind'(t'ng,V'ing) — B"(entry(ting)) }

[ |
Figure 10: Causality-oriented composition of andsmnous datagram service
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Constraint-oriented behaviour structuring

The constraint-oriented structuring technique allows the structunidg@mposition of a
behaviour in terms of a conjunction of conditions and constraints on actibid) are
defined in separate sub-behaviours. This implies that some actioepaasented (or actually
implemented) as interactions, which consist of multiple interactoributions distributed
over different sub-behaviours.

Alternative constraint-oriented compositions of the same monolithicvimelradefinition
are possible:

e an action can be assigned to a single sub-behaviour, or can be shagé tyam one sub-
behaviour;

* in case an action is shared by sub-behaviours, its conditions and cosmstdiich are
represented by a single causality relation in the monolithic behaviouitidef can be
distributed over multiple causality relations of the interaction rdmttons in different
ways. The causality relation of an interaction contribution defineg#raof the original
conditions and constraint that are assigned to a sub-behaviour.

The choice between alternative decompositions is determined by the design objectives of
design step and by technical and quality criteria. A conformance regutes that the
conjunction of the conditions and constraints of the interaction contributimugdsbe logi-
cally equivalent to the conditions and constraints of the (integrated) action.

The causality-oriented definition of the isochronous datagram servicéigofe 10
abstracts from the assignment of responsibilities on the occurrehecegs orinds to the
service users and the service provider. Figure 11 depicts a corstraitied decomposition
of this service in which responsibilities are assigned to sub-behaviours.

B1 B3

ﬁ req(treq:Vreq)

Bs

req(treq:Vreq) -

ind(ting,Vina)
[Vind:Vreqvtind<treq+6]

\6 ind(ting,Ving)
™
\ ind(ting,Vind)

[Vreq=--1

req(treq:Vreq)
@.l(t'req vV'req)g

B>

req'(tveq.V'req) .

[V'req:i o M(t'indyv'ind)'

@:(Ilreq,V'req) / [V'ind:V'req]
i

—&

&« |

y
| ind'(ting,V'ind)
™

ind'(ting:V'ing)
[ind=tina+At]

[t'req=treq+At]

@:(t"reqvvureq)
[v"req:...]

req "(t"reqvV"req)
ind"(t"ing,V"ing)
[V'ind=V"req]

ind"(t"ing:V"ing)

ind"(t"ind:V"ing)
[t"ing=tina+At

req”(t"req,V"req)
["req=treqAt]

Figure 11: Constraint-oriented composition of isomious datagram service
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Sub-behaviouBs is responsible for the sequential and correct transfer of dataalunés
across the service provider. Sub-behavidsysand Bs are responsible for providing and
accepting the data unit values, respectively. Sub-behavigauesnd B, must maintain the
timing constraints on consecutive occurrence®ggd andinds, respectively.

Typically, sub-behaviourB, andBg define part of the behaviour of the service users and
sub-behaviouB; defines part of the behaviour of the service provider. Sub-behadgarsd
B4 can be assigned to the service users or to the service provider, or to both.
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3.4 Behaviour and entity domains

The structure of a behaviour, in terms of a composition of sub-behaviours, is a pascripti
for implementation if these sub-behaviours are assigned to logical acglhgygstem parts.
The term physical system part is used to denote some componenntbatidentified in the
real system. The term logical system part is used to denote conposition of logical or
physical system parts, which is considered from an integrated pérspdttis means that a
logical system part represents an abstraction of many possible ctomsosif logical or
physical system parts. Consequently, in order to obtain a final implenoenof a system
each of the system’s logical parts should be decomposed until a mappingalnggstem
components is completely defined.

Because the term system part is often associated with real systgmonents, we will use
the term entity, ofunctional entityfurther on to denote a logical or physical system part.

The concept of functional entity is related to the concept&tdn pointandinteraction
point, which are used to denote the logical or physical locations at whionsand interac-
tions occur, respectively. The following rules apply to functional esfitigeraction points
and action points:

1. each functional entity is delimited by zero or more interaction pa@ntseach interac-
tion point is shared by two or more functional entities;

2. each functional entity contains zero or more action points, and e#mh @ant is con-
tained by a single functional entity;

3. each functional entity is delimited by at least one interaction poatdntains at least one
action point.

Considering all the design concepts introduced so far, two distinct btedelomains for
system design can be distinguished:

» theentity domainin which the actors of behaviour, i.e. the functional entities, and their
compositions, are defined;

» thebehaviour domainin which the behaviours of the functional entities are defined.
Figure 12 depicts both domains, and their related basic design concepts.

