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Abstract
This paper presents some basic design concepts for the design of open distributed systems.
These concepts should form the basis for the development of effective design methodolo-
gies. The paper discusses how design concepts, such as interaction, action and causality
relation, can be used for modelling and structuring behaviours of functional entities in a
distributed environment. The paper also addresses some consequences of the application
of these design concepts such as the choice of language elements and operations to repre-
sent behaviour structure, the structuring of the design process, and the definition of design
operations for behaviour refinement.
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1 Introduction

Many research activities on systematic approaches to distributed systems design are being
carried out, such as the investigation of design methods, the development of conceptual
frameworks (e.g. ODP [5]), and the development of Formal Description Techniques (FDTs).
These activities should be carried out in the scope of a comprehensive design methodology,
based on common principles and objectives.

The results obtained with a design methodology are largely determined by the choice,
correct understanding and precise definition of its basic design concepts ([10]). Basic design
concepts model elementary and common characteristics of different system implementations,
abstracting from characteristics which are irrelevant to the fundamental purpose of the system.
In this way, basic design concepts facilitate the designer to conceive, structure and refine the
essential characteristics of a system.

This paper introduces and discusses the concepts necessary to model and structure behav-
iours of functional entities in a distributed environment. In particular we elaborate on the
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concepts of interaction, action and causality relation. This paper also addresses some conse-
quences of the introduction of these concepts, such as the choice of language elements and
operations to represent behaviour structure, the structuring of the design process, and the defi-
nition of design operations for behaviour refinement.

The remaining of this paper is structured as follows: section 2 discusses the interaction
concept and its representation by three standard FDTs, section 3 presents some improved
architectural insights related to the interaction concept and discusses the basic concepts of
action and causality relation, section 4 applies these concepts to define the basic design opera-
tions of action refinement and causality refinement, section 5 illustrates our ideas with an
example, and section 6 presents some conclusions and directions for further research. 

2 The interaction concept

The concepts of interaction and temporal ordering are important concepts in the design of
open distributed systems. FDTs such as LOTOS, Estelle and SDL [8] should be able to repre-
sent these concepts. The key role of the interaction concept can be understood by adopting a
design approach in which open distributed systems are designed from the definition of the
interaction systems between their distributed parts.

2.1 Interaction systems
Our approach to system design is based on a careful consideration of the system concept. A

generic definition of a system can be found in Webster’s dictionary:

A system is a regularly interacting or interdependent group of items
forming a unified whole.

This definition indicates two different perspectives of a system: an integrated and a distrib-
uted perspective. The integrated perspective considers a system as a whole or black box. This
perspective only defines what function is performed by a system. The distributed perspective
defines how this function is performed by an internal structure defined in terms of system
parts and their relationships. Figure 1 depicts both system perspectives.

Repeated application of these system perspectives provides a basis for a top-down design
approach. Initially one defines the system functions. Subsequently, one defines how these
system functions can be provided in terms of sub-functions provided by system parts from a
distributed perspective. This process can be applied recursively to the identified system parts,
until a direct mapping onto available implementation components becomes possible.

Figure 1: Integrated and distributed perspective of a system
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This design approach can be directly applied in case the relationships between system parts
are rather straightforward, such that interactions between these parts can be defined implicitly
by their composition. However, in case the relationships between system parts are more
complex, the interactions between these parts should be explicitly designed. The concept of
interaction system is introduced for this purpose.

Definition

An interaction system is defined as the mechanism that makes the interaction between
system parts possible [11]. An interaction system divides each system part in two functions:

• an application function, which uses the interaction system to communicate with applica-
tion functions of other system parts; and

• a protocol function, which provides the functionality of the interaction system between
system parts in cooperation with the protocol functions of other system parts.

Similarly to systems, interaction systems can be also considered from an integrated and a
distributed perspective. Figure 2 depicts both perspectives of an interaction system.

The integrated perspective of an interaction system is called a service. Traditionally a
service is defined as the observable behaviour of the service provider, in terms of the interac-
tions that may occur at the interfaces of the service provider and the relationships between
these interactions. In section 3.5 we give a more precise interpretation of the concepts of
service and service provider.

The integrated perspective abstracts from the individual protocol functions and their coop-
eration. The composition of protocol functions is considered as a whole in the integrated
perspective, similarly to the system from the integrated perspective as depicted in Figure 1. 

The distributed perspective of an interaction system is called a protocol. A protocol is a
more detailed definition of the service, which defines how the interaction system supports the
service, in terms of the contribution of the individual protocol functions and their cooperation.
Distributed protocol functions cooperate via some communication mechanism, which is
called the means of interaction of the protocol functions. Figure 2 represents the abstract
means of interaction between protocol functions by arrows interconnecting them.

Design approach

Repeated application of the service and protocol concepts forms the basis of a top-down
design approach for interaction systems. The protocol functions of system parts can be again
decomposed into protocol layer functions and lower level protocol functions. The lower level
protocol functions, and their means of interaction, constitute one or more lower level interac-

Figure 2: Integrated and distributed perspective of an interaction system
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tion systems. Similar to the original interaction system, these lower level interaction systems
can be considered as a service and a protocol, and further decomposed.

Figure 3 illustrates a specific example in which an interaction system is decomposed into a
layer of protocol functions and a single lower level interaction system. This corresponds to the
decomposition of a service into Protocol Entities (PEs) and a Lower Level Service (LLS),
such as in the OSI/RM [4]. Recursive decomposition of the lower level service renders a stack
of protocol layers, until a lower level service that is supported by available implementation
components is reached. In the OSI/RM this lower level service is the service supported by the
transmission medium.

A system design approach based on the design of interaction systems is particularly suited
for service and protocol systems, in which the interaction between system parts plays an
important role.

2.2 Interaction characteristics
The interaction concept is a basic building brick for the design of interaction systems. The

modelling power of the interaction concept provides a designer with the ability to model the
relevant characteristics of interaction systems at suitable abstraction levels. We define an
interaction as:

a unit of common activity shared by multiple system parts, through
which cooperation between these system parts takes place for the
purpose of establishing and exchanging information.

This section discusses the following basic characteristics of interactions: reliability, time
and value establishment.

Reliability

The interaction concept represents some unit of behaviour at a certain abstraction level that
cannot be split at this abstraction level. This property is called atomicity and is inherent to the
choice of an interaction as a basic design concept. The atomicity property imposes that an
interaction should be implemented reliably, such that:

• either an interaction happens, which means that all involved system parts can refer to the
interaction occurrence and to the information values that have been established;

• or an interaction does not happen, which means that none of the potentially involved
system parts can refer to the interaction occurrence or to any information values that could
have been established in the interaction.

The reliability requirement is based on the fundamental assumption that a design should be
considered as a prescription for implementation. A designer should be able to assume that
some activity on information that is defined at an abstract level, can also be made to happen in

Figure 3: Alternative representations of service and protocol systems
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the implementation. At an abstract level a designer neither wants to be concerned with the
many different ways in which an implementation may provide some prescribed behaviour, nor
with the many different ways in which an implementation may fail to provide this behaviour.

