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Abstract 

We investigated the magnetic-field dependence of the Josephson current and Fiske resonances in specially shaped 
Josephson junctions. In order to be able to use junctions for high-resolution X-ray spectroscopy, a very good suppression of 
the sidelobes of both the Josephson current and the Fiske resonances must be achieved. 

In a theoretical argument we show that a properly chosen junction shape leads to the sidelobe suppression of both the 
critical current and Fiske resonance amplitudes. 

The Josephson current and Fiske resonance amplitudes were measured as a function of the magnetic field, for junctions 
fabricated in Nb/AI  technology. As expected, a very good sidelobe suppression was obtained for quartic-shaped junctions. 
For junctions with anodized structures within the tunneling area, the shape of the internal structures is reflected in the field 
dependence of both the Josephson current and the Fiske resonances. Finally, Fiske modes in these junctions have been 
imaged with low-temperature scanning electron microscopy, and we conclude that a quartic junction can be approximated by 
a rectangle, to describe the lower-order Fiske modes, whereas the high-order modes are specific to the exact shape of the 
junction. 

1. Introduct ion 

When a junction is used to detect X-ray photons 
or other high-energetic particles, it is most often 
current biased in the subgap regime [1]. The un- 
wanted switching to either the Josephson zero-volt- 
age state, or to a Fiske resonance, hampers the stable 
operation as a particle detector. The Fiske resonances 
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are observed for large junctions, which are desired 
for their large detector area, and appear as constant 
voltage steps in the I - V  curve, if a magnetic field is 
applied. A sufficiently large magnetic field sup- 
presses both the Josephson current and the Fiske 
steps to the subgap level. Large fields on the other 
hand, cause more flux lines to be trapped in the 
X-ray absorber (normally one of the junction elec- 
trodes), leading to an increase of  the quasiparticle 
loss by trapping [2]. We are therefore interested in 
junctions in which the suppression of  both the 
Josephson current and the Fiske steps is obtained for 
fields that are as small as possible. 

0921-4534/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved 
SSDI 0921-4534(95)00297-9 



J.G. Gijsbertsen et al. / Physica C 249 (1995) 12-24 13 

It is well known that the dependence of the 
Josephson current on the magnetic field can be easily 
manipulated by changing the junction shape. It has 
been demonstrated, both theoretically [3] and experi- 
mentally [4], that It(B) curves with very well sup- 
pressed sidelobes are obtained for junctions with 
special geometries. Especially a quartic-shaped junc- 
tion gives an extremely good suppression of the 
sidelobes. 

Fiske resonances in a quartic junction are also 
suppressed to the subgap level by a relatively small 
field. Preliminary results indicated that the insertion 
of anodized structures inside the tunneling area, de- 
signed to reduce the resonances, do not lead to an 
extra suppression of Fiske steps [5], indicating that a 
more thorough study to understand the effect of such 
structures on the Fiske resonances was necessary. 

Next to magnetic-field dependent measurements, 
spatially resolved information about the Fiske reso- 
nances can be obtained by imaging the mode pat- 
terns of the resonant magnetic field with low-temper- 
ature scanning electron microscopy (LTSEM) [6]. 

A theoretical argument that shows how the field- 
dependent behavior of the Josephson current and the 
Fiske resonances, in junctions with these special 
geometries, is influenced by the junction shape, is 
given in Section 2. Measurements of the critical 
current and a number of Fiske resonance peak ampli- 
tudes as a function of the magnetic field are pre- 
sented and discussed in Sections 3-5. For the experi- 
ment we used quartic junctions with and without 
anodized structures within the barrier area. Finally, 
images of the Fiske resonance modes obtained with 
the LTSEM are discussed in Section 6. 