Entity domain Behaviour domain
Action points assignment Actions
Interaction points - Interactions
Functional entities : > Causality relations
consistency
Entity composition condition Behaviour structuring

Figure 12: Entity and behaviour domain

The entity and behaviour domains are related to each other by an assigmineicbasis-
tency condition. A behaviour is assigned to each functional entity, wiigles that actions
and interactions of a behaviour are assigned to action points and intepanhts of a func-
tional entity, respectively. Given a certain assignment of behaviodusictional entities, the
consistency condition imposes that:

1. actions of a behaviour happen at action points of the functional entityi¢b the be-
haviour is assigned;
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2. interactions of a behaviour happen at interaction points which aszldhathe function-
al entities to which the interaction contributions are assignedattiens between func-
tional entities can only occur at the interaction points they share;

3.  the result action (or interaction) and its conditions and constd#fiteed in a causality
relation are assigned to a single functional entity. This meana #iagle functional en-
tity is responsible for the conditions and constraints on an action éoadtion) that are
represented by a causality relation.

Figure 13 illustrates a possible assignment of the sub-behaviourgiédeintiFigure 11 to
functional entities. The depicted interaction points represent thieesarccess points at which
thereq andind service primitives take place.

sub-behaviours of Figure 11:

sending user
entity

receiving user
entity

sending receiving
LSl LSl
datagram ==

service provider

<
Cea >
=

LS| = Local Service Interface @D = interaction point

Figure 13: Assignment of behaviours to entities

The distinction between an entity and a behaviour domain allows aseparation of
design concerns for the identification and definition of design steps. igndstep can be
related to the entity domain or to the behaviour domain, if its objedieedefined in terms
of manipulations of concepts in the entity domain or in the behaviour doreapeatively
(see Figure 12). Examples of designs steps that are related eatittyedomain are (func-
tional) entity decomposition and interaction point refinement ([7]). Exasngl design steps
that are related to the behaviour domain are resolution of non-detrmimehaviour reduc-
tion ([7]) and action refinement ([6]).

According to the consistency condition, the entity structure, in termsofibnal entities
and their action and interaction points, and the behaviour structure, sd@géautions, inter-
actions and their causality relations, are closely related. $ecentity structure of a design
is a prescription for implementation, manipulations of this structhould be reflected by
corresponding manipulations of the behaviour structure. For example, the det¢om@ds
functional entity into a composition of sub-entities implies a correspgndonstraint-
oriented decomposition of the original behaviour into sub-behaviours that casidpeea to
these sub-entities. However, this behaviour decomposition is resthgtel®composition
rules, which are presented in [2], [9] and [13].

Manipulations in the behaviour domain do not necessarily have consequenhesefurty
domain. For example, the behaviour of an entity may be defined in more wittelt
implying any modifications to the entity structure. Furthermore, thuetstre of a behaviour
only becomes a prescription for implementation when the (sub-)behavaceirassigned to
functional entities.

Before such an assignment is made, a designer may choose differembdrestauctures
in order to conceive and understand the characteristics of the behawioexample, behav-
iours may be structured as monolithic, causality-oriented, constragmted, or mixed
causality-constraint-oriented structures. In order to prepare signaent to functional enti-
ties, a constraint-oriented, or mixed-causality-constraint-oriebigtaviour structure is
needed.
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Specification stylesin LOTOS

Specification styles have been introduced in [12] as a way to struspe@fications
according to specific design objectives. When applying the entity and behdwimains for
defining design objectives and characterizing design steps, we can canctattespection
that, for example, the resource-oriented specification style issegeto represent in LOTOS
the desired entity structure and the mappings from a behaviour sgemifioato the func-
tional entities of this structure, at a certain abstraction level.

Role of the domainsin the design process

From the perspective of the entity domain, a pure top-down design processsocointhe
repeated decomposition of functional entities into compositions of sukegntuntil a
mapping onto real system components is achieved. Since functional exmttigslimited by
interaction points, we have to insert interaction points in a fundtesray in order to define
a composition of sub-entities from this single functional entity, atigwhese sub-entities to
be delimited. Therefore, insertion of interaction points is a negessmipulation to achieve
entity decomposition.