Consequently a designer may only define some shared activity by means of a single inter-
action if this activity can be implemented reliably. If the reliable implementation of an interac-
tion that models an activity cannot be guaranteed, this activity should be modelled by a
composition of multiple interactions, making unreliability explicit.

Time

The interaction concept only considers the moment of time at which an interaction occurs,
which is defined as the first moment of time when all of the involved system parts can refer to
the information values that have been established. The interaction concept considered in this
paper abstracts from other time aspects that may be associated with an interaction, such as the
starting time or duration of an interaction. This is motivated by the need to model what is
established by all possible implementations of an interaction, and when it can be referred to,
rather than how this is achieved.

Value establishment

An interaction models the establishment of information values that are shared by all the
system parts involved in the interaction. Each individual system part may impose conditions
on the information values that can be established.

An information value can be established if all conditions that are imposed on this value can
be satisfied. Therefore, an interaction models the result of a negotiation between the condi-
tions of all involved system parts. An interaction cannot happen if the superposition of the
conditions on its information values is not satisfied by any values.

Considering the negotiation of an individual information value between two system parts,
three basic forms of value establishment can be identified:

• value checking: when both system parts require that a single prescribed value of a certain
information type should be established;

• value passing: when one system part requires that some prescribed value of a certain infor-
mation type is established, while the other system part allows any value of that type to be
established;

• value generation: when both system parts allow multiple alternative values of a certain
information type to be established.

Various combinations of these basic interaction conditions are possible. Furthermore, they
can be extended in a straightforward way to the interaction between more than two system
parts. For example, one system part may prescribe a single value of a certain information type,
a second part may allow a set of values of that information type, while a third part is willing to
accept any value of that information type.

In case the superposition of all interaction conditions implies that multiple values are
possible, a non-deterministic choice is made between these values.

2.3 LOTOS representation
The FDT LOTOS [1], [8] supports the specification of interactions between system parts,

and the specification of their temporal ordering and value dependency relationships. The
semantics of a LOTOS interaction, which is called an event, corresponds to the definition of
the interaction concept discussed above.
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An event is specified in terms of the synchronization of multiple event offers. An event
offer of some system part defines the contribution of this system part in terms of its interaction
conditions. The matching of event offers from different system parts into an interaction is
specified in LOTOS by prescribing that such offers be made at a common abstract location.
This abstract location is called the event gate.

The following specification illustrates an interaction in LOTOS, which consists of the
parallel composition of three event offers:

g !3 ?b:Bool; B1 || g ?x:Nat !true; B2 || g ?y:Nat ?b:Bool [(y ge 1) and (y le 5)]; B3

In this example, if an interaction at gate g happens then values 3 of sort Nat (natural
number) and true of sort Bool (boolean) are established.

Specification of interaction systems

The service of Figure 2 can be specified in LOTOS in terms of the observable behaviour of
the service provider. The observable behaviour of a system part is defined by the event offers
of that system part at the interfaces with its environment, and the relationships between these
event offers. In this case, the service provider and the application functions constitute each
others environment.

LOTOS processes allow the specification of the observable behaviour of system parts. The
following LOTOS specification presents a definition of the top-level behaviour structure of
the interaction system service. The abstract locations of the interfaces between the service
provider and application functions are represented by the event gates a, b and c.

specification Service : noexit:=
behaviour
ServiceProvider[a,b,c]

where ...
endspec (* Service *)

The protocol of Figure 3 can be specified in LOTOS in terms of the composition of the
observable behaviour of the protocol layer functions or protocol entities, and the observable
behaviour of the lower level service. The environment of the protocol layer functions consists
of the application functions and the lower level service.

The following LOTOS specification defines the top-level behaviour structure of the inter-
action system protocol. Since a protocol implements a service, the behaviour of the protocol
should be observable equivalent to the behaviour of the implemented service.

process Protocol[a,b,c] : noexit:=
hide x,y,z in ( PE1[a,x] ||| PE2[b,y] ||| PE3[c,z] )

|[x,y,z]| LowerLevelService[x,y,z]
where ...
endproc (* Protocol *)

2.4 Estelle and SDL representation
The FDTs Estelle and SDL [8] support the specification of the concept of asynchronous

interaction as basic design concept. Asynchronous interactions are called signals and interac-
tions in SDL and Estelle, respectively.

An asynchronous interaction corresponds to an instance of message exchange between
system parts. This implies that system parts do not directly interact, but via some medium.
Both Estelle and SDL use channels as medium to allow communication between system parts.
These channels are infinite queues which avoids deadlock of the synchronous state machines
that are used by these languages to model the behaviour of system parts.

Figure 4 depicts an example of an Estelle interaction and of an SDL signal.
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In contrast with asynchronous interaction, the interaction concept of section 2.2 defines
synchronous interaction between system parts, since synchronization between the system
parts involved in an interaction is needed to perform a common activity.

Synchronous model of asynchronous interaction

Asynchronous interaction between two system parts can be modelled by a synchronous
interaction between the sending part and a channel followed by a synchronous interaction
between the channel and the receiving part. A LOTOS specification of this model is given
below which assumes that a single value (of sort Nat) is communicated between a sending and
a receiving system part.

specification AsynchronousInteraction : noexit:=
behaviour
SendingPart[g1] |[g1]| Channel[g1,g2] |[g2]| ReceivingPart[g2]

where
process SendingPart[g1]:noexit:= ... g1!3; ... endproc (* SendingPart *)
process ReceivingPart[g2]:noexit:= ... g2?x:Nat; ... endproc (* ReceivingPart *)
process Channel[g1,g2]:noexit:= ... g1?x:Nat; g2!x; ... endproc (* Channel *)

endspec (* AsynchronousInteraction *)

In order to model synchronous interaction between distributed parts some composition of
multiple asynchronous interactions has to be designed. For example, a handshaking mecha-
nism can be used to implement a synchronous interaction. Therefore, a language which is
based on an asynchronous interaction model can only be used to specify specific implementa-
tions of synchronous interactions.

Specification of interaction systems

The observable behaviour of a system part can be specified in terms of a module in Estelle
and a block in SDL, by defining the input and output interactions or signals of that system
part, and the relationships between these interactions or signals, respectively. This implies that
the service of Figure 2 can be specified in Estelle and SDL in terms of a synchronous state
machine relating input and output interactions or signals, respectively.

Interfaces between system parts should be defined in Estelle and SDL by means of asyn-
chronous interactions through infinite queues. Therefore implementations that comply to
Estelle or SDL specifications must implement sufficiently long queues as the means of inter-
action between system parts. Figure 5 illustrates the local interfaces between the application
functions and the service in terms of their implementation with queues.

The above discussion also applies to the specification in Estelle and SDL of the protocol of
Figure 3. The decomposition of the service implies the introduction of channels between the
protocol layer functions and the lower level service. 

Figure 4: Examples of asynchronous interaction in Estelle and SDL
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2.5 Consequences of interaction representations
The interaction representation of LOTOS and Estelle/SDL have important consequences

for the structuring of system behaviours. These are discussed below.

