
Protocol Design and Implementation Using Formal Methods1

Marten van Sinderen, Luís Ferreira Pires, Chris A. Vissers
Tele-Informatics and Open Systems Group

University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

sinderen@cs.utwente.nl
pires@cs.utwente.nl

vissers@cs.utwente.nl

Abstract

This paper reports on a number of formal methods that support correct protocol design and
implementation. These methods are placed in the framework of a design methodology for
distributed systems that was studied and developed within the ESPRIT II Lotosphere
project (2304). The paper focuses on design methods for synthesizing protocols by succes-
sive application of correctness-preserving LOTOS transformations. This transformational
approach is described in some detail and is illustrated with a protocol design example. The
paper concludes with some suggestions for relating design methods to milestones in the
protocol design and implementation processes.

1 Introduction

The ESPRIT II Lotosphere project (2304) focused on a methodology for the rapid and correct
design and implementation of distributed systems, in particular services and protocols, that
should be suitable for industrial application. Correct design and implementation prompts the use
of formal languages that support unambiguous and concise representation of designs. The
standard Formal Description Technique (FDT) LOTOS [ISO89a] has been adopted by the Lot-
osphere project because it fulfils the requirements for precision and conciseness in the represen-
tation of distributed system design concepts, such as interactions and system structure. Indus-
trial applicability requires that tools supporting these design methods are made available. De-
sign support tools produced in Lotosphere have been integrated in a tool environment called
LITE (Lotosphere Integrated Tool Environment, [Eij91]). By adding design methods and tools,
the original gravity of LOTOS as a specification language was gradually turned into a design
language.

This paper gives an overview of some design methods that have been developed in the Loto-
sphere project, focusing on a transformational approach to synthesize protocols from service
specifications. This paper is further structured as follows: Section 2 presents an overview of the
Lotosphere design methodology and its relevance to protocol design and implementation, Sec-
tion 3 presents some transformations that can be used in protocol design, and Section 4 presents
a concrete protocol design example to illustrate the transformational approach. Conclusions are
drawn in Section 5.

1. This work has been partly supported the CEC research programme ESPRIT II (Lotosphere, ref.: 2304).

2

2 The Lotosphere Design Methodology

The Lotosphere design methodology adopts the usual view of adesign trajectory as a sequence
of design steps in which first the user requirements are formulated and then successively refined
until the design of a real system is obtained. It further adapts this design trajectory on basis of
notions such as rapid cycling using key functional elements, tree search, reference implemen-
tations, and the distinction between functional and non-functional properties of the system
([FV90], [Bog89]).

The methodology strives for using LOTOS as long as possible throughout the design trajectory.
This enables notions of implementation to be formalized, and design methods to be implement-
ed in design support tools, all based on LOTOS. Figure 1 depicts a simplified view of the Lot-
osphere design trajectory. Initially the user requirements are formally defined in terms of the
observable behaviour of the system, such that only properties which are relevant to the system
users are expressed. Successive intermediate designs represent design decisions concerning for
example internal structure, data and behaviour refinements, and the mapping onto software and
hardware structures.

In protocol design, the definition of the user requirements corresponds to aservice specification,
which is an integrated representation of the observable behaviour of a distributed system as can
be experienced by the service users atservice access points. The service abstracts from all pos-
sible internal structure that can be given to the system. The service is used as the starting point
for protocol design in which this internal structure is gradually decided and defined.

Protocol design is usually carried out in two phases. In the first phase the functions of the pro-
tocol are defined in an as much as possibleimplementation independent way, but such that prop-
er interworking of peer protocol entities is guaranteed. The resulting design supports the defi-
nition of open systems. Therefore it is usually produced (next to service design) by a (pre-)
standardization body, and published as an international standard or recommendation. The re-
sulting design we call the protocol design, or simply theprotocol. The next step in protocol de-

initial spec

Figure 1: Design Trajectory

(N)-spec

(N-K)-spec

user requirements

real system

refinement

validation
formalization

(formal)
validation

testingrealization

(formal)
validation

refinement

architectural
phase

implementation
phase

realization
phase

3

sign is itsimplementation dependent design. During this step a protocol design is refined until
a proper composition of (hardware and software) components is obtained that can be more eas-
ily mapped onto a real system. Such a composition we call theprotocol implementation. Proto-
col designs and implementations must be correct with respect to the service, i.e. they both must
implement the service.

LOTOS is a broad spectrum design language allowing it to be used not only as a specification
language for services and protocols (for which it was originally developed), but also as a lan-
guage to represent intermediate protocol implementations. Formally defined LOTOS-to-LO-
TOS transformations support the design steps from the service to a protocol design and protocol
implementation. These transformations can be repeated until we can compile a LOTOS speci-
fication directly or transform it by hand into code of a target implementation language (e.g.
ADA or C).

The correctness of the real system can be checked by validating the user requirements and each
refinement throughout the design trajectory. In addition, the real system can be tested for con-
formance against intermediate specifications.

The purpose of the next sub-sections is to present a taxonomy of design methods that support
protocol design and implementation. Section 2.1 discusses the architectural and language con-
siderations involved in a design step and defines the concept of design method, Section 2.2
presents a catalogue of LOTOS transformations to be used throughout a design process, Section
2.3 addresses protocol design and Section 2.4 tackles protocol implementation.

2.1 Architectural versus Language Considerations

Architectural concepts represent abstractions of aspects of technical objects of concern. In serv-
ice and protocol design, for example, generic architectural concepts are service, service primi-
tives, service access points, protocol, protocol entities, etc. Aspecification language serves the
purpose ofrepresenting these architectural concepts. In case elements of a specification lan-
guage (e.g. syntax and semantics elements) are derived from generic architectural concepts re-
lated to the technical area of concern, it may result in a general purpose specification language.

An abstraction of a technical object of concern is called adesign. A specification is a represen-
tation of a design using a specification language. This representation is necessary in the design
process as a vehicle for analysis, communication, and manipulation, since the technical object
itself is not necessarily available. This means that a distinction must be made between a design
and its specification. This distinction is depicted in Figure 2.

Design decisions taken during a design step must refine a design through the manipulation of
architectural concepts. Since we can actually only manipulate specifications rather than the de-
sign itself, a design step is characterized by anarchitectural transformation, i.e. the conceptual
modification of a design based on design objectives and including design decisions, and alan-
guage transformation, i.e. the manipulation of the specification of the design. There is not nec-
essarily a one-to-one relationship between an architectural transformation and a language trans-
formation. For example, in the design example presented in Section 4 we apply several language
transformations to perform one architectural transformation.

We define the termarchitectural semantics as the relationship between architectural concepts
and their possible representations in a specification language. More on architectural semantics
for LOTOS can be found in [Tur87].

4

We define adesign method as a combination of language transformations used to perform an
architectural transformation.

2.2 Catalogue of LOTOS Transformations

Considering protocol design and implementation using LOTOS, several architectural transfor-
mations address problems that can be generalized and formalized in terms of general purpose
LOTOS-to-LOTOS transformations. The Lotosphere project produced a catalogue of these
transformations; Table 1 presents a selection of the most prominent ones ([Bol91]). Some of
these transformations have been implemented in tools of LITE. These are indicated with an *
in Table 1. An overview of these tools can be found in [Eij91].