When entity decomposition is performed, the behaviour of the original funiceatity
has to be decomposed into sub-behaviours, such that these sub-behaviouignee tasthe
resulting sub-entities. Action points that belong to the original functienaty may be
assigned to different functional entities in the resulting desigrhisncse actions that are
directly related in the behaviour of the original functional entity cabedirectly related in
the behaviour of the resulting functional entities, but have to be atigrelated by interac-
tions occurring at interactions points shared by these functional entities.

Figure 14 illustrates the decomposition of the isochronous service pro¥iflégure 13
into two protocol entities and a lower level service provider. The decomposition of the behav-
iour of the isochronous service provider is performed in two steps:

1. two actions are introduced representing the occurrences of aglatatrend a data indi-
cation primitive of the lower level service. This more detailgmesentation of the serv-
ice provider is called a protocol (see also section 3.5).

2. both actions, and their corresponding action points, have to be decomposed into interac-
tions and interaction points in order to assign them to the protocol entities aod¢he |
level service provider.

The first step is an example of behaviour refinement, which is discussed in section 4.

red < o ind @ - interaction point
behaviour (O = action point
refinement
req ? ind <@ @
r€dasyn iNdasyn isochronous protocol
identification isochronous
of constraints datagram

service provider

- 2 . [SLLET
@asyni E indseyn — | ipe = isochronous
req, ind | | asynchronous datagram protocol
asyn Z ; —asyn service provider entity

L — — — — J

Figure 14: Decomposition of isochronous datagramvise provider
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3.5 Design milestones

This section presents some generic design milestones that ewantefor distributed
system design, by identifying their objectives and their relative positi a design process.
These design milestones have been enabled by the introduction didhecaacept, making
in this way the design approach presented in section 2.1 more general.

For convenience these design milestones are represented primaelyngof the entity
domain.

I dentification of system and environment

Objective identification of the distributed system and the application environnient
terms of the application entities that use the system and the wa\ethtéges cooperate. This
design milestone is used to determine the activities of the applicatioorement that should
be supported by the distributed system, and the degree of support to be provided.

The requirements on application support to be provided by the distributeth systier-
mines a boundary between the system and its environment. Figure 15 depicts this boundary.

Application -
environment
S; = System part e Distributed system

Figure 15: Identification of system and environment

Service definition

Objective definition of the shared boundary between the system and its environment. This
design milestone defines the common behaviour of the system and its emvitpwinich is
called theservice and abstracts from the many different ways in which the respotissili
and constraints for providing the service may be distributed betwesgsteen and the envi-
ronment. A service is defined in terms of (common) actions and their causalityn®lat

Because the individual contributions of the system and the environmiet $ervice are
not defined, both entities are not distinguished at this abstraction Ténekervice is there-
fore assigned to a single functional entity, which is calledritegaction system between the
system and its environmefithis interaction system only comprises that part of the environ-
ment that is relevant for the definition of the service.

Figure 16 (a) depicts this design milestone.

Definition of service provider and service users

Objective definition of the behaviour of the system, which is also calleds#reice
provider, as it is observed by its environment. At this abstraction levpbnsgbilities and
constraints for performing the service are assigned to the seragieler and to its environ-
ment, using the constraint-oriented structuring technique. In this way thevable behav-
iour of the service provider is defined as well as part of the wdisier behaviour of the
environment, which consists of the service users or application entities.

This design milestone is useful to delimit the functionality of #eise provider. The
internal structure of the service provider is not considered at this abstraggbn le
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=
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Figure 16: Some generic design milestones

Figure 16 (b) depicts this design milestone.

Protocol definition

Objective definition of how the observable behaviour of the service provider isedffe
while abstracting from possible decompositions of the service providerefbre, the
internal behaviour of the service provider is defined in terms of a itlunobdr causality-
oriented behaviour structure, which is calledhatocol

The definition of the internal structure of the service provider, mgef the logical distri-
bution of actions and associated action points, should anticipate on itpe olejgctives of
the next design milestone. This implies that the designer should alraag\some decompo-
sitions in mind.

Figure 16 (c) depicts this design milestone.

Definition of protocol entitiesand lower level service provider (s)

Objective definition of the internal structure of the service provider in termscofgosi-
tion of distributed protocol entities which are interconnected by one oe fowwer level
service providers. At this abstraction level responsibilities angdtcaints for performing the
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protocol are assigned to protocol entities and lower level servicedpr@s), using the
constraint-oriented structuring technique.