Modelling power

A synchronous interaction model has a higher modelling power than an asynchronous
interaction model. Asynchronous interactions can be modelled by a composition of synchro-
nous interactions at a corresponding abstraction level, but synchronous interaction can only be
implemented by a composition of asynchronous interactions at a more detailed abstraction
level.

For example, the relevant characteristics of the administration of connection endpoint iden-
tifiers (CEI) can be specified at an abstract level in LOTOS, using the negotiation types of
value checking, value passing and value generation. An Estelle or SDL specification can only
represent implementations of these negotiation types, which implies that the specification may
contain many irrelevant details about the way in which CEI administration is performed.

For example, the flow control by backpressure feature of the OSI Transport Service cannot
be represented in Estelle and SDL since the introduction of infinite queues between system
parts make it impossible to represent that a system part blocks another at their interface.

Abstraction levels

Because of the modelling power of a synchronous interaction model, the FDT LOTOS can
be used to represent designs at multiple different and related abstraction levels. This makes
LOTOS a broad-spectrum specification language [3].

The FDTs Estelle and SDL are particularly suited for the representation of designs at the
lower abstraction levels, such as designs in which an explicit design decision to implement the
communication between system parts by means of queues has already been taken.

Specification styles

LOTOS makes it possible to express the observable behaviour of some system part in
terms of a set of constraints. The synchronous interaction concept allows to express the condi-
tions of an interaction in terms of the conjunction of multiple constraints, characterizing the
constraint-oriented specification style. Other specification styles supported by LOTOS are the
monolithic, resource-oriented and state-oriented specification styles ([12]).

Estelle and SDL specifications can only be written in resource-oriented and state-oriented
specification styles. Queues between system parts can be considered as general purpose
resources.

Figure 5: Specification of service interfaces in Estelle and SDL
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Design approaches

The choice between an asynchronous or synchronous interaction model is related to the
choice of a design approach. Section 2.1 discussed two dual approaches for the design of
distributed systems: the design of system parts and the design of interaction systems.

An asynchronous interaction model suits the design of loosely coupled system parts, which
communicate by exchanging messages. Therefore, the FDTs Estelle, SDL and LOTOS
support the design of system parts. The FDT LOTOS requires, however, the explicit model-
ling of the communication medium between system parts.

A synchronous interaction model suits the abstract design of strongly coupled system parts.
Interaction systems may define complex interaction structures and interaction conditions
between system parts. Therefore, the FDT LOTOS supports the design of interaction systems
in a more general manner than the FDTs Estelle and SDL. The specification of synchroniza-
tion between system parts can only be achieved in Estelle and SDL by explicitly defining the
mechanism that implements this synchronization, forcing the designer to lower the abstraction
level of the specification.

3 New developments

The concepts of interaction and temporal ordering allow one to design interaction systems
in terms of the observable behaviour of the system parts that contribute to the provision of the
interaction system service. The interaction concept does not allow one to define the common
behaviour of these system parts as it is discussed in the sequel. Furthermore, the concept of
temporal ordering does not allow the definition of some important dependency relationships,
such as true concurrency, between interactions.

These limitations have motivated the introduction of the following two basic design
concepts: action and causality relation. Application of these concepts has consequences for
the design methodology: more general behaviour structuring techniques are possible, behav-
iour and entity domains can be identified, and generic design milestones can be defined.

3.1 The action concept
An action is defined as:

a unit of activity that is performed by a system part, which takes place
for the purpose of establishing information.

The action concept models the relevant characteristics of some activity in the real world.
An action is the most abstract model of an activity, and cannot be split at the abstraction level
at which the action is defined. Similarly to an interaction, an action should be implemented
reliably; i.e. either it happens and reference can be made to all information that is established,
or it does not happen and no reference can be made to any information that might have been
established.

A more detailed model of an activity can be obtained by decomposing this activity into
multiple sub-activities and their relationships. The relevant characteristics of these sub-activi-
ties can be modelled by distinct actions. Therefore, the action concept is independent of the
abstraction level or granularity at which specific activities are modelled.

Figure 6 depicts an example of an activity that is modelled at two different abstraction
levels. At the highest abstraction level the outcome of the activity is modelled by a single
action. A more detailed model defines how this outcome is achieved by a composition of four
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related sub-activities, which are modelled by four distinct actions. Intuitively these represen-
tations can be considered consistent if the outcome of sub-activity a conforms to the outcome
of its corresponding action a and to the outcome of the most abstract action a'.

We consider each instance of activity to be unique and we assume that we can unambigu-
ously refer to an action by using an action identifier. Other relevant characteristics of an
activity are defined by the following attributes:

• location: the logical or physical location where an action occurs;

• time: the moment of time when all the values of information established in an action can be
referred to by other actions;

• action values: the values of information that are established in an action;

• retained values: the values of information established in other actions that happened
before, and kept by this action for further reference;

• probability: the probability that an action occurs once all conditions for its occurrence are
satisfied.

Some examples of actions with their attributes are presented below. 
a (ta:Time, va:Nat)
b (lb:Location, tb:Time, vb:Value, pb:Probability)
c (lc:Location, vc:Value, rc:RetainedValue)

Integrated interaction

An action may represent an integrated interaction, which abstracts from the individual
interaction contributions or responsibilities of the involved system parts. This implies that an
interaction can be considered as a possible implementation of an action. However, some
actions are not abstractions of interactions, since some actions may not be distributed over
multiple system parts at lower abstraction levels.

Following this more general interpretation of an interaction than the one given in section
2.2, interaction contributions have the same attributes as actions, but they differ in the defini-
tion of the constraints on the establishment of the attribute values. Figure 7 depicts an example
of an action a that is implemented as an interaction a shared by three behaviours. In order to
distinguish interactions from actions, interaction identifiers are underlined. 

Figure 6: Example of activity modelling
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3.2 Behaviour definitions
The occurrence of an action generally depends on the occurrence or non-occurrence of

other actions. Causality relations are introduced to represent these dependencies. The
causality relation of an action a1 defines the enabling condition of a1 in terms of actions that
must have occurred, its enabling actions, actions that must not have occurred, its disabling
actions, and conditions on the attributes values of the enabling actions and constraints on the
attribute values of action a1. Action a1 is called the result action.

Two basic causality relations are distinguished:

• the enabling relation a2 → a1, which defines that the occurrence of action a2 is a condition
for the occurrence of action a1. Only in case a2 has occurred a1 is allowed to occur; a1 can
refer to the attribute values of a2.

• the disabling relation ¬a2 → a1, which defines that the non-occurrence of action a2 is a
condition for the occurrence of action a1. As long as a2 does not occur before or simulta-
neously with a1, a1 is allowed to occur; if a2 occurs and a1 has not occurred before it, a2
disables or excludes the occurrence of a1.