Table 1: Some LOTOS-to-LOTOS Transformations

name solution tool support

resolution of non-determinism no no
bi-partition of functionality yes yes*
making states explicit yes yes*
making parallelism explicit partial no
rearrangement of interaction points yes yes*
regrouping of parallel processes yes yes*
from full to basic LOTOS yes yes*
explicit dynamic process generation yes no
from LOTOS contexts to transducers yes yes
multi-way to two-way synchronization yes no

In each transformation, some properties of an input specification are preserved and some others
are modified in an output specification. In case the relationship between the input and output
specifications can be formalized, we call it acorrectness preserving transformation (CPT).

Since some or all semantics of the input specification is maintained in the output specification,
designers must usually manipulate syntax elements in order to achieve a language transforma-

Architectural
Concepts

Specification
Language

SpecificationDesign

represented by

interpreted as

in
st

an
ce

 o
f

us
ed

 to
de

ve
lo

p

represented by

interpreted as

us
ed

 to
w

rit
e

in
st

an
ce

of

Figure 2: Relationship between Architectural Concepts and Specification Language

5

tion. An example is the replacement of one process in an input specification by multiple proc-
esses in the output specification in order to represent a structural refinement. Depending on the
preserved properties of a transformation, different formally defined notions of correctness can
be used. Some of these notions and associated laws can be found in [ISO89a] and [Mil89]. In
this paper we make use of two of these notions:observation equivalence (≈), also calledweak
bisimulation equivalence, andstrong bisimulation equivalence(~).

Some language transformations have solutions in terms of algorithms that, when applied to an
input specification, produce a correct output specification. These algorithms can be fully or
partly automated. Sections 3.1 and 3.2 present examples of algorithms that can be fully auto-
mated. Algorithms that can be only partly automated work interactively with the designer, by
alternating between computation and request for more (design) information. Section 3.3
presents an example of an interactive algorithm.

2.3 Protocol Design

In protocol design we assume that a formally defined initial service specification is available as
an input specification and that we can focus on transforming this into a protocol specification.
The iterative design strategy, based on repeated decomposition, can be used to achieve a final
protocol specification. The decomposition process starts from an (N)-service specification and
produces an (N)-protocol specification that is structured in terms of (N)-protocol entities and an
underlying (N-1)-service. A protocol is a specific decomposition of the service, i.e. its specifi-
cation includes specific design choices in the functions of the protocol entities and the underly-
ing service. The underlying (N-1)-service is again decomposed in the same way as the (N)-serv-
ice. This process is repeated until an underlying service is obtained that can be directly realized
by an implementation component which matches the required behaviour. Figure 3 depicts (lay-
ered) protocol design.

A service and a corresponding protocol are therefore alternative representations of the same dis-
tributed system behaviour, viewed from different perspectives. The service is an integrated rep-
resentation of the system and is best specified in terms of a set of separate constraints on the
occurrence of observable interactions (in OSI terminologyservice primitives). These con-

Figure 3: Layered Protocol Design

(N) Service

(N-1) Service

(N-2) Service

(N) Layer
Protocol Entities

(N) Service
Access Points

(N-1) Layer
Protocol Entities

6

straints can be structured in terms oflocal constraints, i.e. constraints related to behaviour local
to service access points, andremote or end-to-end constraints, i.e. constraints related to behav-
iour between different service access points. This form of representation is calledconstraint-
oriented style.

A protocol is a distributed representation of a system, i.e. it represents the system in terms of a
composition of objects or resources. Here aresource-oriented style is the most appropriate form
for its specification. In a resource-oriented specification, the structure of the design is represent-
ed by a composition of processes, where a process represents an object or resource. The internal
communication between resources is hidden from the environment of the system.

The protocol entities implement the distribution of the service. Therefore the local constraints
of the service can reappear in the definition of the protocol entities, allowing re-use of earlier
defined elements of specification and facilitating validation. The remote constraints of the serv-
ice can be decomposed over protocol entities and an underlying service. Specification styles are
discussed in detail in [VSS88]. Figure 4 depicts the use of specification styles in the formulation
of service and protocol specifications.

2.3.1 Validation

One approach towards protocol design consists of designing a protocol using heuristics and us-
ing the service specification as a functional requirement, and validating the protocol afterwards
against the service by analytical verification or by testing.

Figure 4: Decomposition of a Service into a Protocol using Specification Styles

local constraints
Service

Protocol

Protocol Design

(preserved in the

protocol specification)

protocol entities

underlying service

remote constraints

(decomposed in the
protocol specification)

7

A verification method described in [V+91] assumes that the service and protocol specifications
are structured in constraint-oriented and resource-oriented specification styles respectively.
This choice of styles allows verification in a modular way. The method is exemplified by the
verification of a protocol that provides a kind of question-answer service. If the underlying serv-
ice comprises two independent directions of transfer, and the send and receive actions of each
of the protocol entities are not related except by local constraints at the required service bound-
ary, it turns out that modularization is possible and that verification is relatively straightforward.
Experience has shown, however, that in more realistic designs verification using analytical
methods is not feasible.

Testing a protocol against the service, according to the formal notion oftest equivalence
([Abr87]), consists of defining test sequences derived from the service specification and apply-
ing them to the protocol specification. Test methods can beengineered, i.e. the ratio between
the amount of computation necessary to achieve a certain coverage and the amount of compu-
tation to achieve complete coverage can be chosen. In most realistic designs, however, the use
of testing does not constitute a formal proof of correctness.

2.3.2 Transformation

Another approach towards protocol design is derivation of a the protocol specification from the
service specification with the use of correctness preserving transformations. A design method
that supports this approach is described in [ES91]. The starting point of this method is a con-
straint-oriented service specification, structured in terms of local and remote constraints. It as-
sumes that the service is point-to-point (there are only two service users), and that its specifica-
tion has two local constraints (one for each of the service access points). The resulting specifi-
cation contains components which can be considered as preliminary forms of the two desired
protocol entities. These components interact directly with each other via synchronous interac-
tion, which implies that the synchronous interaction must be refined, in terms of an underlying
service.

In Section 4 we show design methods that allow the design of protocol entities that communi-
cate using a reliable or an unreliable medium as underlying communication service, and thus go
a step further then the design method described in [ES91].

2.4 Protocol Implementation

Some methods used for protocol design can be also used for protocol implementation. In addi-
tion, the Lotosphere project has addressed a couple of specific implementation approaches, of
which the use of pre-defined implementation constructs ([FSV92]) and compilation represent
two quite different alternatives.

2.4.1 Use of Pre-defined Implementation Constructs

This approach assumes the availability of a set of high level general-purpose implementation
components, calledpre-defined implementation constructs (PDICs). Each PDIC is represented
by its formal specification in LOTOS, whereas a correct implementation (and realization) of this
formal specification in the target implementation environment is available. The objective of us-
ing PDICs is to transform the protocol specification as early as possible in the design trajectory
into a composition PDIC specifications. Since the correctness of each PDIC implementation has
been already established by the time of its construction, the correctness of a protocol implemen-
tation becomes only dependent on the correctness of the composition of PDIC specifications.

8

This can be established early in the design trajectory on basis of a formal relation between LO-
TOS specifications, i.e. the formal specification of the protocol and its corresponding composi-
tion of PDIC specifications.

Using this approach, designers are encouraged to develop a library of general purpose PDICs,
such that many different protocols can be implemented using this library. Figure 5 depicts this
approach.