The common behaviour of the protocol entities and the lower level sgrxawider(s) is
defined by the protocol. This implies that a protocol definition providefutiaional require-
ments for the definition of the lower level services and the diefinof how they are used to
provide the observable behaviour of the service provider.

Figure 16 (d) depicts this design milestone.

I nterface decomposition

The presentation of the milestones of Figure 17 (b) and (d) may stlggetgtie responsi-
bilities for performing the actions at the interfaces betweerséhnéce provider and service
users, or between the lower level service provider and protocol gntéspectively, have to
be assigned to the involved entities. However, in some cases ttes toedefer the assign-
ment of (part of) the responsibilities to later design stepgXample to prevent that an early
assignment has to be reconsidered.

An example of this is illustrated in Figure 13, where part of dkeallconstraints on the
occurrences of actionseq and ind have been assigned to the entities sending LSI and
receiving LSI, respectively. The assignment of local service @ntrto a separate entity is
particularly useful in the standardization of distributed systemsrentine distribution of
these constraints over the service users and the service praaides left to the implementer.

4 Behaviour refinement

During the design process we may have to replace abstract designs éoyxanorete
designs, in which internal design structure is explicitly defined. Behavefurement is
defined as a design operation in the behaviour domain in which an albs&hastour is
replaced by a more concrete behaviour that conforms to this abstnavicae. Behaviour
refinement allows designers to add internal behaviour structure to an abstraabirehavi

Actions of an abstract behaviour are calibdtract reference actiong/e assume that each
abstract reference action has one or more correspoodmgyete reference actioria the
concrete behaviour. By assuming that, it is possible to compare thecabstiaviour with the
concrete behaviour, in order to assess whether the concrete behaviounsdaftire abstract
behaviour. This comparison takes place through the reference actions, which eferémnee
points in the abstract and concrete behaviour for assessing conformance.

Two different types of the behaviour refinement design operation are considered:

» causality refinemenin which the causality relations between the abstract refeestions
are replaced by causality relations involving their corresponding comefetence actions
and some inserted actions;

 action refinementin which an abstract reference action is replaced by an gativilving
multiple concrete reference actions and their causality relations.

There are refinements that cannot be strictly characterizealiaality refinement or action
refinement. In the examples we have studied so far, these refiteecad be considered as a
combination of causality and action refinement.

Figure 17 illustrates the causality refinement and action reénedesign operations. The
abstract behaviour consists of the abstract reference aetiop's c' andd'. The concrete
behaviour obtained by causality refinement consists of the concfetenee actions, b, ¢
andd, and thenserted action®, f andg, which characterize the modifications performed in
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this design operation. The concrete behaviour obtained by action refinemneigts of the
concrete reference actioasb, ¢4, C,, C3 andd, where actiong,, ¢, andcg form an activity
that refines the abstract reference actiomn this exampleg, andc; are both concrete refer-
ence actions which correspond to abstract reference attion

action
refinement

causality
refinement

Figure 17: Causality and action refinement

Since an abstract behaviour can be replaced by many different @ecancrete behav-
iours and the choice of specific concrete behaviours is determined diffcsgesign objec-
tives, the behaviour refinement design operation can not be automated in its totalgyeHow
one can determine the correctness of this design operation by chetidgtigeithe concrete
behaviour conforms to the abstract behaviour.

4.1 Causality refinement

The following activities have to be performed in an instance of causality refinement:
1. delimitation of the abstract behaviour;
2.  elaboration of the concrete behaviour;
3. determination of the abstraction of the concrete behaviour.

Delimitation

The abstract behaviours that are considered for refinement mustlibeted by their
abstract reference actions. We do not consider the refinementhabibers which have
actions that are not abstract reference actions but can infltrenoecurrence of the abstract
reference actions. Delimitation is important to make it f#asio refine infinite or large
behaviours.

Conformance

Causality refinement generally consists of replacing directaeéess to attribute values of
abstract reference actions by indirect references to attritaltees of concrete reference
actions via attribute values of inserted actions. An instanceushlity refinement is consid-
ered to be correctly performed if the concrete behawonforms tathe abstract behaviour.
Intuitively one can characterize conformance between a concreteats$tract behaviour by
two requirements:

1. preservation of enabling and disabling relatioesabling and disabling relationships be-
tween abstract reference actions defined in the abstract behaxéopreserved in the
concrete behaviour by their corresponding concrete reference actiongafgle the

21



causality relatiora' O b' - c¢'in Figure 17 is preserved in the concrete behaviour by the
combination of the causality relatioas- e b - fandedof - ¢
2.  preservation of attribute valueattribute values of the concrete reference actions are the
same as the attribute values of their corresponding abstract refaotioos. Two alter-
natives for the preservation of attribute values may be considered:
- strong preservationall attribute values that are possible for an abstract referac-
tion are also possible for its corresponding concrete reference action;
- weak preservatiarthere may be attribute values that are possible for an abstfac
erence action but are not possible for its corresponding concrete reference action.
For simplicity, we only consider strong preservation in this paper.