More complex causality relations can be composed from these two basic relations using the
logical operators and (∧) and or (∨), which are interpreted according to the rules of boolean
logic, once occurrences and non-occurrences of actions are considered as atomic proposi-
tions.1 Some examples of causality relations with two enabling or disabling actions are given
below:

• a2 ∧ a3 → a1: both a2 and a3 must have happened before a1 is allowed to happen. Since
both a2 and a3 enable a1, action a1 can refer to the attribute values of both actions;

• a2 ∨ a3 → a1: either a2 or a3 or both must have happened before a1 is allowed to happen.
Action a1 is enabled by either a2 or a3, but not both, even in the case that both a2 and a3
have happened before a1. This implies that in an implementation a mechanism that estab-
lishes what action actually enables a1 is necessary. This mechanism chooses between a2
and a3 in case both actions have happened before a1. Action a1 can only refer to attribute
values of the action that enabled it;

• a2 ∧ ¬a3 → a1: the occurrence of a2 and the non-occurrence of a3 are both conditions for
the occurrence of a1;

Figure 7: Example of an integrated interaction

1. We stress that ¬a is not equivalent to the negation of a in the boolean sense. Suppose that actions a and b both 
occur. In this case a → b implies that ta < tb, where ta and tb represent the time of occurrence of a and b, re-
spectively. Intuitively, the negation of this relation would represent the case in which ta ≥ tb. However, 
¬a → b implies that ta > tb. This specific choice of implicit time condition has been motivated by the need to 
define behaviour patterns such as disabling and choice.

a (ta:Time, va:Nat)
[t0+1 < ta < t0+3,

va∈{0,1,2}]

a (ta:Time, va:Nat)
[ta > t0+1, va ≥ 0]

a (ta:Time, va:Nat)
[ta < t0+3, va < 3]

a (ta:Time, va:Nat)
[0 ≤ va < 10]

behaviour B1

behaviour B2

behaviour B

behaviour B3
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• a2 ∨ ¬a3 → a1: the occurrence of a2 or the non-occurrence of a3 or both are conditions for
the occurrence of a1.

Figure 8 depicts the graphical representations of the elementary causality relations
discussed above. Actions and causality relations are represented as circles and arrows between
circles, respectively. An interaction is represented as a segmented circle, where each segment
represents a contribution to the interaction. An example of such a representation can be found
in Figure 11.

The logical operators and (∧) and or (∨) are represented explicitly, which allows a direct
representation of a parentheses structure that may be used in the textual notation to indicate
the priority of the logical operators. Furthermore, this notation does not prescribe the use of a
conjunctive or disjunctive canonical form. For example, the reported notation in [13] required
that a causality condition is written in the form of a disjunction of conjunctions of action
occurrences and non-occurrences.

A behaviour can be defined by the causality relations of all its actions. Some actions are
enabled from the beginning of the behaviour (initial actions), and have a condition start which
corresponds to true. Figure 9 depicts the graphical representation of some well-known behav-
iour patterns, and their shorthand notation. The context of these behaviour patterns in terms of
possible other conditions for a1 and a2 are not explicitly represented in Figure 9.

The textual behaviour representation of arbitrary interleaving is given below. The causality 
relations of actions a1 and a2 represent that either a2 is enabled by a1 or a1 is enabled by a2.

B := { a2 ∨ ¬a2 → a1,

a1 ∨ ¬a1 → a2 }

Figure 8: Elementary causality relations

Figure 9: Some well-known behaviour patterns
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3.3 Behaviour structuring
Generally, the purpose of structuring behaviours is twofold: (i) to improve the comprehen-

sibility of the design, or (ii) to be used as a prescription for implementation. The definition of
behaviours in the preceding section is limited to the monolithic definition of finite behaviours.
Structuring techniques also allow the definition of repetitive behaviours. 

Causality-oriented behaviour structuring

The definition of causality relations between actions can be generalized to the definition of
causality relations between behaviours. This allows the structuring of a complex behaviour in
terms of less complex sub-behaviours and their relationships. Furthermore, predefined sub-
behaviours can be reused through instantiation, and repetitive behaviours can be represented
through recursive behaviour instantiation. This structuring technique, which is called
causality-oriented structuring, makes use of:

• entry points: which are points in a behaviour from which actions of that behaviour can be
enabled by conditions involving actions of other behaviours,

• exit points: which are causality conditions in a behaviour that can be used to enable actions
of other behaviours.

Behaviours can be composed by relating their exit and entry points, which are indicated by
the keywords exit and entry, respectively. A behaviour may have multiple exit and entry
points.

Figure 10 depicts the causality-oriented composition of a unidirectional isochronous
datagram service. Actions req and ind represent a data request and a data indication service
primitive, respectively. Sub-behaviour Binit models the first instance of communication, in
which a transit delay smaller than a certain value δ between the occurrence of a req and its
corresponding ind is established. Sub-behaviour B' models subsequent instances of communi-
cation such that the interval between two consecutive reqs (inds) is equal to a certain constant
value ∆t. This requirement implies that the transit delay is kept constant as well. Repeated
instantiation of B' is represented by adding an apostrophe to the behaviour and action identi-
fiers. 

Figure 10: Causality-oriented composition of an isochronous datagram service
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Constraint-oriented behaviour structuring

The constraint-oriented structuring technique allows the structuring and composition of a
behaviour in terms of a conjunction of conditions and constraints on actions, which are
defined in separate sub-behaviours. This implies that some actions are represented (or actually
implemented) as interactions, which consist of multiple interaction contributions distributed
over different sub-behaviours. 

Alternative constraint-oriented compositions of the same monolithic behaviour definition
are possible:

• an action can be assigned to a single sub-behaviour, or can be shared by more than one sub-
behaviour;

• in case an action is shared by sub-behaviours, its conditions and constraints, which are
represented by a single causality relation in the monolithic behaviour definition, can be
distributed over multiple causality relations of the interaction contributions in different
ways. The causality relation of an interaction contribution defines that part of the original
conditions and constraint that are assigned to a sub-behaviour.

The choice between alternative decompositions is determined by the design objectives of a
design step and by technical and quality criteria. A conformance requirement is that the
conjunction of the conditions and constraints of the interaction contributions should be logi-
cally equivalent to the conditions and constraints of the (integrated) action.

The causality-oriented definition of the isochronous datagram service of Figure 10
abstracts from the assignment of responsibilities on the occurrences of reqs or inds to the
service users and the service provider. Figure 11 depicts a constraint-oriented decomposition
of this service in which responsibilities are assigned to sub-behaviours.

Sub-behaviour B3 is responsible for the sequential and correct transfer of data unit values
across the service provider. Sub-behaviours B1 and B5 are responsible for providing and
accepting the data unit values, respectively. Sub-behaviours B2 and B4 must maintain the
timing constraints on consecutive occurrences of reqs and inds, respectively.

Typically, sub-behaviours B1 and B5 define part of the behaviour of the service users and
sub-behaviour B3 defines part of the behaviour of the service provider. Sub-behaviours B2 and
B4 can be assigned to the service users or to the service provider, or to both.

Figure 11: Constraint-oriented composition of isochronous datagram service

req(treq,vreq)

ind(tind,vind)
[vind=vreq,tind<treq+δ]

req'(t'req,v'req)

ind'(t'ind,v'ind)
[v'ind=v'req]

ind''(t''ind,v''ind)
[v''ind=v''req]

req''(t''req,v''req)

ind(tind,vind)

ind'(t'ind,v'ind)

ind''(t''ind,v''ind)

req(treq,vreq)

req'(t'req,v'req)

req''(t''req,v''req)

[vreq=...]