2. T h e o r y  

_ W/2 

Y 

L/2 

Fig. 1. Shape of a quartic junction. For I xl _< L / 2  the even and 
positive function f(x) describes the boundary of the junction 
barrier for y > 0 ,  and - f ( x )  for y < 0 .  For Ixl >L/2  we 
define f ( x )  = 0. The unit vectors shown are the outward pointing 
normal n, and the tangential unit vector s, respectively. Both 
vectors are in the plane of the junciion. 

by the quartic polynomial f ( x ) = y o ( 1 - 6 ¢ 2 +  
8 1 ~ 1 3 - 3 ~  4) for I x l ~ L / 2 ,  and f ( x ) = 0  for 
[ x I > L /2 ,  where Yo = W / 2  and ~ = x / ( L / 2 ) .  In 
the following, this junction shape will be referred to 
as quartic. 

Assuming a homogeneous tunneling barrier with a 
maximum critical current density J1, the Josephson 
current or the DC current due to a Fiske resonance 
follows from the time-averaged spatial integral of the 
local Josephson current density Jl~O(X, y, t) over 
the area of the tunneling barrier: 

1 
IDc = J1 lim -- 

T--*~ T 

f T  f L / 2  f f (x )  . 
×J0 J-L/2~-f(x) sIn q~( x' y, t) dy dx dt. 

(1) 

In the following, we will investigate the role of 
the junction shape in the magnetic-field dependence 
of the Josephson current and the Fiske resonances. 
The spatial shape of the boundary of a symmetrically 
shaped junction is described by the positive and even 
function f ( x )  for y > 0, and by - f ( x )  for y < 0, 
respectively. The origin of the coordinate system is 
located at the center of the junction. The dimensions 
in the x and y direction are respectively given by L 
and W. Fig. 1 shows the outline of a junction defined 

2.1. Josephson current 

The influence of the self-field can be neglected 
if the junction dimensions are smaller than about 
twice the Josephson penetration length Aj = ( 4 0 /  
21r/z0d/1) 1/2. The flux quantum 40 and the mag- 
netic permeability in vacuum /% are physical con- 
stants, and the magnetic thickness is d = 2A L + t, 
wherein A L is the London penetration depth, as- 
sumed equal for both electrodes, and t is the barrier 



14 J.G. Gijsbertsen et aL / Physica C 249 (1995) 12-24 

thickness. The local phase difference between the 
electrodes ~o(x, y, t )=kyx  + q~o is entirely deter- 
mined by the external magnetic field By, t ha t  is 
applied in the y direction and is represented by the 
wave vector ky = 2~rByd/qb o. The dependence of 
the total critical current on the applied magnetic field 
Ic(B) may now be written as [3,7]: 

lc( B ) = 2 J  1 f_Lf~s( x ) cos(kyx) dx , (2) 

which is proportional to the absolute value of the 
cosine Fourier transform of the junction shape func- 
tion f(x). The phase constant q~0 is chosen to 
maximize the critical current. Peterson [3] calculated 
It(B) dependences with envelope functions falling 
off as 1/B, I /B  e, l IB  3, and I / B  4, for square, 
diamond, "1 + cosine" and quartic-shaped junc- 
tions, respectively. 

If within the tunneling area a certain area, de- 
scribed by the function a(x) in the same way as the 
outer shape is described by f(x), does not carry any 
Josephson current, e.g. because it is anodized, f (x)  
is replaced by f (x)  - a(x) and we write 

Ic(B) = 2J, f t~2(f(x ) -a(x)) cos(kyx) dx. 
(3) 

The first photograph in Fig. 2 shows an example of 
such a junction with a rectangularly shaped internal 
structure. For a centered rectangle with width U and 
height V, a(x) is defined as 

[ 11/2, for I x l ~< U/2, 
a ( x )  = ~ 0, for I xl > U/2. (4) 

The original lc(B) dependence, given by f(x), can 
be regained by replacing the outer shape f (x)  by 

(C) anodized Nb/A1 counter electrode 

! x/ 
substrate AI/AIO~/AI barrier 

Fig. 2. Photographs of the "quartic with bar" junction (2), and the "quartic with cross" junction (3) with outer dimensions L = W = 54 
txm, and a schematic cross-section of the quartic junction with a vertical bar. The cross-section is taken along the current leads, 
perpendicular to the bar. 
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f ( x )  +a(x )  to compensate for the effect of the 
internal structures. 