Abstraction rules

Given a concrete behaviour and its concrete reference actions, one sboalde to
deduce the corresponding abstract behaviour, by abstracting from thediresstites and
their influence on the concrete behaviour. The following steps definehman® deduce the
abstract behaviour of a certain given concrete behaviour:

1. abstract from references to inserted actions and their agtiblites that appear in the
conditions of other actions of the concrete behaviour;

2. (possibly) simplify the causality relations obtained, e.g. by replaemgs such ag; O
a andg; 0 by &;

3. gotostep 1 again, unless a behaviour without inserted actions laay dleen obtained.
When we abstract from inserted actions in step 1 we obtain a more abstraaburelvéki
respect to the initial behaviour of this step. The application ofrtt@ghod on a concrete

behaviour results in a behaviour involving only abstract reference actianss Ror
abstracting from references to inserted actions and their agtrflies are discussed in [2].
These rules are callebstraction rules

The following two abstraction rules are examples of general hudgshaive been defined
for abstracting from inserted actions in the deduction of the abbthaviour (step 1), in the
case of a concrete behaviour defined only in terms of enabling relations:

Abstraction Rule 1

an inserted action that is an enabling condition for an action obth@ate behaviour
can be replaced by the condition of the inserted action as definedcaugality rela-
tion.

Abstraction Rule 1b

constraints on time attribute values of inserted actions being relhhave to be consid-
ered in the computation of the time constraints on the remaining actioesorhputa-
tion has to consider implicit time constraints of enabling relations.

Figure 18 illustrates the application of these abstraction rule® #bstract from actior
the time constraint on actiahbecomedy < t,+5,+3, if we only substitute the referencetto
by t,+8, as defined in the time constratgtt,+8; on actionc. In addition, we must consider
the implicit time constraint, < ty of the enabling relatios - d, which renders the time
constraintt,+8; <ty < t,+38,+5, on actiond. This constraint is considered in the computation
of the resulting time constraint of actibhwhen abstracting frord.

4.2 Action refinement

Action refinement consists of replacing an abstract referectienaby an activity. An
activity is a composition of actions, hence it is more concreteithaorresponding abstract
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abstract behaviour: @' (t)) (O—————»() b’ (tp)[ta+01+85 <ty < t'3+8;+5,+35]
* application of abstraction rules 1 and 1b (2x)

concrete behaviour: a(ty) b (tp)[ty=ty+d3]

C (to)ltc=ta+dq] d (tg)[tg<tc+0]
Figure 18: Example of causality abstraction

reference action. Activities are defined by behaviours. Activity waduwe the values of infor-
mation established by some actions of an activity and referred to by otbesamtactivities
outside the activity.

In general the essence of action refinement is the decompositidnlezfsa one of the
action attributes of the abstract reference action in multigiieraattributes of the concrete
reference actions. Not only action values, but also location, time andpitglz an abstract
reference action may be distributed over actions of an activity.ig the essential difference
between action refinement and causality refinement, since inttaetlae attribute values of
an abstract reference action and its corresponding concrete reference actioa thesame.

Correctness

Two correctness requirements are identified to determine iadtieity that replaces an

abstract reference action is a correct implementation of that actiorcontesxt:
1. conformance between an activity and the abstract reference action;
2.  proper embedding of an activity in the context of the abstract reference action.

The approach towards requirement (1) is to determine the rulesrfsidering an abstract
reference action as an abstraction of an activity, and applyriilesdor assessing whether an
activity conforms to an abstract reference action. Requiremerg §ljpported by rules for
action modelling. These rules determine the attribute values whichdshewssigned to an
abstract reference action in order to consider this action dsstraction of a certain activity,
which characterizattribute abstraction

The approach towards requirement (2) is to determine the rulebdtvaeting from the
specific ways an activity relates to other activities andastiand apply these rules to deter-
mine whether specific activities embedded in the concrete behawawecity implement the
abstract reference action embedded in the abstract behaviour. Reqtii@&neesupported by
the rules for abstracting from the specific embedding of an actividyconcrete behaviour,
which characterizeontext abstraction

Figure 19 depicts the relationships between attribute abstractioextahbistraction and
the design choice to be taken in action refinement.