[v'req=...]

[v''req=...]

req(treq,vreq)

req'(t'req,v'req)
[t'req=treq+∆t]

req''(t''req,v''req)
[t''req=t'req+∆t]

ind(tind,vind)

ind'(t'ind,v'ind)
[t'ind=tind+∆t]

ind''(t''ind,v''ind)
[t''ind=t'ind+∆t]

B1 B2 B3 B4 B5



15

3.4 Behaviour and entity domains
The structure of a behaviour, in terms of a composition of sub-behaviours, is a prescription

for implementation if these sub-behaviours are assigned to logical or physical system parts.
The term physical system part is used to denote some component that can be identified in the
real system. The term logical system part is used to denote some composition of logical or
physical system parts, which is considered from an integrated perspective. This means that a
logical system part represents an abstraction of many possible compositions of logical or
physical system parts. Consequently, in order to obtain a final implementation of a system
each of the system’s logical parts should be decomposed until a mapping onto real system
components is completely defined.

Because the term system part is often associated with real system components, we will use
the term entity, or functional entity, further on to denote a logical or physical system part.

The concept of functional entity is related to the concepts of action point and interaction
point, which are used to denote the logical or physical locations at which actions and interac-
tions occur, respectively. The following rules apply to functional entities, interaction points
and action points:
1. each functional entity is delimited by zero or more interaction points, and each interac-

tion point is shared by two or more functional entities;
2. each functional entity contains zero or more action points, and each action point is con-

tained by a single functional entity;
3. each functional entity is delimited by at least one interaction point or contains at least one

action point.
Considering all the design concepts introduced so far, two distinct but related domains for

system design can be distinguished:

• the entity domain, in which the actors of behaviour, i.e. the functional entities, and their
compositions, are defined;

• the behaviour domain, in which the behaviours of the functional entities are defined.

Figure 12 depicts both domains, and their related basic design concepts.

The entity and behaviour domains are related to each other by an assignment and a consis-
tency condition. A behaviour is assigned to each functional entity, which implies that actions
and interactions of a behaviour are assigned to action points and interaction points of a func-
tional entity, respectively. Given a certain assignment of behaviours to functional entities, the
consistency condition imposes that:
1. actions of a behaviour happen at action points of the functional entity to which the be-

haviour is assigned;

Figure 12: Entity and behaviour domain
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2. interactions of a behaviour happen at interaction points which are shared by the function-
al entities to which the interaction contributions are assigned. Interactions between func-
tional entities can only occur at the interaction points they share;

3. the result action (or interaction) and its conditions and constraints defined in a causality
relation are assigned to a single functional entity. This means that a single functional en-
tity is responsible for the conditions and constraints on an action (or interaction) that are
represented by a causality relation.

Figure 13 illustrates a possible assignment of the sub-behaviours identified in Figure 11 to
functional entities. The depicted interaction points represent the service access points at which
the req and ind service primitives take place.

The distinction between an entity and a behaviour domain allows a clear separation of
design concerns for the identification and definition of design steps. A design step can be
related to the entity domain or to the behaviour domain, if its objectives are defined in terms
of manipulations of concepts in the entity domain or in the behaviour domain, respectively
(see Figure 12). Examples of designs steps that are related to the entity domain are (func-
tional) entity decomposition and interaction point refinement ([7]). Examples of design steps
that are related to the behaviour domain are resolution of non-determinism, behaviour reduc-
tion ([7]) and action refinement ([6]).

According to the consistency condition, the entity structure, in terms of functional entities
and their action and interaction points, and the behaviour structure, in terms of actions, inter-
actions and their causality relations, are closely related. Since the entity structure of a design
is a prescription for implementation, manipulations of this structure should be reflected by
corresponding manipulations of the behaviour structure. For example, the decomposition of a
functional entity into a composition of sub-entities implies a corresponding constraint-
oriented decomposition of the original behaviour into sub-behaviours that can be assigned to
these sub-entities. However, this behaviour decomposition is restricted by decomposition
rules, which are presented in [2], [9] and [13].

Manipulations in the behaviour domain do not necessarily have consequences for the entity
domain. For example, the behaviour of an entity may be defined in more detail without
implying any modifications to the entity structure. Furthermore, the structure of a behaviour
only becomes a prescription for implementation when the (sub-)behaviours are assigned to
functional entities.

Before such an assignment is made, a designer may choose different behaviour structures
in order to conceive and understand the characteristics of the behaviour. For example, behav-
iours may be structured as monolithic, causality-oriented, constraint-oriented, or mixed
causality-constraint-oriented structures. In order to prepare the assignment to functional enti-
ties, a constraint-oriented, or mixed-causality-constraint-oriented behaviour structure is
needed.

Figure 13: Assignment of behaviours to entities
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Specification styles in LOTOS

Specification styles have been introduced in [12] as a way to structure specifications
according to specific design objectives. When applying the entity and behaviour domains for
defining design objectives and characterizing design steps, we can conclude in retrospection
that, for example, the resource-oriented specification style is necessary to represent in LOTOS
the desired entity structure and the mappings from a behaviour specification onto the func-
tional entities of this structure, at a certain abstraction level.

Role of the domains in the design process

From the perspective of the entity domain, a pure top-down design process consists of the
repeated decomposition of functional entities into compositions of sub-entities, until a
mapping onto real system components is achieved. Since functional entities are delimited by
interaction points, we have to insert interaction points in a functional entity in order to define
a composition of sub-entities from this single functional entity, allowing these sub-entities to
be delimited. Therefore, insertion of interaction points is a necessary manipulation to achieve
entity decomposition.

When entity decomposition is performed, the behaviour of the original functional entity
has to be decomposed into sub-behaviours, such that these sub-behaviours are assigned to the
resulting sub-entities. Action points that belong to the original functional entity may be
assigned to different functional entities in the resulting design. In this case actions that are
directly related in the behaviour of the original functional entity cannot be directly related in
the behaviour of the resulting functional entities, but have to be indirectly related by interac-
tions occurring at interactions points shared by these functional entities.

Figure 14 illustrates the decomposition of the isochronous service provider of Figure 13
into two protocol entities and a lower level service provider. The decomposition of the behav-
iour of the isochronous service provider is performed in two steps:
1. two actions are introduced representing the occurrences of a data request and a data indi-

cation primitive of the lower level service. This more detailed representation of the serv-
ice provider is called a protocol (see also section 3.5).

2. both actions, and their corresponding action points, have to be decomposed into interac-
tions and interaction points in order to assign them to the protocol entities and the lower
level service provider.

The first step is an example of behaviour refinement, which is discussed in section 4.

Figure 14: Decomposition of isochronous datagram service provider
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3.5 Design milestones
This section presents some generic design milestones that are relevant for distributed

system design, by identifying their objectives and their relative position in a design process.
These design milestones have been enabled by the introduction of the action concept, making
in this way the design approach presented in section 2.1 more general.