The use of PDICs has the advantage of bringing a clear distinction between structural (architec-
tural) design and the technicalities inherent to different implementation environments. It also
has the potential of reducing validation efforts and shortening the design life cycle of individual
protocols. The approach has the disadvantage that designers have to cope with the development
and maintenance of a library of PDICs. Furthermore automated methods to transform protocol
specifications into compositions of PDICs are not (yet) available.

2.4.2 Compilation

Two compilers have been developed in Lotosphere and are available in LITE: TOPO and CO-
LOS.

TOPO is a tool that generates C code from a LOTOS specification, by transforming the speci-
fication into a model called theΛβ model [MS91]. The LOTOS specification is then implement-
ed as a composition of behaviour units (BUTs) which communicate via a synchronization ker-
nel. An algorithm has been defined in [MS91] that corresponds to a set of rules for the evolution
of BUTs and generation of new BUTs, in order to mimic the behaviour of the original LOTOS
specification. Abstract data type (ADT) specifications are in principle implemented as rewrite
rules.

TOPO allows the use of annotations in specifications in order to represent aspects which cannot
be formally represented in LOTOS, such as time delays. More efficient ADT implementations
hand-coded in C, default values or random choice for value negotiation events, mapping of
events on occurrences of concrete interfaces, implementation side effects (e.g. print-out for im-
plementation debugging) and busy waiting for events can be also incorporated in the final im-
plementation by using annotations.

COLOS ([Dub89]) approaches the implementation problem in a slightly different way than
TOPO. COLOS is targeted to the implementation of the behaviour part of annotated LOTOS
specifications which are rather near to the implementation, i.e. which contain already the imple-
mentation decisions which can be represented in LOTOS. This means that the restrictions on

Figure 5: The PDICs Approach

Architectural
Transformation

Library of PDICs

implementations

Specification specifications

9

the LOTOS specifications that can be implemented with COLOS are more severe than in
TOPO. For example, in contrast to TOPO, COLOS does not support the direct implementation
of internal events. Furthermore COLOS assumes that the ADT implementations are produced
outside COLOS, imported as C code, and integrated during the implementation.

COLOS transforms a LOTOS specification into a set of extended finite state automata that co-
operate using a synchronization kernel. The synchronization kernel handles synchronization re-
quests that are deposited in ports, while sorting out the possible events and scheduling pseudo-
concurrence of the automata. Time-out’s must be explicitly represented as events with timer
components, and not as annotations such as in TOPO.

3 Some Algorithms for Protocol Design

This section presents three algorithms that have been tailored to protocol design. Section 3.1
presents a modification of the bi-partition of functionality algorithm of [Lan90], Section 3.2
presents the regrouping of parallel processes of [Bol91] and Section 3.3 presents a modification
of the tableau method of [Par89].

3.1 Bi-partition of Functionality

Structuring of functionality can be performed in LOTOS by using a transformation calledfunc-
tionality decomposition. A special case of functionality decomposition in which one LOTOS
process is replaced by two cooperating processes has been fully formalized in [Lan90]. Its so-
lution for the case of cooperation through direct (synchronous) communication has been imple-
mented in LITE. This transformation is calledbi-partition of functionality.

We have modified the asynchronous algorithm of [Lan90] in order to be able to replace (parts
of) a service by two (partial) protocol entities and an underlying reliable service. The original
algorithm assumes that the process whose functionality is to be bi-partitioned is defined in Basic
LOTOS, i.e. without the use of structured events and data types. Our modification supports
some limited forms of data values.

We assume that the input specification contains two gates and that it is represented in LOTOS
byB[a, b]. We also assume that there is no internal event in the input specification and that there
is no choice between event offers in which both gatesa andb appear. In order to handle various
different sorts of data values, we assume that the input specification and its derivatives have the
following form:

B [a, b] := ∑k {a ?d: Datak !req ;b !d !ind ; Bk | k ∈ K }

or ∑k {b ?d: Datak !req ; a !d !ind ; Bk | k ∈ K }

This means that for some finite index setK = {1,..., n}, eachDatak represents a distinct data sort
and eachBk is a process of the same form asB. Parametersreq andind represent that the direc-
tion of the data flow is from the environment to the process being decomposed and vice-versa,
respectively. In caseK = ∅, thenB [a, b] := stop.

Bi-partition will be performed in the gate set, such that there will be one new process per gate.
A bi-directional reliable medium capable of transferring one message or acknowledgement per
direction of communication at a time can be represented by:

M[p, q] := M 1[p, q] ||| M1[q, p]

10

where
M1[p, q] := ∑k p ?m: Messagek !req; q !m !ind; M1[p,q]

[] ∑k p ?ack: Ackk !req; q !ack !ind; M1[p, q]

This means that we want to build processesT1[a, p] andT2[b, q], such that the structure of the
output specification will be:

P[a, b] := hide p, q in T1[a, p] ||| T2[b, q] |[p, q]| M[p, q]

We also assume that after data has been “used” it can be deleted. Data is considered to be “used”
when it is forwarded to another component. Under these conditions we can define the algorithm
for buildingT1[a, p] andT2[b, q] as:

• in caseB [a, b] := ∑k {a ?d: Datak !req ;b !d !ind ; Bk | k ∈ K } then

T1(B) := ∑k { a ?d: Datak !req; p!Messagek(d) !req; p!Ackk(Messagek(d)) !ind; T1(Bk) |k ∈ K}

T2(B) := ∑k {q ?m: Messagek !ind; b !Usek(m) !ind ; q!Ackk(m) !req; T2(Bk) | k ∈ K}

• in caseB [a, b] := ∑k {b ?d: Datak !req ; a !d !ind ; Bk | k ∈ K } then

T1(B) := ∑k {p ?m: Messagek !ind; a !Usek(m) !ind ; p !Ackk(m) !req; T1(Bk) | k ∈ K}

T2(B) := ∑k {b ?d: Datak !req; q !Messagek(d) !req; q!Ackk(Messagek(d)) !ind; T2(Bk) |k ∈ K}

The following signature defines the relationships between data and the corresponding messages
exchanged through the medium:

Messagek: Datak -> Messagek
Usek: Messagek -> Datak

Ackk: Messagek -> Ackk

The conditionUsek(Messagek(d)) = d, for all d of sortDatak follows from the form ofB[a, b].

The algorithm is proved correct ifB [a, b] ≈ P[a, b], i.e. the output specification is observation
equivalent to the input specification. The proof consists of showing that<B [a, b], P[a, b]> to-
gether with the identity relation define a weak bisimulation relation.

3.2 Regrouping of Parallel Processes

During the design process it may occur that processes have to be regrouped, e.g. as an interme-
diate step in functionality decomposition. The LOTOS transformation that supports this is
calledregrouping of parallel processes. This transformation consists of regrouping processes
composed in parallel in such a way that a given composition structure is matched. The behav-
iour of the resulting specification must remain the same as the input specification, therefore the
input and output specifications must be strong bisimulation equivalent in this case.

A formalization of this transformation and a solution has been proposed in [BFO91] and has
been implemented in LITE. Particularly useful instances of this transformation (i.e. with fixed
composition patterns) have been proved and applied in [SF91] and [V+91].