Attribute abstraction

An action is a proper abstraction of an activity if it has atteluatiues that represent the
attributes of the activity, namely the location, value, time and pridyabttributes. This
correspondence is defined in terms of rules which determine tlileutgtvalues that an
abstract reference action should have in order to be an abstradimadfvity. General rules,
which apply to activities of any form, and specific rules, which apptettain activity forms,
are presented in [2] and [6].
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Figure 19: Elements of action refinement

design choice:
embedded activity

Activities may make their value attributes available through the aaoearof one or more
final actions. The following generic cases are distinguished:

 single final actionan activity has a single final action, such that this activitgesall its
values available when this final action occurs;

» conjunction of final actionsan activity has multiple independent final actions, such that
this activity makes all its values available when all these final actions;occ

» disjunction of final actionsan activity has multiple alternative final actions, such thiat t
activity makes all its values available when one of these final actions occurs.

Not all information values of an activity have to be establishedifinal actions. Some
information values may be established in other (non-final) actions, anécheferred to by
the final actions and are made available in their retained value attributes.

Example: parallel interface

Figure 20 depicts a parallel interface activity and its corresporatsgract reference
actionword, which is an example of abstraction of a conjunction of final actioms.value
attribute of the abstract reference actioord consists of four different bytes that are estab-
lished by four independent concrete reference actigtes The moment of time at which
actionword occurs is equal to the moment of time at which the last byte lescawailable.

The location of the abstract reference actiand contains the locations of the concrete refer-
ence actiondyte, in a similar way as a certain country contains cities. Tllosva one to
refer to the location afrord as a single location that is actually implemented as a composition
of (sub-)locations.

v(word) = value attribute of action word
t(word) = time attribute of action word
/V I(word) = location attribute of action word

word
v(word) = {v(byte,), v(byte,), v(bytes), v(byte,)}
t(word) = max(t(byte,), t(byte,), t(bytes), t(bytey,))
I(word) = abstraction of
I(byte,), I(byte,), I(bytes), I(byte,)

Figure 20: Example of parallel interface

Context abstraction

Since an abstract reference action may be implemented by difedremative activities,
we should be able to determine whether the embedding of the agtitiity concrete behav-
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iour conforms to the embedding of the abstract reference action absh@ct behaviour. A
method for deducing the abstract behaviour of a concrete behaviour wbinthirged through
action refinement is given in [2].

This method starts with the definition of an abstract referectienafor each activity and
for each action that is not refined. The definition of an abstract referenoe factan activity
represents an abstraction of the final actions of this activitycan be defined by considering
the rules for attribute abstraction. Once the abstract refeemtioms have been defined, one
should have rules to abstract from the remaining, i.e. the non-finahaaif the activities,
which are similar to the abstraction rules of causality refer@mApplying these rules one
should obtain a behaviour which consists exclusively of abstract refeastioms. This
behaviour is the abstraction of the concrete behaviour.

5 Example: financial transaction

The design methodology presented in this paper is illustrated with tigg désa system
which supports a specific type of financial transaction.

5.1 ldentification of money transfer system

Figure 21 depicts the application domain of a money transfer system. 8ulpaba client,
who may represent a business organisation or an ordinary household, wants to order a bank to
carry out a specific transaction. Suppose this transaction coofsisggsferring money from
two different accounts to a third account, and that these accourdadranmgistered by three
different banks.

Transaction:

accounta +:= mg + mg
accountg -:= mg
accountc -:= mg

Money transfer system

Figure 21: Application domain

5.2 Money transfer service

The common behaviour of the client and the money transfer system caode#ed by a
single action at a high abstraction level. This action, cditadsin Figure 22 (a), defines the
outcome of the financial transaction.

In reality, the transaction must be initiated by the client. Thismodelled at a lower
abstraction level by a separate action, callehse in Figure 22 (b), which establishes the
information that is needed to perform the transaction, i.e. the acdspyrdsandsc) and the
amounts of money to be transferregs@ndmc).

The relation between the more concrete behaviour of Figure 22 (b) and tlaetaietav-
iour of Figure 22 (a) is defined by the abstraction rules of the d¢gussfinement design
operation. In this case, actiofiansandTrang are reference actions and activanseq is
an inserted action.