For convenience these design milestones are represented primarily in terms of the entity
domain.

Identification of system and environment

Objective: identification of the distributed system and the application environment, in
terms of the application entities that use the system and the way these entities cooperate. This
design milestone is used to determine the activities of the application environment that should
be supported by the distributed system, and the degree of support to be provided.

The requirements on application support to be provided by the distributed system, deter-
mines a boundary between the system and its environment. Figure 15 depicts this boundary.

Service definition

Objective: definition of the shared boundary between the system and its environment. This
design milestone defines the common behaviour of the system and its environment, which is
called the service, and abstracts from the many different ways in which the responsibilities
and constraints for providing the service may be distributed between the system and the envi-
ronment. A service is defined in terms of (common) actions and their causality relations.

Because the individual contributions of the system and the environment to the service are
not defined, both entities are not distinguished at this abstraction level. The service is there-
fore assigned to a single functional entity, which is called the interaction system between the
system and its environment. This interaction system only comprises that part of the environ-
ment that is relevant for the definition of the service.

Figure 16 (a) depicts this design milestone.

Definition of service provider and service users

Objective: definition of the behaviour of the system, which is also called the service
provider, as it is observed by its environment. At this abstraction level responsibilities and
constraints for performing the service are assigned to the service provider and to its environ-
ment, using the constraint-oriented structuring technique. In this way the observable behav-
iour of the service provider is defined as well as part of the observable behaviour of the
environment, which consists of the service users or application entities.

This design milestone is useful to delimit the functionality of the service provider. The
internal structure of the service provider is not considered at this abstraction level.

Figure 15: Identification of system and environment
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Figure 16 (b) depicts this design milestone.

Protocol definition

Objective: definition of how the observable behaviour of the service provider is offered,
while abstracting from possible decompositions of the service provider. Therefore, the
internal behaviour of the service provider is defined in terms of a monolithic or causality-
oriented behaviour structure, which is called the protocol.

The definition of the internal structure of the service provider, in terms of the logical distri-
bution of actions and associated action points, should anticipate on the design objectives of
the next design milestone. This implies that the designer should already have some decompo-
sitions in mind.

Figure 16 (c) depicts this design milestone.

Definition of protocol entities and lower level service provider(s)

Objective: definition of the internal structure of the service provider in terms of a composi-
tion of distributed protocol entities which are interconnected by one or more lower level
service providers. At this abstraction level responsibilities and constraints for performing the

Figure 16: Some generic design milestones
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protocol are assigned to protocol entities and lower level service provider(s), using the
constraint-oriented structuring technique.

The common behaviour of the protocol entities and the lower level service provider(s) is
defined by the protocol. This implies that a protocol definition provides the functional require-
ments for the definition of the lower level services and the definition of how they are used to
provide the observable behaviour of the service provider.

Figure 16 (d) depicts this design milestone.

Interface decomposition

The presentation of the milestones of Figure 17 (b) and (d) may suggest that the responsi-
bilities for performing the actions at the interfaces between the service provider and service
users, or between the lower level service provider and protocol entities, respectively, have to
be assigned to the involved entities. However, in some cases it is better to defer the assign-
ment of (part of) the responsibilities to later design steps; for example to prevent that an early
assignment has to be reconsidered.

An example of this is illustrated in Figure 13, where part of the local constraints on the
occurrences of actions req and ind have been assigned to the entities sending LSI and
receiving LSI, respectively. The assignment of local service constraints to a separate entity is
particularly useful in the standardization of distributed systems, where the distribution of
these constraints over the service users and the service provider can be left to the implementer.

4 Behaviour refinement

During the design process we may have to replace abstract designs by more concrete
designs, in which internal design structure is explicitly defined. Behaviour refinement is
defined as a design operation in the behaviour domain in which an abstract behaviour is
replaced by a more concrete behaviour that conforms to this abstract behaviour. Behaviour
refinement allows designers to add internal behaviour structure to an abstract behaviour.

Actions of an abstract behaviour are called abstract reference actions. We assume that each
abstract reference action has one or more corresponding concrete reference actions in the
concrete behaviour. By assuming that, it is possible to compare the abstract behaviour with the
concrete behaviour, in order to assess whether the concrete behaviour conforms to the abstract
behaviour. This comparison takes place through the reference actions, which are the reference
points in the abstract and concrete behaviour for assessing conformance.

Two different types of the behaviour refinement design operation are considered:

• causality refinement, in which the causality relations between the abstract reference actions
are replaced by causality relations involving their corresponding concrete reference actions
and some inserted actions;

• action refinement, in which an abstract reference action is replaced by an activity involving
multiple concrete reference actions and their causality relations.

There are refinements that cannot be strictly characterized as causality refinement or action
refinement. In the examples we have studied so far, these refinements can be considered as a
combination of causality and action refinement.

Figure 17 illustrates the causality refinement and action refinement design operations. The
abstract behaviour consists of the abstract reference actions a', b', c' and d'. The concrete
behaviour obtained by causality refinement consists of the concrete reference actions a, b, c
and d, and the inserted actions e, f and g, which characterize the modifications performed in
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this design operation. The concrete behaviour obtained by action refinement consists of the
concrete reference actions a, b, c1, c2, c3 and d, where actions c1, c2 and c3 form an activity
that refines the abstract reference action c'. In this example, c2 and c3 are both concrete refer-
ence actions which correspond to abstract reference action c'. 

Since an abstract behaviour can be replaced by many different alternative concrete behav-
iours and the choice of specific concrete behaviours is determined by specific design objec-
tives, the behaviour refinement design operation can not be automated in its totality. However
one can determine the correctness of this design operation by checking whether the concrete
behaviour conforms to the abstract behaviour.

4.1 Causality refinement
The following activities have to be performed in an instance of causality refinement:

1. delimitation of the abstract behaviour;
2. elaboration of the concrete behaviour; 
3. determination of the abstraction of the concrete behaviour.

Delimitation

The abstract behaviours that are considered for refinement must be delimited by their
abstract reference actions. We do not consider the refinement of behaviours which have
actions that are not abstract reference actions but can influence the occurrence of the abstract
reference actions. Delimitation is important to make it feasible to refine infinite or large
behaviours.

Conformance

Causality refinement generally consists of replacing direct references to attribute values of
abstract reference actions by indirect references to attribute values of concrete reference
actions via attribute values of inserted actions. An instance of causality refinement is consid-
ered to be correctly performed if the concrete behaviour conforms to the abstract behaviour.
Intuitively one can characterize conformance between a concrete and an abstract behaviour by
two requirements:
1. preservation of enabling and disabling relations: enabling and disabling relationships be-

tween abstract reference actions defined in the abstract behaviour are preserved in the
concrete behaviour by their corresponding concrete reference actions. For example, the

Figure 17: Causality and action refinement
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causality relation a' ∧ b' → c' in Figure 17 is preserved in the concrete behaviour by the
combination of the causality relations a → e, b → f and e ∧ f → c;

2. preservation of attribute values: attribute values of the concrete reference actions are the
same as the attribute values of their corresponding abstract reference actions. Two alter-
natives for the preservation of attribute values may be considered:
- strong preservation: all attribute values that are possible for an abstract reference ac-

tion are also possible for its corresponding concrete reference action;
- weak preservation: there may be attribute values that are possible for an abstract ref-

erence action but are not possible for its corresponding concrete reference action.
For simplicity, we only consider strong preservation in this paper.