2.2. Fiske resonances 

Fiske resonances arise from the non-linear interac- 
tion between the AC Josephson current and the 
two-dimensional electromagnetic cavity modes in 
the junction barrier. The local phase difference 
qffx, y, t) between the superconducting electrodes, 
that gives the total DC current in Eq. (1), can be 
found as the solution of the two-dimensional per- 
turbed sine-Gordon equation (PSGE, see for instance 
Refs. [7] and [8]: 

1 1 
~Oxx + qgyy -- - ~  ~Ott = -~sin ~o+ c~o t 

Aj 

- / 3 (   xx, + (5) 

where ~ = c ( t / e ,  d) ]/2 is the Swihart velocity for a 
barrier with a relative dielectric constant e r. The 
subscripts denote partial derivatives. The damping 
due to the quasiparticle tunneling current, described 
by the shunt conductance per unit area G, is given by 
ot = G/x 0 d. The damping caused by the surface resis- 
tance R s is represented by /3 = t zod/R s. Neglecting 
both the influence of the field induced by the bias 
current, which is allowed for small junctions, and (in 
the boundary conditions) the effect of the resonant 
field induced by normal electrons flowing parallel to 
the barrier, the boundary conditions for junctions of 
arbitrary shape can be written as 

-Ms 
q~n = j]Aj2, (6) 

which is a direct result of the basic relation between 
the local magnetic field and the phase difference q~ 
and the notion that the resonant magnetic field in the 
tangential direction must be zero. The index n de- 
notes the derivative along the normal n. The mag- 
netic field Hs is taken in the s direction, i.e. along 
the tangential unit vector s (see Fig. 1). The deriva- 
tive along the tangential unit vector q~s is non-zero, 
in general. The resulting boundary conditions in the 
case of a rectangular junction can be found in Ref. 
[8], and references therein. 

To our knowledge, the complex case of Fiske 
modes in junctions with a special shape, e.g. quartic, 
has not been investigated theoretically in the litera- 
ture. A numerical approach to exactly solve the 
PSGE seems necessary. For junctions with internal 
structures, the situation is even more complicated. A 
proper description has to deal with boundary condi- 
tions for the boundaries between the barrier area and 
the internal regions, where the electrodynamics are 
described by a modification of the PSGE, and these 
boundary conditions will describe the reflection of 
the standing waves at these boundaries. 

Notwithstanding the fact, that the solution of the 
PSGE for resonances in a specially shaped junction 
cannot be easily obtained, it can be demonstrated 
how the shape function f ( x )  influences the mag- 
netic-field dependence of the Fiske resonances IF(B). 
We will write the phase function qffx, y, t) = tot + 
kyx  + q~](x, y, t )+ ~Po, where to corresponds to the 
applied DC voltage, and ky is the wave vector 
describing the magnetic field, that is applied in the y 
direction. Under the assumption that the resonance is 
already somewhat suppressed, it is reasonable to 
regard q~l(X, y, t) as a small perturbation, even in 
the case of high-Q resonances, and we can write 

sin q~(x, y, t) 

= sin(tot + krx  + ~Oo) + ~ol( x, y, t) 

× cos( tot + kyx + q~o). (7) 

The time average of the first term of Eq. (7) equals 
zero and has no net contribution to the current in Eq. 
(1). Hence we focus on the second term. In the 
following, we will omit the phase constant ~o0, since 
we average over time. First we expand ~ol(x, y, t) 
as a Fourier series for each (x, t) between - f ( x )  
and f (x) :  

o c  n'rr y 
~01(X, y ,  t )  = E an(X, t) C O S - -  

.=0 f (x)  

nlr y 
+ E bn(x, t) s i n - - .  (8) 

n=l  f ( x )  

The coefficients a,  and b, are determined by the 
boundary condition Eq. (6). After substitution of Eq. 
(7) and Eq. (8) in Eq. (1), and integrating over y, 
only the term ao(x, t) gives rise to a non-zero 
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contribution. The expression for the total current loc 
can now be written as 

IDC = 2Jlli~m= 1 f~f~/~f~ -T Jo J-L~2 - 'x )a°(  x' t) 

×cos( to t  + kyx) dx dt. (9) 