The more concrete behaviour of Figure 22 (b) allows one to prescritientheonstraint
that applies to the transaction, which must be performed within a maximal timainter
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Money transfer system Trans,eq (teg: Money transfer system

causality Sa:SBScy

# mB‘mc) T (

Coo . ranscns (tenf,

Trans (s'a:=satmg+mc, refinement S'A'_SA“;B*'mc

S'5i=Sp-Mpg, S'¢:=S~-M . T !
B'=Sg-Mp, S'c:=Sc-Mc) Client S'p =S M, S'oimSe-Mc)

(@) (b) [tenf < treﬁ"’At]

Figure 22: Money transfer service

5.3 Money transfer service provider

Figure 23 depicts the distribution of the conditions and constraints on theewes of
actionsTrangeq andTrang,,; between the sub-behaviours of the functional entient and
Money transfer systenThe constraint of the interaction contributibranse, in the Client
sub-behaviour defines that the client is responsible for providing thesaegescount infor-
mation and the amounts of money to be transferred. After the interdets happened these
values are also known by the money transfer system.

Money transfer system

Client

Trans treq:SA,SB,Sc,MB,M ¥
_ req_(req ABmeT B _C) Transeq (treq:SasS:Sc:Me.Mc)
[sa=...Sg=-.,Sc=...Mg=..,Mc=..]
mcnf (tcnfvS'AfS'BfS'C)
[S'atS'B+S'c = Satsptsc
Utens < treq"’At]

TranScns (tenf,S'A'=Sa+tMp+mc,
S'gi=Sg-Mg, S'c:=Sc-Mc)[tenf < treqtAl]

Figure 23: Money transfer service provider

The responsibility for performing the financial transaction corregily in time is assigned
to the money transfer system. This responsibility is representedhebypperations and
constraints on the attributes of the interaction contribufr@ams.,; in the corresponding sub-
behaviour. Following the principle of parsimony, it would be sufficient stgaghis responsi-
bility to only theMoney transfer systeemtity and inform th&€lient entity about the transac-
tion outcome by means of value passing.

However, in case entities do not trust each other completely, e regponsibility may
be assigned to multiple entities. In this case the client hasdsségned the responsibility to
check the outcome of the transaction. The interaction contribUtamg.; of theClient sub-
behaviour defines that the transaction must be performed in time anthéhsum of the
accounts credits before and after the transaction should be the same.

5.4 Money transfer protocol

Figure 24 represents the behaviour definition of the money transfer gdrofbe protocol
behaviour is a refinement of the causality relation between theadtiten contributions
Trangeq andTransg,,+ We assume this behaviour is distributed between three functional enti
ties, which represent the three different banks involved.

The transaction is performed in two stages, which are coordinated by bank A. The purpose
of the first stage is to make a reservation on the three acdowrtder to avoid interference
with other transactions. ActioA-RRmodels the reservation of the account at bank A and

26



Money transfer system B-RR¢ (rrg)[rrg="ready’ O rrg="refuse’]
C-RR¢ (rro)[rre="ready’ O rre="refuse’]

Trans,eq 5 ;> exit, A-CR (crp)[if rrg= reaqy IZIrr(_;’= ready
then cry='commit

exit; - entry;
exity — entry, else cra="rollback’]
Trans.¢| J¢—<K entry, Timer(timer) [timer=treqtAt]

RR = Ready or Refuse
CR = Commit or Rollback

Bank B BN = BankNote
B-RRyeq B-RRcp¢ B-CRyeq B-CRep¢
Time[<< LGSR A 2y >
- N exit2
Bank A
C-RR C-RR C-CR C-CR
req cnf Bank C req cnf

Figure 24: Money transfer protocol

enables the reservation of the accounts at banks B and C. Thetressraabanks B and C
are modelled by a reservation request (ackeRR,y) which is followed by a reservation
confirm (actionX-RRy,y.

An X-RR,s contains an answer with two possible values: the vVadaely’, which repre-
sents that the reservation is made, or the Vadfiese’, which represents that the reservation
could not be made (e.g. because of a low balance). Figure 24 depictsibikeatof some
actions. Since the attributes of other actions are rather stomgatd they are not represented
for the sake of brevity.

In this example we assume that the first stage is critrthl respect to time, because e.g.
resources have to be reserved at banks B and C{-Rfgfs from both banks should occur
within a certain time limit, which is modelled by actidimer, otherwise the transaction
should not happen according to the constraints that were defined in Figure 23.