Abstraction rules

Given a concrete behaviour and its concrete reference actions, one should be able to
deduce the corresponding abstract behaviour, by abstracting from the inserted actions and
their influence on the concrete behaviour. The following steps define a method to deduce the
abstract behaviour of a certain given concrete behaviour:
1. abstract from references to inserted actions and their attribute values that appear in the

conditions of other actions of the concrete behaviour;
2. (possibly) simplify the causality relations obtained, e.g. by replacing terms such as ai ∧

ai and ai ∨ ai by ai;
3. go to step 1 again, unless a behaviour without inserted actions has already been obtained.

When we abstract from inserted actions in step 1 we obtain a more abstract behaviour with
respect to the initial behaviour of this step. The application of this method on a concrete
behaviour results in a behaviour involving only abstract reference actions. Rules for
abstracting from references to inserted actions and their attribute values are discussed in [2].
These rules are called abstraction rules.

The following two abstraction rules are examples of general rules that have been defined
for abstracting from inserted actions in the deduction of the abstract behaviour (step 1), in the
case of a concrete behaviour defined only in terms of enabling relations:

Abstraction Rule 1:
an inserted action that is an enabling condition for an action of the concrete behaviour
can be replaced by the condition of the inserted action as defined in its causality rela-
tion.
Abstraction Rule 1b:
constraints on time attribute values of inserted actions being removed have to be consid-
ered in the computation of the time constraints on the remaining actions. This computa-
tion has to consider implicit time constraints of enabling relations.

Figure 18 illustrates the application of these abstraction rules. If we abstract from action c,
the time constraint on action d becomes td < ta+δ1+δ2 if we only substitute the reference to tc
by ta+δ1 as defined in the time constraint tc=ta+δ1 on action c. In addition, we must consider
the implicit time constraint tc < td of the enabling relation c → d, which renders the time
constraint ta+δ1 < td < ta+δ1+δ2 on action d. This constraint is considered in the computation
of the resulting time constraint of action b' when abstracting from d. 

4.2 Action refinement
Action refinement consists of replacing an abstract reference action by an activity. An

activity is a composition of actions, hence it is more concrete than its corresponding abstract
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reference action. Activities are defined by behaviours. Activity values are the values of infor-
mation established by some actions of an activity and referred to by other actions or activities
outside the activity.

In general the essence of action refinement is the decomposition of at least one of the
action attributes of the abstract reference action in multiple action attributes of the concrete
reference actions. Not only action values, but also location, time and probability of an abstract
reference action may be distributed over actions of an activity. This is the essential difference
between action refinement and causality refinement, since in the latter the attribute values of
an abstract reference action and its corresponding concrete reference action must be the same.

Correctness

Two correctness requirements are identified to determine if the activity that replaces an
abstract reference action is a correct implementation of that action in its context:
1. conformance between an activity and the abstract reference action;
2. proper embedding of an activity in the context of the abstract reference action.

The approach towards requirement (1) is to determine the rules for considering an abstract
reference action as an abstraction of an activity, and apply these rules for assessing whether an
activity conforms to an abstract reference action. Requirement (1) is supported by rules for
action modelling. These rules determine the attribute values which should be assigned to an
abstract reference action in order to consider this action as an abstraction of a certain activity,
which characterize attribute abstraction.

The approach towards requirement (2) is to determine the rules for abstracting from the
specific ways an activity relates to other activities and actions, and apply these rules to deter-
mine whether specific activities embedded in the concrete behaviour correctly implement the
abstract reference action embedded in the abstract behaviour. Requirement (2) is supported by
the rules for abstracting from the specific embedding of an activity in a concrete behaviour,
which characterize context abstraction.

Figure 19 depicts the relationships between attribute abstraction, context abstraction and
the design choice to be taken in action refinement.

Attribute abstraction

An action is a proper abstraction of an activity if it has attribute values that represent the
attributes of the activity, namely the location, value, time and probability attributes. This
correspondence is defined in terms of rules which determine the attribute values that an
abstract reference action should have in order to be an abstraction of an activity. General rules,
which apply to activities of any form, and specific rules, which apply to certain activity forms,
are presented in [2] and [6].

Figure 18: Example of causality abstraction
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Activities may make their value attributes available through the occurrence of one or more
final actions. The following generic cases are distinguished:

• single final action: an activity has a single final action, such that this activity makes all its
values available when this final action occurs;

• conjunction of final actions: an activity has multiple independent final actions, such that
this activity makes all its values available when all these final actions occur;

• disjunction of final actions: an activity has multiple alternative final actions, such that this
activity makes all its values available when one of these final actions occurs.

Not all information values of an activity have to be established in its final actions. Some
information values may be established in other (non-final) actions, which are referred to by
the final actions and are made available in their retained value attributes.

Example: parallel interface

Figure 20 depicts a parallel interface activity and its corresponding abstract reference
action word, which is an example of abstraction of a conjunction of final actions. The value
attribute of the abstract reference action word consists of four different bytes that are estab-
lished by four independent concrete reference actions bytei. The moment of time at which
action word occurs is equal to the moment of time at which the last byte becomes available.
The location of the abstract reference action word contains the locations of the concrete refer-
ence actions bytei, in a similar way as a certain country contains cities. This allows one to
refer to the location of word as a single location that is actually implemented as a composition
of (sub-)locations.

Context abstraction

Since an abstract reference action may be implemented by different alternative activities,
we should be able to determine whether the embedding of the activity in the concrete behav-

Figure 19: Elements of action refinement
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iour conforms to the embedding of the abstract reference action in the abstract behaviour. A
method for deducing the abstract behaviour of a concrete behaviour which is obtained through
action refinement is given in [2].

This method starts with the definition of an abstract reference action for each activity and
for each action that is not refined. The definition of an abstract reference action for an activity
represents an abstraction of the final actions of this activity, and can be defined by considering
the rules for attribute abstraction. Once the abstract reference actions have been defined, one
should have rules to abstract from the remaining, i.e. the non-final actions of the activities,
which are similar to the abstraction rules of causality refinement. Applying these rules one
should obtain a behaviour which consists exclusively of abstract reference actions. This
behaviour is the abstraction of the concrete behaviour.

5 Example: financial transaction

The design methodology presented in this paper is illustrated with the design of a system
which supports a specific type of financial transaction. 

5.1 Identification of money transfer system
Figure 21 depicts the application domain of a money transfer system. Suppose that a client,

who may represent a business organisation or an ordinary household, wants to order a bank to
carry out a specific transaction. Suppose this transaction consists of transferring money from
two different accounts to a third account, and that these accounts are administered by three
different banks.