Now we expand a o as a Fourier series in the interval 
[ -L /2 ,  L/21: 

m "rr x 
ao( X, t )= E A, (  t) c o s - -  

m=0 L/2 
c¢ m Tf x 

+ E Bin(t) s i n - -  (10) 
m = 1 L/2 

Rewriting the factor cos(tot+kyx) and omitting 
integrands that are odd in x, we find for Eq. (9) 

IDC= E Am(t) cos tot J,  ( x )  
m =0 I ~ - L / 2  

m'n" 

mTr 

L/2  
+ E Bin(t) sin tot J1 ( x )  

m=l 

[( ×COS k y + - ~  x dX-JlfL/2f(x) 
- L / 2  

mlr 

so that the field dependence of the amplitude of the 
Fiske resonances IF(B) takes the form 

I F ( B )  = E Era J1 x) cos(ky,mX ) dx ,  

(12) 

where 

k'y,m = ky + - -  
m'ff  

L/2 ' 

which is a superposition of cosine Fourier transforms 
of the shape function f (x) ,  each term being shifted 
+2mlr/L along the k-axis. We have already men- 
tioned, that the shape function f (x)  can be chosen so 

that all terms of Eq. (12) have very well suppressed 
t sidelobes as a function of all ky,m. Under the as- 

sumption, that terms with a very rapid modulation in 
x (i.e. large m) are not significant, we can conclude 
that not only the Ic(B) patterns, but also the IF(B) 
patterns, have suppressed sidelobes. 

For junctions with anodized internal parts, with 
and without shape compensation, arguments analo- 
gous to the foregoing argument can be given. The 
IF(B) curves will reflect contributions of both the 
outer shape and the shape of the internal structures. 
For a quartic-shaped junction with a rectangular 
internal structure inside and without shape compen- 
sation, for instance, we expect a Fraunhofer-like 
behavior for larger magnetic fields, characterized by 
lobes in the IF(B) curves. 

3. Sample preparation 

On two oxidized silicon wafers, HG#4 and 
HG#10, layers of Nb (300 nm), AI (5 nm), A l 2 0  3 

(about 1 nm), AI (3 nm), and Nb (30 nm) were 
deposited and structured with lift-off. We used DC 
magnetron sputtering to deposit the Nb and A1 layers 
and thermal oxidation (1 h at a pressure of 10 and 20 
mbar for HG#4 and HG#10, respectively) to form 
the m l z O  3 barrier. 

Subsequently, the junction shapes were defined 
with the SNAP process [9], with anodization voltages 
of 47 V and 57 V, giving Nb205 thicknesses of 108 
nm and 131 nm for HG#4 and HG#10, respec- 
tively. On HG#4 we patterned square, diamond- 
shaped, "1 + cosine" shaped, and quartic-shaped 
junctions, and on HG#10 we patterned quartic junc- 
tions and quartic junctions with various internal 
structures. The accuracy of structuring was approxi- 
mately 1 txm. Finally, a 165 nm thick counter elec- 
trode was deposited, completely covering the barrier 
area. The base and top electrode show an overlap 
with respect to the barrier of at least 3 p~m all around 
the barrier (see photographs in Fig. 2). 

The electrical measurements that are described 
below were performed on three samples (L = W = 54 
Ixm) of HG#10: 
(1) a quartic junction without any anodized structure 
inside, 
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(2) a quartic junction with a bar of 8 × 40 ixm 2 
(designed value), but no compensated outer shape, 
(3) a quartic junction with a cross and a compensated 
outer shape. Photographs of the junctions (2) and (3) 
are shown in Fig. 2, along with a schematic view of 
the cross-section of the junction with a vertical bar. 
The cross-section is taken along the current leads, 
i.e. perpendicular to the bar. The LTSEM measure- 
ments were performed on a quartic-shaped junction 
(L = W = 104 Ixm) of H G # 4 .  

4. Field dependence  o f  the Josephson current  

4.1. Experimental 

The samples were measured in a magnetically 
shielded environment. The magnetic field was ap- 
plied in the plane of the junction and perpendicular 
to the current leads, in order to prevent its distortion. 
The It(B) curves were obtained computer-controlled 
by continuously traversing the I - V  curve and mea- 
suring the junction current and the magnetic field, 
when the junction switches to the voltage state. The 
measurement temperature was 4.2 K. 