The purpose of the second stage is to decide and guarantee that thetitraresther
happens completely or not at all. The transaction should happen if both &ciiig;andC-
RR.qsoccur and establish the attribute value ‘ready’, otherwise tteeaitthe accounts before
the transaction request should be restored. A&&@R models this decision which is repre-
sented by the attribute valuemmit and ‘rollback, respectively.

Furthermore, actio\-CR enables the process of updating or restoring the accounts at
banks B and C and the release of the reserved resources. Once ibahBaCiR.,; andC-
CR.nshave happened, a bank note can be made for the client, which is modell&édrbBEc
The updating of the account at bank A can be modelled by either Bétion actionA-CR
This decision may depend on reliability criteria and the amount of interest involved.

5.5 Money transfer communication infra-structure

In the money transfer protocol design so far we have assumed that biandirActly
connected to the client and to the other banks. The objective of this deegtone is to
allow these entities to be geographically distributed by the useamhmon communication
infra-structure.
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This implies that the interactions between different entities shouldapped onto interac-
tion or communication patterns that are supported by the communiaatiarsiructure. We
illustrate how this mapping can be achieved for part of the behavithe ofteraction system
between banks A and B: the actidRR.q andB-RR;, and their causal relationship, which
corresponds to the account reservation serwce behaviour.

Figure 25 depicts three design steps in which the account reservation servicedsaredine
decomposed into two protocol entities and a data transfer service provider.

B-RRieq B-RRent

\ B-RRnt B'RRreq B-RRing B'RRrSp
() R PO—0—0

Action refinement

B-RRcni B-RRpgq B-RRijng  B-RRsp . . (b)
? (E ?_,(E Causality refinement
DTreq DTind w
DTing DTyeq

B-RReni B-RRieq
Data Transfer Service / \

( ) Constraint-oriented

O
decomposition DT, DTe5 DT, g %—Tre)

Data Transfer Service Provider

B-RRing B-RRygp

DTing ¥ DT,

req req

(d)
Figure 25: Communication infrastructure

The objective of the first design step in Figure 25 is to design tt@uac reservation
service taking into account that banks A and B are geographicallypdisttj i.e. they have to
interact via a third party. This is achieved by refining the accas#rvation service into a
user confirmed service, according to the rules of action refinemignteR25 (b) depicts the
refined account reservation service. Acti@iRR,, andB-RR;q¢are performed at bank A and
actionsB-RR,q andB-RR, are performed at bank B.

The objective of the second design step is to refine the accountateserservice of
Figure 25 (b) into an account reservation protocol in which the renaoigality relations
between actionB-RR4 andB-RR,,4 and action8-RR,, andB-RR.sare implemented by a
generic reliable data transfer service. The causality refinemesign operation can be
applied to obtain the account reservation protocol, which is depicted in Figure 25 (c).

The objective of the third design step in Figure 25 is to decompose the acceuvdties
protocol into protocol entities and a lower level service provider. Figbiréd) depicts this
decomposition. The protocol entities define part of the behaviour of banksl 8. The data
transfer service provider defines part of the behaviour of the communicationrudras.

6 Conclusions and further work

This paper discusses some basic design concepts for distributed shestiggm. Basic
design concepts help the designer to conceive, structure and refineatheteristics of a
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system. We believe that the development of an effective design methodbimgyg be based
upon a careful choice, correct understanding and precise definitiors dfagic design
concepts.

The behaviour structuring techniques presented in section 3.3 follow frarortbepts of
action, interaction and causality relation. Constraint-oriented behastiauaturing is based
upon the implementation relationship between actions and interactionsali@aoriented
behaviour structuring is merely a syntactic operation which allowsoodistribute the result
action and its enabling and disabling conditions over separate sub-behaviours.

The causality and action refinement design operations presentediam ge@llow from
the concepts of action and causality relation. Both types of behavimament are defined
in terms of manipulations of actions and action attributes, and manipulatitresr causality
relations.

The definition of generic design milestones in section 3.5 is enabled mridduction of
the action concept. Causality- and constraint-oriented behaviour stngctamd causality and
action refinement are used to perform design steps between successive designesiles

Our design concepts provide a sound basis for further work on other elefmhamtslesign
methodology. In the near future we will concentrate on the definition of a conciseg essy t
and effective design language. Further, we will work on the forntigiizapf this design
language and the presented design operations, aiming at the development of supporting tools.
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