We present here a restricted solution to this transformation, which is reported in [Bol91]. This
solution makes use of the so calledMaximal Coordination Condition (MCC) in relation to the
input and output specifications. A specification satisfies this condition if and only if every oc-
currence of the parallel operator in the specification has a set of synchronization gates which is

11

exactly the intersection of the set of observable gates of the argument behaviour expressions of
the operator.

The algorithm requires that the input specification satisfies the MMC. The output specification
is then simply derived from the given composition pattern by instantiating the parallel operators
in the pattern in the unique way in which the MCC is satisfied.

For example, consider the following specification:

B[a, b] := hide p in (L1[a] ||| L 2[b]) |[a,b]| (E 1[a, p] |[p]| E 2[b, p])

which satisfies the MCC, and a desired composition pattern(L1 |[?]| E1) |[?]| (L 2 |[?]| E2).

The input specification can be transformed according to the regrouping of parallel processes al-
gorithm into:

B'[a, b] := hide p in (L1[a] |[a]| E 1[a,p]) |[p]| (L 2[b] |[b]| E 2[b,p])

The algorithm then guarantees thatB[a, b] ~ B'[a, b].

3.3 Component Construction

It would be desirable to have algorithms that accomplish functionality decomposition in a more
general way than indicated in Section 3.1, i.e. even when a certain pre-defined structure of proc-
esses can not be identified. Interactive algorithms can be defined in this case, in order to allow
designers to fill in behaviours as a consequence of design decisions, such that by the end of this
process a correct design is obtained.

The component construction algorithm can take as input any equation with unknown compo-
nents to be designed, and supports the derivation of correct results in case these are possible.
We illustrate the algorithm with the following equation form:

B[a, b] ≈ hide p, q in ((X[a, p] ||| Y[b, q]) |[p, q]| M[p, q])

whereM[p, q] is a given specification of e.g. a communication service, andX[a, p] andY[b, q]
are the unknown components to be designed. The designer builds the unknown components of
the output specification interactively, while at the same time (partial) verification is performed.
A similar equation solving procedure has been once proposed in [Par89] for CCS; our algorithm
is a modification of this procedure for LOTOS.

The algorithm is based on transformations on a “tableau” structure. A tableau consists of a goal
and an environment. The goal indicates which equations have to be proved true, and the envi-
ronment records the intermediate results of the unknown components. The environment is for-
mally defined as a mathematical relation between identifiers and behaviours. Identifiers that are
not assigned to behaviours (do not belong to the domain of the environment) are calledfree
identifiers.

The following operations on tableaux can be performed:

1. Instantiation: free identifiers are instantiated (assigned to behaviours) using heuristics, so
that the right hand-side of the equation becomes guarded. This corresponds to replacing:

X[a, p] by and Y[b, q] byxi Xi;
i 0=

n

∑ yj Yj;
j 0=

m

∑

12

This operation is done by the designer, as an expression of the design decisions concern-
ing the behaviour of the unknown components.

2. Splitting: the original equationB ≈ E, whereE represents the right-hand side of the equa-
tion (side with the unknown components), is replaced by a set of equationsBi ≈ Ei, such
that

 for all : and , and

3. Removal: equations similar to other equations which have already been unfolded using
splitting are removed from the goal;

4. Identification: free identifiers can be assigned to already instantiated identifiers, under the
condition that there is a matching on the set of equations for both identifiers.

Operations 1 and 4 cannot be automated, since they expect the designer to convey design infor-
mation, which allows the algorithm to proceed. Operations 2 and 3 can be automated, since they
correspond to mechanical unfolding and checking of the left and right-hand sides of the equa-
tions. Splitting may not be possible in some cases, which shall mean that an incorrect instanti-
ation had taken place previously. In this case, the process has to return to the point of the incor-
rect instantiation (backtracking)

The process stops when all equations are removed, turning the goal intotrue.

The basic equation solving procedure, augmented with some heuristics to assist instantiation,
has been used in [Par89] to synthesize the receiver entity of a version of the alternating bit pro-
tocol, given the required service, the sender entity and the underlying service. The additional
rules permit the construction of a structured protocol specification. Some examples of their use
are presented in [SF91]. Currently no tool support is available for this method in LITE. The
method also lacks sufficient heuristics that capture design experience to assist instantiation in
the application to medium and large scale design problems. Nevertheless we believe that this
algorithm is promising, since most of its time consuming operations (splitting and removal) can
be automated.

4 An Example of Protocol Design

This section illustrates a transformational approach to protocol design, using the algorithms pre-
sented in Section 3, with the design of a relatively simple, but non-trivial, protocol: a protocol
that provides a question-answer service on top of an unreliable data transfer service. We also
illustrate the application of the layering strategy: two successive decompositions are presented,
resulting in two protocol layers. Each decomposition step is concerned with a distinct design
problem, the nature of which determines what design methods are best suited for the design of
the protocol during this step.

The first decomposition step deals with application concerns, i.e. it focuses on the provision of
the application-oriented question-answer service (QAS) and assumes the availability of a relia-
ble data transfer service (RTS). The procedure for the exchange of protocol information is very
simple in this case, although the formatting and coding of the protocol information is potentially
quite complex. Because of this, we use the bi-partition of functionality algorithm introduced in
Section 3.1 in order to design the protocol, abstracting away from the structuring and represen-
tation of protocol information. The protocol designed during this step is called the question-an-
swer protocol (QAP).

i 1 … n, ,{ }∈ eiE Ei⇒
eiB Bi→ B ei Bi;

i 1=

n

∑≈

13

The second decomposition step deals with data transfer concerns, i.e. it aims at the provision of
the reliable data transfer service assumed in the previous step on top of the unreliable data trans-
fer service (UTS). Since this step takes into account possible loss of data, the procedure for the
exchange of protocol information is relatively complex when compared to the first step. Due to
this, we make use of the component construction algorithm introduced in Section 3.3 in order
to design the protocol. A simple structuring of protocol information is considered, but not the
representation of this information. The protocol designed during this step is called the reliable
transfer protocol (RTP). Figure 6 depicts these two decomposition steps.

This section is further structured as follows: Section 4.1 presents the architectural semantics of
the concepts used in this example, Section 4.2 presents the specification of QAS, RTS and UTS,
and the two design steps are subsequently elaborated in Sections 4.3 and 4.4.

4.1 Architectural Semantics

Two architectural concepts, viz. service primitive and protocol data unit, and their representa-
tions in LOTOS are discussed below.

4.1.1 Service Primitive

Services are defined in terms of service primitives. Aservice primitive is an elementary inter-
action between aservice user (user for short) and theservice provider (provider for short). We
consider a simplified model of service primitives, which is suitable for our example:

• service primitives are formally represented by (structured) events. The conditions imposed by
a user or the provider to participate in a service primitive are represented by an event offer;

• service primitives have a location, which is called aservice access point. A service access
point is represented by a gate identifier;

Figure 6: Protocol Design Example - (a) design objective, (b) design approach

QAS

UTS

Step 1

QAS

RTS

UTS

Step 2

QAP

RTP

(b)(a)

14

• service primitives effect the exchange of information. We call the information exchanged in
a service primitive aservice information unit (SIU)1. An SIU exchanged in a service primi-
tive is represented by an event parameter;

• service primitives have a direction associated with the exchange of their SIU. A direction is
represented by a second event parameter which can have one of two values:req (request), if
the direction is from a user to the provider, andind (indication), if the direction is from the
provider to a user.