The measurement of  the critical current versus the 
magnetic field for a 20 X 20 l . l ,m 2 junction on 
H G # 1 0  yielded a London penetration depth )t L = 81 
nm. In the following we will assume that all borders 
between the anodized and the non-anodized parts 
have shifted equal distances AL = 0.75 I~m into the 
direction of the non-anodized parts, which follows 
from the results shown below. This effect changes 
the effective junction areas. The real dimensions of 
the 20 X 2 0  ~l~m 2 junction are 18.5 × 18.5 Id, m 2, 

corresponding to a maximum critical current density 
J1 = 158 A / c m  2, and a Josephson penetration length 
Aj = 32 txm. The current density of this junction can 
be considered homogeneous (small junction). The 
maximum critical current in the investigated spe- 
cially shaped junctions is expected to be somewhat 
suppressed by the self-field effect, since their dimen- 
sions are comparable to Aj .  

4.2. Quartic 

The Ic(B) pattern of  the quartic junction (1) is 
shown in Fig. 3(a). The maximum critical current 

.5 

(a) 

J 
(b) ' ' 

.5 ~ ', , ~ 

0 

_ 5  i i 

1 

0 2 4 

0 
- 4  - 2  0 2 4 

B (roT) 

Fig. 3. Experimental ( [ ] )  and theoretical (solid line) It(B) curves 
of (a) the quartic junction (1), (b) the "quartic with bar" junction 
(2), and (c) the "quartic with cross" junction (3). In (b) the cosine 
Fourier transforms of the quartic outer shape (dashed) and the bar 
(dotted) are also shown. The inset in (c) shows a magnification of 
the measured data, along with a fit to model the difference shape. 

(c) 

.5 

expected for this junction, assuming the homoge- 
neous critical current density J1 = 158 A / c m  2, can 
be calculated from the effective junction area Aqu = 
Adesig n - -  AA = 1166 - AL*P i.~m 2. The barrier 
perimeter P ~ 160 p~m and AL -- 0.75 ~ m  give 
Aqu = 1046 ~ m  2 and I 0 = ]c ,qu , th (0 )=  1.65 mA. This 
value is taken to normalize the current-axis. The 
difference between the theoretical maximum critical 
current and the experimental value lc, qu(0)= 1.37 
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mA is explained by the inhomogeneous current dis- 
tribution caused by the self-field. The figure also 
shows the theoretical line calculated with Eq. (2). 
The parameters L = 54 ~m and d = 162 nm deter- 
mine the values for the magnetic field in the theoreti- 
cal fit. Experiment and theory fit almost perfectly, in 
accordance with the results obtained for a similar 
junction [4]. The sidelobes are suppressed very 
rapidly to below 1% of the It(0) value. A more 
detailed view of the I~(B) pattern at higher field 
values shows a modulation caused by the rounding 
of the junction shape due to the fabrication process 
[4]. The shoulder, absent in the theoretical curve, 
may be ascribed to the self-field as well. 

4.3. Quartic with bar 

Both the measured and the theoretical Ic(B) pat- 
terns of the "quartic with bar"  junction (2) are 
shown in Fig. 3(b). The theoretical line gives the 
absolute value of the sum of the dashed and the 
dotted lines. These lines give the cosine Fourier 
transforms of the quartic outer shape function f (x) ,  
and the function a(x) describing the vertical bar 
inside, respectively. It can be clearly observed how 
the two shapes determine the Ic(B) pattern. The first 
minimum occurs when I~,qu and Ic,bar are equal and 
compensate for each other. The other minima occur 
for integer multiples of flux quanta inside the bar, 
because for fields larger than about 1 mT the bar 
dominates the I~(B) curve, showing the Fraunhofer 
behavior, whereas the contribution of the quartic 
outer shape is negligible. 