5.2 Money transfer service
The common behaviour of the client and the money transfer system can be modelled by a

single action at a high abstraction level. This action, called Trans in Figure 22 (a), defines the
outcome of the financial transaction.

In reality, the transaction must be initiated by the client. This is modelled at a lower
abstraction level by a separate action, called Transreq in Figure 22 (b), which establishes the
information that is needed to perform the transaction, i.e. the accounts (sA, sB and sC) and the
amounts of money to be transferred (mB and mC). 

The relation between the more concrete behaviour of Figure 22 (b) and the abstract behav-
iour of Figure 22 (a) is defined by the abstraction rules of the causality refinement design
operation. In this case, actions Trans and Transcnf are reference actions and action Transreq is
an inserted action.

The more concrete behaviour of Figure 22 (b) allows one to prescribe the time constraint
that applies to the transaction, which must be performed within a maximal time interval ∆t.

Figure 21: Application domain
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5.3 Money transfer service provider
Figure 23 depicts the distribution of the conditions and constraints on the occurrences of

actions Transreq and Transcnf between the sub-behaviours of the functional entities Client and
Money transfer system. The constraint of the interaction contribution Transreq in the Client
sub-behaviour defines that the client is responsible for providing the necessary account infor-
mation and the amounts of money to be transferred. After the interaction has happened these
values are also known by the money transfer system.

The responsibility for performing the financial transaction correctly and in time is assigned
to the money transfer system. This responsibility is represented by the operations and
constraints on the attributes of the interaction contribution Transcnf in the corresponding sub-
behaviour. Following the principle of parsimony, it would be sufficient to assign this responsi-
bility to only the Money transfer system entity and inform the Client entity about the transac-
tion outcome by means of value passing.

However, in case entities do not trust each other completely, the same responsibility may
be assigned to multiple entities. In this case the client has been assigned the responsibility to
check the outcome of the transaction. The interaction contribution Transcnf of the Client sub-
behaviour defines that the transaction must be performed in time and that the sum of the
accounts credits before and after the transaction should be the same.

5.4 Money transfer protocol
Figure 24 represents the behaviour definition of the money transfer protocol. The protocol

behaviour is a refinement of the causality relation between the interaction contributions
Transreq and Transcnf. We assume this behaviour is distributed between three functional enti-
ties, which represent the three different banks involved.

The transaction is performed in two stages, which are coordinated by bank A. The purpose
of the first stage is to make a reservation on the three accounts in order to avoid interference
with other transactions. Action A-RR models the reservation of the account at bank A and

Figure 22: Money transfer service

Figure 23: Money transfer service provider
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enables the reservation of the accounts at banks B and C. The reservations at banks B and C
are modelled by a reservation request (action X-RRreq) which is followed by a reservation
confirm (action X-RRcnf).

An X-RRcnf contains an answer with two possible values: the value ‘ready’, which repre-
sents that the reservation is made, or the value ‘refuse’, which represents that the reservation
could not be made (e.g. because of a low balance). Figure 24 depicts the attributes of some
actions. Since the attributes of other actions are rather straightforward they are not represented
for the sake of brevity.

In this example we assume that the first stage is critical with respect to time, because e.g.
resources have to be reserved at banks B and C. The X-RRcnf’s from both banks should occur
within a certain time limit, which is modelled by action Timer, otherwise the transaction
should not happen according to the constraints that were defined in Figure 23.

The purpose of the second stage is to decide and guarantee that the transaction either
happens completely or not at all. The transaction should happen if both actions B-RRcnf and C-
RRcnf occur and establish the attribute value ‘ready’, otherwise the state of the accounts before
the transaction request should be restored. Action A-CR models this decision which is repre-
sented by the attribute values ‘commit’ and ‘rollback’, respectively.

Furthermore, action A-CR enables the process of updating or restoring the accounts at
banks B and C and the release of the reserved resources. Once both actions B-CRcnf and C-
CRcnf have happened, a bank note can be made for the client, which is modelled by action BN.
The updating of the account at bank A can be modelled by either action BN or action A-CR.
This decision may depend on reliability criteria and the amount of interest involved.

5.5 Money transfer communication infra-structure
In the money transfer protocol design so far we have assumed that bank A is directly

connected to the client and to the other banks. The objective of this design milestone is to
allow these entities to be geographically distributed by the use of a common communication
infra-structure.

Figure 24: Money transfer protocol
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This implies that the interactions between different entities should be mapped onto interac-
tion or communication patterns that are supported by the communication infra-structure. We
illustrate how this mapping can be achieved for part of the behaviour of the interaction system
between banks A and B: the actions B-RRreq and B-RRcnf and their causal relationship, which
corresponds to the account reservation service behaviour.

Figure 25 depicts three design steps in which the account reservation service is refined and
decomposed into two protocol entities and a data transfer service provider.

The objective of the first design step in Figure 25 is to design the account reservation
service taking into account that banks A and B are geographically distributed, i.e. they have to
interact via a third party. This is achieved by refining the account reservation service into a
user confirmed service, according to the rules of action refinement. Figure 25 (b) depicts the
refined account reservation service. Actions B-RRreq and B-RRcnf are performed at bank A and
actions B-RRind and B-RRrsp are performed at bank B.

The objective of the second design step is to refine the account reservation service of
Figure 25 (b) into an account reservation protocol in which the remote causality relations
between actions B-RRreq and B-RRind and actions B-RRrsp and B-RRcnf are implemented by a
generic reliable data transfer service. The causality refinement design operation can be
applied to obtain the account reservation protocol, which is depicted in Figure 25 (c).

The objective of the third design step in Figure 25 is to decompose the account reservation
protocol into protocol entities and a lower level service provider. Figure 25 (d) depicts this
decomposition. The protocol entities define part of the behaviour of banks A and B. The data
transfer service provider defines part of the behaviour of the communication infrastructure.

6 Conclusions and further work

This paper discusses some basic design concepts for distributed system design. Basic
design concepts help the designer to conceive, structure and refine the characteristics of a

Figure 25: Communication infrastructure
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system. We believe that the development of an effective design methodology should be based
upon a careful choice, correct understanding and precise definition of its basic design
concepts.

The behaviour structuring techniques presented in section 3.3 follow from the concepts of
action, interaction and causality relation. Constraint-oriented behaviour structuring is based
upon the implementation relationship between actions and interactions. Causality-oriented
behaviour structuring is merely a syntactic operation which allows one to distribute the result
action and its enabling and disabling conditions over separate sub-behaviours.

The causality and action refinement design operations presented in section 4 follow from
the concepts of action and causality relation. Both types of behaviour refinement are defined
in terms of manipulations of actions and action attributes, and manipulations of their causality
relations.

The definition of generic design milestones in section 3.5 is enabled by the introduction of
the action concept. Causality- and constraint-oriented behaviour structuring, and causality and
action refinement are used to perform design steps between successive design milestones.

Our design concepts provide a sound basis for further work on other elements of our design
methodology. In the near future we will concentrate on the definition of a concise, easy to use
and effective design language. Further, we will work on the formalization of this design
language and the presented design operations, aiming at the development of supporting tools.
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