4.1.2 Protocol Data Unit

Protocol entities communicate through the exchange ofprotocol data units (PDUs). The ex-
change of PDUs is necessary to support the exchange of SIUs. Therefore PDUs convey (parts
of) SIUs, and/or internally generated protocol control information that guarantee error-free ex-
change of SIUs.

Since there is no direct exchange of PDUs between protocol entities in our example, a PDU ex-
change is not represented by a single event. Instead, PDUs must be mapped onto data of service
primitives of the underlying service in order to be exchanged. Mapping functions to relate PDUs
to service primitives of the required service, and to service primitives of the underlying service,
have to be defined.

4.2 Specification of the Services

This section presents the simplified specifications of the services which are used in the protocol
design example.

4.2.1 Question-Answer Service (QAS)

The question-answer service accepts a question from a calling user, delivers it to a called user,
accepts an answer from the called user, and returns the answer to the calling user. This service
bears some resemblance to the Remote Operations Service Element standardized by ISO
([ISO89b]), which is used in many distributed applications.

An instance of QAS with two users, each user with a fixed role (either calling or called), can be
specified as follows, using a monolithic style:

QAS[a,b] := a ?q:Question !req ; b !q !ind ; b ?a:Answer !req ; a !a !ind ; stop

The specification of this service can alternatively be structured in terms of local and remote con-
straints, i.e. using a constraint-oriented style:

QAS[a, b] := (L1[a] ||| L 2[b]) || (R1[a, b] ||| R2[a, b]) (1)

where
L1[a] := a ?q:Question !req; a ?a:Answer !ind; stop

L2[b] := b ?q:Question !ind; b ?a:Answer !req; stop

R1[a, b] := a ?q:Question !req; b !q !ind; stop

1. The concept of SIU defined here does not necessarily correspond to the OSI concept of SDU. An SIU actually
corresponds to the collection of parameters associated with a service primitive. We use SIU instead of SDU
because it allows a more convenient notation in the example.

15

R2[a, b] := b ?a:Answer !req; a !a !ind; stop

These two specifications are equivalent on basis of the operational semantics of LOTOS. Figure
7 depicts the behaviour of QAS.

4.2.2 Reliable Data Transfer Service (RTS)

The reliable data transfer service accepts data from a sending user and delivers it to a receiving
user. This means that the correct delivery is guaranteed. Communication networks which per-
form error detection and error correction provide this type of service.

For the specification of RTS we again assume two users, but in this case the users do not have
a fixed role, i.e. either user may be a sending or a receiving user. Another restriction we impose
is that the transfer capacity of the service for each direction of transfer is one data unit, i.e. at
most one data unit can be “under way” in a certain direction.

A specification which represents the two directions of transfer as independent constraints is:

RTS[a, b] := RR1[a,b] ||| RR2[a,b] (2)

where
RR1[a, b] := a ?d:Data !req; b !d !ind; RR1[a,b]

RR2[a, b] := RR1[b, a]

Figure 8 depicts some possible primitive sequences of this service:

4.2.3 Unreliable Data Transfer Service (UTS)

The unreliable data transfer service accepts data from a sending user and attempts to deliver it
to a receiving user. The service is unreliable in the sense that data is either delivered unchanged
(not corrupted) to the intended user or it is lost (discarded). Communication networks which
perform error detection but no (or not sufficient) error correction provide this type of service.

Figure 7: Behaviour of QAS

a ?q: Question !req b !q !ind

b ?a: Answer !req
a !a !ind

QAS

Calling User Called User

Figure 8: Possible Primitive Sequences of RTS

b ?d: Data !reqa !d !ind
RTS

a ?d: Data !req b !d !ind

 User B User A

RTS

 User B User A

16

We adopt the same restrictions for UTS as for RTS, i.e. the service is provided to two users and
the transfer capacity per direction of transfer is one data unit.

Possible loss of data must be represented in the UTS specification. Whether data is lost or not
depends exclusively on internal behaviour of the service provider, and therefore cannot be in-
fluenced by the users. The choice between delivery and loss is modelled by internal events (in-
stances ofi) in the following specification:

UTS[a, b] := UR1[a, b] ||| UR2[a, b] (3)

where
UR1[a, b] := a !d:Data !req; (i (* delivery *); b !d !ind; UR1[a, b] [] i (* loss *); UR 1[a, b])

UR2[a, b] := UR1[b, a]

Figure 8 depicts some possible primitive sequences of this service:

4.3 Step 1: Design of the Question-Answer Protocol

Bi-partitioning the remote constraints which are defined byR1 andR2 in (1) using the algorithm
described in Section 3.1 yields:

R1[a, b] ≈ hide p, q in (R11[a, p] ||| R12[b, q]) |[p, q]| M1[p, q] (4)

where
R11[a, p] := a ?q:Question !req; p !MessageQ(q) !req; p !AckQ(MessageQ(q)) !ind; stop

R12[b, q] := q ?p:MessageQ !ind; b !UseQ(p) !ind; q !AckQ(p) !req; stop

and

R2[a, b] ≈ hide p',q' in (R21[a, p'] ||| R22[b, q']) |[p',q']| M 2[p', q'] (5)

where
R21[a, p′] := p' ?p:MessageA !ind; a !UseA(p) !ind; p' !AckA(p) !req; stop

R22[b, q′] := b ?a:Answer !req; q' !MessageA(a) !req; q' !AckA(MessageA(a)) !ind; stop

SuffixesQ andA are used above instead of indexes from an index setK; processesM1 andM2

represent different instances of a reliable medium (see Section 3.1).M1 has gate set {p, q} and

Figure 9: Possible Primitive Sequences of UTS

loss

loss

b ?d: Data !reqa !d !ind

UTS

a ?d: Data !req b !d !ind

 User B User A

UTS

 User B User A

b ?d: Data !req

UTS

a ?d: Data !req

 User B User A

UTS

 User B User A

17

handles communication of typeQ, whileM2 has gate set {p′, q'} and handles communication of
typeA.

Applying regrouping of parallel processes in (4) and (5), and integratingM1 andM2 in a single
communication mediumM, we transform (1) into the following protocol specification:

QAP[a, b] := hide p,q in
((L1[a] |[a]| (R 11[a, p] ||| R21[a ,p])) ||| (L2[b] |[b]| (R 12[b, q] ||| R22[b, q])))
|[p,q]| M[p, q] (6)

whereM is defined as in Section 3.1 such that it handles communication of both typesQ andA.