We used again the (calculated) maximum critical 
current of the full quartic shape I 0 = Ic,qu,th(0) = 1.65 
mA to normalize the current-axis. We calculated the 
maximum critical current of the bar I~,ba~(0) = 0.63 
mA from the area and the maximum homogeneous 
critical current density. The fairly large discrepancy 
between the measured l~,qu.bar(0) = 0.85 mA and the 
maximum critical current, expected for the area con- 
sisting of the quartic minus the b a r  Ic,qu.bar, th(0)  = 1.02 
mA is explained by the self-field effect. We note 
here, that the I~(B) curves are less influenced by the 
self-field effect at high fields, since the current in the 
leads is smaller. 

To scale the x-axis, we took L = 54 I~m and 
Lb~ r = 9.5 Ixm. It appeared that the minima of the 

Fraunhofer-like pattern due to the bar fitted well for 
a 1.35 times larger effective magnetic wave vector k, 
which arises from the larger magnetic thickness 
d~:o5 = 293 nm of the anodized areas, which is 
larger than the magnetic thickness of the barrier d. 
The result is that the anodized areas tend to focus 
(attract) the flux lines, because this is energetically 
favorable, although not to the extent that the local 
magnetic field between the superconducting elec- 
trodes equals the applied field. In the latter case the 
wave vector would be dNb2oJd-~ 1.8 times larger. 
This "flux-focusing factor" is determined by both 
the total geometry of the junction, and the magnitude 
of the applied field, and has upper and lower bounds 
of 1.8 and 1 for all field values, respectively. 

We see that a very good correspondence between 
the measured data and the theory is obtained, if a 
shift of the anodization border, the self-field, and the 
flux-focusing effect of the anodized areas are taken 
into account. Only the main lobe and the first side- 
lobes are somewhat smaller than predicted. 

4.4. Quartic with cross 

In Fig. 3(c) the measured and the theoretical 
It(B) curves are shown for the "quartic with cross" 
junction (3), normalized to I 0 = I c qu ÷ cr th ( 0 )  = 1.51 
mA. The area Aqu÷¢ r = 960 i~m 2 'is calculated by 
taking into account the shift of both the perimeter 
and the internal structures. The experimental value 
Ic,qu÷cr(0) = 1.38 mA is significantly lower, which 
we ascribe to the influence of the self-field. Because 
the outer shape compensates for the internal struc- 
tures, the theoretical curve equals the one for the 
quartic junction. The measured Ic(B) dependence 
shows a relatively good suppression of the sidelobes, 
although not as good as for the plain quartic junc- 
tion. This can be explained by a deviation from the 
designed sizes due to structuring inaccuracy. If the 
anodized internal part differs in size from the design, 
the compensation will be imperfect, which can be 
modelled by the superposition of a "difference 
shape" for the calculation of the theoretical line. The 
inset shows an enlargement of the measured Ic(B) 
pattern of the compensated quartic with a cross 
inside, and the theoretical pattern of a quartic outer 
shape, superposed by two horizontal bars of each 6.4 
Ixm wide and 7 Ixm high. The centers of the bars are 
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'°%., 

0 10 20 30 
x ( ~ m )  

Fig. 4. Fast Fourier transforms (FFT) of the It(B) data shown in 
Fig. 3 and the ideal quartic shape function f ( x ) / f (O)= 1 - 6 ~  2 
+ 81 £ 13 _ 3~4, using L = 54 p,m (solid line). Quartic junction 
(1): " n "  + dashed line; "quartic with bar" junction (2): " × "  + 
dotted line; "quartic with cross" junction (3): " ~7" + dash-dotted 
line. 

The measured shape of the quartic junction devi- 
ates only slightly from the exact quartic function. 
The measured shape function of the quartic with bar 
clearly shows the vertical bar as a sudden drop for 
x < 7 p,m. The rounding of the top of the outer shape 
(near x = 0) is also visible in the measured shape 
function. The apparent larger width of the bar arises 
from the flux-focusing effect. For x > 7 lxm, where 
the measured shape should correspond to the ideal 
shape, the junction seems to oversize the ideal quar- 
tic shape. The "quartic with cross" and compen- 
sated outer shape corresponds quite well with the 
theoretical shape function. The measured shape func- 
tion is smaller than the ideal shape function for 
4 < x < 10 Ixm, due to a shift of the anodized inter- 
nal structures, and we find a confirmation for mod- 
elling this with a double bar as explained in the 
previous section. 