ProcessM represents a dedicated channel for the exchange of PDUs. It is more cost effective
however if the protocol could use a general-purpose data transfer service, such as RTS defined
in (2), since then the same service can be shared by many application protocols. In order to
achieve this, we apply the operationsWrap, UnwrapMk andUnwrapAk, with k ∈ {Q,A}, and
modify the protocol specification of (6) as follows:

QAP[a, b] := hide p,q in (QAPE1[a, p] ||| QAPE2[b, q]) |[p,q]| RTS[p, q] (7)

where
QAPE1[a, p] := L 1[a] |[a]| (R 11'[a, p] ||| R21'[a, p])

R11'[a, p] := a ?q:Question !req; p !Wrap(MessageQ(q)) !req;
p !Wrap(AckQ(MessageQ(q))) !ind; stop

R21'[a, p] := p ?d:Data !ind; a !UseA(UnwrapMA(d)) !ind;
p !Wrap(AckA(UnwrapMA(d))) !req; stop

L1 as defined in (1)

and
QAPE2[b, q] := L 2[b] |[b]| (R 21'[b, q] ||| R22'[b, q])

R12'[b, q] := q ?d:Data !ind; b !UseQ(UnwrapMQ(d)) !ind;
q !Wrap(AckQ(UnwrapMQ(d))) !req; stop

R22'[a, p] := b ?a:Answer !req; q !Wrap(MessageA(a)) !req;
q !Wrap(AckA(MessageA(a))) !ind; stop

L2 as defined in (1)

The requirement thatQAS[a, b]≈ QAP[a, b], under the condition that the wrapping and un-
wrapping operations are inverse, is guaranteed by the use of transformations.QAP, as represent-
ed in (7), is a question-answer protocol that fulfils the functional requirements of this design
step.

4.4 Step 2: Design of the Reliable Transfer Protocol

The design of a protocol that implements RTS corresponds to solving the following equation:

RTS[a, b]≈ hide p,q in (RTPE1[a, p] ||| RTPE2[b, q]) |[p, q]| UTS[p, q] (8)

18

whereRTPE1 andRTPE2 are the unknown protocol entities to be designed,RTS is a reliable data
transfer service as defined in (2), andUTS is a unreliable data transfer service as defined in (3).

Since the RTS comprises two independent directions of transfer, we can assume that each pro-
tocol entity also consists of two independent parts, each part related to one of the directions of
data transfer of RTS. ThereforeRTPE1 andRTPE2 can be structured as follows:

RTPE1[a,p] := SE1[a,p] ||| RE1[a,p] (9)

RTPE2[b,q] := SE2[b,q] ||| RE2[b,q]

whereSEi is a “sender” process andREi is a “receiver” process. We further assume thatSE1 and
RE1 (alsoSE2 andRE2), have mutual exclusive conditions on service primitives of the underly-
ing service, i.e. they handle different service primitives.

Using the instantiations ofRTPE1 andRTPE2 in (9), applying regrouping of parallel processes,
and replacingUTS by two different instances of UTS as defined in (3), we can transform (8)
into:

RTS[a, b]≈ (hide p,q in (SE1[a, p] ||| RE2[b, q]) |[p,q]| UTS[p, q])
||| (hide p',q' in (RE1[a, p'] ||| SE2[b, q']) |[p',q']| UTS[p', q'])

Under the given assumptions, we can split the equation into two simpler equations ([SF91]):

R1[a, b] ≈ hide p,q in (SE1[a, p] ||| RE2[b, q]) |[p,q]| UTS[p, q] (10)

R2[a, b] ≈ hide p,q in (RE1[a, p] ||| SE2[b, q]) |[p,q]| UTS[p, q]

From (2) and (3) we can conclude that a solution forSE1 (RE1) is also a solution forSE2 (RE2).
Hence it is enough to solve one of the equations in (10).

4.4.1 Design Decisions

The solution of (10) cannot be obtained automatically, since there are a number of design deci-
sions which cannot be automated and have to be taken in order to reach a correct result. There-
fore some design decisions to be applied together with the component construction algorithm
are considered here.

The provision of a reliable data transfer service implies that lost data should be re-sent by the
sender until it is successfully delivered to the receiver. Hence the sender must be able to decide
when it has to re-sent data. We adopt the following solution:

• the receiver returns the sender an acknowledgement to indicate successful delivery of data;

• after it has (re-) sent data, the sender waits a time-out period for an acknowledgement. If the
acknowledgement is received within this period, it assumes that the data is successfully de-
livered and stops (re-) sending data. Otherwise it assumes that the data is lost and sends it
again.

Since an acknowledgement may also be lost by the underlying service, the sender may wrongly
decide that data is lost. Consequently, the receiver may receive the same data more than once.
The receiver must be able to decide whether data is duplicate or not. We adopt the following
solution:

19

• an identifier (sequence number) is assigned to each sent data, such that successive data units
have different identifiers. In this case it suffices to have two different identifier values, e.g.0
and1, which are alternately used;

• duplicate data are acknowledged, but not delivered to the user of the required service.

In case the time-out period is too short, it may occur that the sender re-sends data while in fact
neither the data, nor the acknowledgement is lost. Consequently, the sender may receive more
than one acknowledgement related to the same data. The sender must be able to decide whether
an acknowledgement is duplicate or not. We adopt the following solution:

• an identifier (sequence number) is assigned to each acknowledgement, such that this identi-
fier corresponds to the identifier of the data it acknowledges;

• duplicate acknowledgements are discarded.

4.4.2 Heuristics

The equations to be considered by the components construction algorithm when it is applied to
(10) are always of the form:

B[a, b] ≈ hide p, q in (X[a, p] ||| Y[b, q]) |[p, q]| M[p, q] (11)

whereB is a derivative of the remote constraintR1 in (9),X andY are unknown parts of the send-
er process and receiver process respectively, andM is a derivative of the unreliable data transfer
serviceUTS in (10). Considering also the design decisions discussed above, we are able to iden-
tify some heuristics which can help taking instantiation decisions when solving (10).

We assume that instantiations ofX andY have the form:

X := ∑ {xi; Xi | i ∈ I}

Y := ∑ {yj ; Yj | j ∈ J}

where eachxi (yj) is either:

• an initial event offer ofB, or

• an event offer which allows a synchronization ofX (Y) andM, such that the matching event
of M is the first in a sequence of event offers which occurs at the common gate ofX (Y) andM.

An event offer that satisfies this condition is called auseful event offer. The designer must de-
cide which subset of the set of useful event offers will be used in an instantiation.

We further assume that:

• if M has an initial event offer of type indication, then the same event offer is only used in an
instantiation ofY (X) if the information expected in this event offer can be derived from a pre-
ceding event ofX (Y) andM;

• an event offer of type request which allows a synchronization ofX (Y) andM is only used in
an instantiation ofX (Y) if the (wrapped) information exchanged in this event can be derived
from a preceding event ofX (Y) andM, or from the parameters (stored status) ofX (Y);

The latter heuristics can be used during instantiation to select properly from the set of useful
event offers.

20

The following heuristics can be used to instantiateX (Y) by identification:

• X (Y) can be identified with a bound identifierV, i.e.X := V (Y := V), if the equations contain-
ing X (Y) are a subset of the equations containingV, andX (Y) would be instantiated such that
its initial events are the same as those ofV. In this case substitutingX byV adds no new equa-
tions to the goal;

• X andY can be simultaneously identified with the bound identifierV andW respectively, i.e.
X := V andY := W, if the equations containingX andY constitute a subset of the equations
containingV andW, andX andY would be instantiated such that its initial events are the same
as those ofV andW, respectively.

4.4.3 Application of the Components Construction Algorithm

We start the application of the component construction algorithm with equation (10) to be
solved and an empty environment. Table 2 lists the initial results of the algorithm, while indi-
cating the operations which were performed to obtain these results. The initial value of the se-
quence number is taken to be0.

For the sake of readability of Table 2, some additional process identifiers have been introduced.
These are:

RR1[a, b] := a ?d:Data !req; RR11[a, b](d)
where
RR11[a,b] (d: Data) := b !d !ind; RR1[a, b]

UTS[p, q] := UR1[p, q] ||| UR2[p, q]
where
UR1[p, q] :=p ?d:Data !req ; UR11[p, q](d)
UR11[p, q](d: Data) := i; UR12[p, q](d) [] i; UR 1[p, q]
UR12[p, q](d: Data) :=q !d !ind ; UR1[p, q]

A number of operations to handle abstract data types have also been introduced. They are rep-
resented in the following signatures:

MessageD: Data, Number -> MessageD
UseD: MessageD -> Data
AckD: Number -> AckD
Number: MessageD | MessageA -> Number (* extract sequence number parameter *)
Wrap: MessageD | AckD -> Data
UnwrapMD: Data -> MessageD
UnwrapAD: Data -> AckD
Next: Number -> Number (* generate next sequence number *)

Equations involving terms generated by these signatures are omitted for the sake of brevity.

A number of shorthand notations are used in Table 2 for representing concatenation of opera-
tions. These shorthand notations are:

NA:= Number * UnwrapAD
NM:= Number * UnwrapMD
M:= Wrap * MessageD
D:= UseD * UnwrapMD

21

Furthermore, process instantiations are abbreviated in the table by omitting gates and parame-
ters (e.g. we use UR11 for UR11[p, q](d)).

Repeated application of the operations of the components construction algorithm eventually
leads to a tableau without free variables in the equations of the goal. A solution for the sender
and receiver process can then be constructed. In order to ensure that this solution is a correct
one, the remaining equations in the goal should be proved true. This can be done by repeatedly
applying splitting and removal operations until all equations are removed in the goal of the final
tableau.

Table 2: Application of the Component Construction Algorithm

operation goal (equations) environment (instantiations)

RR1 ≈ hide p,q in (SE1 ||| RE2) |[p,q]| (UR1 ||| UR2)

instantiation SE1 := a ?d:Data !req; SE11
[] p ?d:Data !ind [NA(d) = 1]; SE12

RE2 := q ?d !ind [NM(d) = 0]; RE21
[] q ?d !ind [NM(d) = 1]; RE22

splitting RR11 ≈ hide p,q in (SE11 ||| RE2) |[p,q]| (UR1 |||UR2)

instantiation SE11 := p !M(d,0) !req; SE13
[] p ?d !ind [NA(d) = 1]; SE14

splitting RR11 ≈ hide p,q in (SE13 ||| RE2) |[p,q]| (UR11 ||| UR2)

instantiation SE13 := p ?d:Data !ind [NA(d) = 0]; SE15
[] p ?d:Data !ind [NA(d) = 1]; SE16
[] p! M(d,0) !req; SE17

splitting RR11 ≈ hide p,q in (SE13 ||| RE2) |[p,q]| (UR12 ||| UR2)
RR11 ≈ hide p,q in (SE13 ||| RE2) |[p,q]| (UR1 ||| UR2)

splitting RR11 ≈ hide p,q in (SE13 ||| RE21) |[p,q]| (UR1 ||| UR2)
RR11 ≈ hide p,q in (SE17 ||| RE2) |[p,q]| (UR11 ||| UR2)

identification SE17 := SE13

removal RR11 ≈ hide p,q in (SE13 ||| RE21) |[p,q]| (UR1 ||| UR2)

instantiation RE21 := b !D(d) !ind; RE23

etc.

The solutions found forSE1 andRE2 are then:

SE1[a, p](n:Number) :=
a ?d:Data !req ; SE11[a, p] (n,d)

[] p ?d:Data !ind [Number(UnwrapAD(d))≠ n]; SE1[a, p](n)

where
SE11[a, p] (n:Number, d:Data) :=

22

p !Wrap(MessageD(d,n)) !req ; SE13[a, p](n,d)
[] p ?d:Data !ind [Number(UnwrapAD(d))≠ n]; SE11[a, p](n,d)

SE13[a, p](n:Number, d:Data) :=
p ?d:Data !ind [Number(UnwrapAD(d)) = n]; SE1[a, p] (Next(n))

[] p ?d:Data !ind [Number(UnwrapAD(d))≠ n]; SE13[a, p](n,d)
[] p !Wrap(MessageD(d,n)) !req ; SE13[a, p](n,d)

RE2[b, q](n:Number) :=
q ?d:Data !ind [Number(UnwrapMD(d)) = n]; RE21[b, q] (n,d)

[] q ?d:Data !ind [Number(UnwrapMD(d))≠ n]; RE22[b, q](n)

where
RE22[b, q] (n:Number) :=

q !Wrap(AckD(Next(n))) !req ; RE2[b, q](n)

RE21[b, q] (n:Number, d:Data) :=
b !UseD(UnwrapMD(d)) !ind ; RE23[b, q](n)

RE23[b, q](n:Number) :=
q !Wrap(AckD(n)) !req ; RE2[b, q](Next(n))

[] q ?d:Data!ind [Number(UnwrapMD(d)) = n]; RE23[b, q](n)

Figure 10 depicts an alternative representation of the sender and receiver processes by way of
state transition diagrams, using the shorthand notations of Table 2.

Finally, it follows from (9) that the protocol entities are:

Figure 10: Behaviour of the (a) Sender and (b) Receiver

p ?d:Data !ind [NA(d)≠ n]
a ?d !req

p !M (d, n) !req

p ?d: Data !ind [NA(d)≠ n]

p ?d: Data !ind [NA(d) = n]

p ?d: Data !ind [NA(d)≠ n]

n = Next(n)

p !M (d, n) !req

∨

n = Next(n)

q ?d: Data !ind [NM(d) = n]
q ?d: Data !ind [NM(d)≠ n]

q !A (n) !req

b !D (d) !ind
q !A (n) !req

q ?d: Data !ind [NM(d) = n]

(a)

(b)

23

RTPE1[a, p] := SE1[a, p](0) ||| RE1[a, p](0)

RTPE2[b, q] := SE2[b, q](0) ||| RE2[b, q] (0)

where
RE1[a, p](n:Number) := RE2[a, p](n)

SE2[p,q](n:Number) := SE1[p, q](n)

Hence, the protocol is defined by:

RTP[a, b] := hide p,q in (RTPE1[a, p] ||| RTPE2[b, q]) |[p,q]| UTS[p, q]

The protocol defined above fulfils the functional requirements of this design step. The fact that
RTS[a, b] ~ RTP[a, b], under the condition that the operations defined on abstract data types
satisfy certain requirements (to be defined by their corresponding equations), is guaranteed by
the correctness of the algorithm.

5 Conclusion

This paper presented a collection of design methods and has shown that they can be useful in
the design and implementation of protocols. Special attention has been given to a transforma-
tional approach towards protocol design, which has been illustrated by means of a simplified
protocol design example.

Protocol designers are interested in design methods that altogether cover the complete design
trajectory. Considering the design methods presented and discussed in this paper, we can make
the following observations:

• specifications that are structured according to specification styles facilitate validation. The
use of a few related specification styles, as proposed in [VSS88], contributes to the structur-
ing of specifications along the architectural and implementation phase of the protocol design
trajectory;

• the transformation approach illustrated in Section 4.3 can be used in the early phases of pro-
tocol design, when the distribution of basic protocol functions that directly support the re-
quired service is considered. This transformation is particularly suitable if the required serv-
ice is application-oriented rather than data transfer oriented. The reason for this is that appli-
cation-oriented services are generally defined in terms of different service elements,
involving different service primitives. For each service element, separate protocol functions,
involving different PDUs, can be defined that require a reliable data transfer service for the
exchange of PDUs. Therefore the decomposition of functionality in application and data
transfer becomes straightforward;

• the transformational approach illustrated in Section 4.4 can be used in subsequent steps of
protocol design, where protocol functions are defined that are more concerned with the hiding
of undesirable properties of the underlying service, rather than merely providing properties
of the required service;

• it may happen that the approach illustrated in Section 4.4 is not applicable for some instances
of design, since the instantiation of free variables may become unmanageable due to lack of
appropriate heuristics. In this case the refined protocol has to be designed by hand and vali-
dated using testing or verification afterwards;

24

• the protocol implementation can be structured in terms of resources that correspond to PDICs.
The PDIC approach mentioned in Section 2.4.1 can be used to derive an implementation of
the protocol in a particular target environment. This covers the last part of the implementation
phase of the design trajectory. An alternative to the use of PDICs is to refine the protocol
specification until a specification is reached which can be mapped straightforwardly onto a
realization. An example of the latter approach is given in [EKS90] where a resource-oriented
specification is first transformed into a state-oriented one and subsequently mapped onto C
code;

• another approach towards protocol implementation is the use of compilers. The more realistic
and effective approach, however, is to combine the use of compilers with the use of PDICs.
COLOS seems to be the compiler which is most suitable for the hybrid approach;

• since during the protocol design and implementation processes ad-hoc methods may be used,
designers have to validate the protocol implementations against their specifications. Further-
more, protocol implementations very often have to certified, which means that organizations
with a certain authority must state that the implementation complies to certain standard spec-
ification. Conformance testing methods can be used for both validation and certification of
protocol implementations. Conformance testing methods using LOTOS have been discussed
in [B+90].

Although a sophisticated set of design methods and support tools have been developed in the
Lotosphere project, some effort is still necessary to integrate methods and to enhance tool func-
tionality. It is out firm belief that the Lotosphere design methodology and its tools constitute
already a important step forward in the direction of efficient and correct protocol design and im-
plementation.

6 References

[Abr87] S. Abramsky. Observational Equivalence as a Testing Equivalence.Theorethical
Computer Science, pp. 225-241, 1987.

[B+90] E. Brinksma, R. Alderden, R. Langerak, J. van de Lagemaat, J. Tretmans. A For-
mal Approach to Conformance Testing. In: J. de Meer, L. Mackert, W. Effelsberg
(eds.).2nd International Workshop on Protocol Test Systems, North-Holland,
1990, pp. 349-363.

[Bog89] K. Bogaards. LOTOS Supported System Development. In: K.J. Turner (ed.).For-
mal Description Techniques. North-Holland, 1989, pp. 279-294.

[Bol91] T. Bolognesi (ed.).Catalogue of LOTOS Correctness Preserving Transformations,
Lotosphere Task 1.2 Final Deliverable. Lotosphere Project, 1992.

[BFO91] T. Bolognesi, D. de Frutos-Escrig, Y. Ortego-Mallén. Graphical Composition The-
orems for Parallel and Hiding Operators. In: J. Quemada, J. Mañas, E. Vázquez
(eds.).Formal Description Techniques III, North-Holland, 1991, pp. 459-470.

[Bri91] E. Brinksma. What is the Method in Formal Methods? In: K. Parker, G. Rose
(eds.).Formal Description Techniques IV. North-Holland, Netherlands, 1992. pp.
33-50.

[Dub89] E. Dubuis. An Algorithm for Translating LOTOS Behaviour Expressions into
Automata and Ports. In:Second International Conference on Formal Description
Techniques, Vancouver, 1989.

[Eij91] P. van Eijk. Tool Demonstration: The Lotosphere Integrated Tool Environment
Lite. In: K. Parker, G. Rose (eds.).Formal Description Techniques IV. North-Hol-

25

land, Netherlands, 1992. pp. 471-474.

[ES91] P. van Eijk, J. Schot. An Exercise in Protocol Synthesis. In: K. Parker, G. Rose
(eds.).Formal Description Techniques IV. North-Holland, Netherlands, 1992. pp.
117-131.

[EKS90] P. van Eijk, H. Kremer, M. van Sinderen. On the Use of Specification Styles for
Automated Protocol Implementation from LOTOS to C. In: L. Logrippo, R.L.
Probert, H. Ural (eds.).Protocol Specification, Testing and Verification X, North-
Holland, 1990, pp. 157-168.

[Fel91] M. Feldhoffer. Communication Support for Distributed Applications. In:Interna-
tional IFIP Workshop on Open Distributed Processing - Participants Proceedings,
Berlin, October 8-11, 1991.

[ISO89a] ISO. Information Processing Systems - Open Systems Interconnection - LOTOS,
International Standard ISO/IEC 8807, 1989.

[ISO89b] ISO.Information Technology - Text Communication - Rempote Operations, Part
1: Model, Notation and Service Definition, International Standard ISO/IEC 9072-
1, 1989.

[Lan90] R. Langerak. Decomposition of Functionality: A Correctness-Preserving LOTOS
Transformation. In: L. Logrippo, R.L. Probert, H. Ural (eds.).Protocol Specifica-
tion, Testing and Verification X, North-Holland, 1990, pp. 229-243.

[MS91] J. A. Mañas, J. Salvachúa.Λβ: a Virtual LOTOS Machine. In: K. Parker, G. Rose
(eds.).Formal Description Techniques IV. North-Holland, Netherlands, 1992. pp.
441-456.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall International Series in
Computer Science. Prentice-Hall, Great Britain, 1989.

[Par89] J. Parrow. Submodule Construction as Equation Solving in CCS. In:Theoretical
Computer Science 68, North-Holland, 1989, pp. 175-202.

[FSV92] L. Ferreira Pires, M. van Sinderen, C.A. Vissers. On the Use of Pre-Defined Imple-
mentation Constructs in Distributed Systems Design. In:3rd IEEE Workshop on
Future Trends in Distributed Computing Systems in the 1990’s. Taipei, April,
1992.

[FV90] L. Ferreira Pires, C.A. Vissers. Overview of the Lotosphere Design Methodology,
In: CEC.ESPRIT Conference 1990, Kluwer Academic Publishers, 1990, pp. 371-
387.

[SF91] M. van Sinderen, L. Ferreira Pires. FDT-Based Protocol Design. In: W.
Komorowski (ed.).Computer Networks ’91, Wydawnictwo Politechniki Wroclaw-
skiej, 1991, pp. 161-168.

[Tur87] K. Turner. An Architectural Semantics for LOTOS. In: H. Rudin, C.H. West (eds.).
Protocol Specification Testing and Verification VII, North-Holland, 1987.

[VSS88] C.A. Vissers, G. Scollo, M. van Sinderen. Architecture and Specification Style in
Formal Descriptions of Distributed Systems. In: S. Aggarwal, K. Sabnani (eds.).
Protocol Specification, Testing and Verification VIII, North-Holland, 1988, pp.
189-204.

[V+91] C.A. Vissers, G. Scollo, M. van Sinderen, E. Brinksma. Specification Styles in Dis-
tributed Systems Design and Verification. In:Theoretical Computer Science 89,
North-Holland, 1991, pp. 179-206.