spaced by 15.3 Ixm. These numbers are in agreement 
with the place where one may expect deviations 
from the cross-structure (see Fig. 2). The correspond- 
ing Ic(B) pattern is in good agreement with the 
measurement. The total area of the modelled "dif- 
ference structure" corresponded with the amplitude 
of the theoretical curve. Taking into account the total 
length of the perimeters of the rectangles forming the 
star, it is estimated that the borders of the anodized 
structures have shifted about 0.75 p~m. 

4.5. Fourier transform 

The inverse procedure is to directly Fourier trans- 
form the measured It(B) data to give a "measured" 
junction shape function f(x). Fourier transforming 
should be done after flipping the Ic(B) data of the 
appropriate lobes over the x-axis, to regain the phase 
information that was lost by the fact that the I~(B) 
curves display the absolute value of the sum of 
cosine Fourier transforms. The result of the fast 
Fourier transform (FFT) algorithm on the experimen- 
tal Ic(B) data is shown in Fig. 4 for the data of the 
three junctions, along with the ideal quartic-shape 
function f(x)/f(O) = 1 - 6~ 2 + 81 ~ 13 - 3 ~  4, with 
L = 54 p.m. The spacing of the data on the x-axis is 
determined by the largest magnetic field (k value). 
The maximum value f(0) of the data of the quartic 
junction was taken to normalize the y-axis. 

5. Field dependence of the Fiske resonances 

5.1. Experimental 

The measurement of the field dependence of the 
Fiske resonance peak heights IF(B) was more elabo- 
rate. A current source with an adjustable offset was 
used to sweep through the I -V curve. The minimum 
value of the current range corresponds to biasing at 
the foot of the investigated current peak. In this way 
we were able to measure resonance peaks with a 
smaller amplitude than a peak at a lower voltage 
(normally one would switch over the smaller peak). 
An additional feature was the use of a bias circuit, 
consisting of a resistor shunting the series combina- 
tion of the sample and the resistor that monitors the 
junction current. The load line, i.e. the line along 
which the junction switches in the I -V curve, has a 
downward slope, giving a stabler biasing. The de- 
pendence of the current peak heights on the magnetic 
field could even be measured for very small peaks. 
During the measurement, the magnetic field was 
applied in the y direction, and the temperature was 
4.2 K, unless mentioned otherwise. 

5.2. Quartic 

For the quartic junction (1) we observed Fiske 
resonances at a number of voltages, that are listed in 
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Table 1. Here we also listed the theoretical resonance 
voltages Vth = ( h ? / 4 e L X n  2 + m2) 1/2 for the (n ,  m) 

modes  in a 41 × 41 ixm 2 square junc t ion  with the 

magnet ic  field applied at an angle of  45 ° with respect 

to the x-axis, but in the plane of the barrier. We 

calculated the Swihart  velocity ~ = 0 .036c  from the 
resonance voltage (0.56 mV)  of  the first Fiske step 

of a 20 × 20 ixm 2 square junc t ion  on the same wafer 

H G # 1 0  
The resonance voltages are inversely proport ional  

to the junc t ion  size L, and tend to be more closely 
spaced for higher-order modes,  i.e. for larger (n ,  m) 

values. Due to an increase of  the London penetrat ion 
depth for higher-order modes,  leading to a decrease 
of  the Swihart  velocity,  this effect is even more 

pronounced  [10]. 
The lower-order modes  measured for the quartic 

junc t ion  can be regarded as quasi-rectangular,  since 

the shape of the quartic junct ion  does not deviate 
much from a 45 ° rotated square, in comparison to the 
resonance wavelength.  The resonance measured at 
0.38 m V  can be interpreted as a quasi (1, 1) mode.  

For a square junct ion  at 45 °, this mode is dominant .  
For higher-order modes the resonance voltages are 
too closely spaced to dist inguish for instance a quasi 
(3, 3) mode.  Therefore, it is difficult to obtain an 
unambiguous  one- to-one correspondence for all reso- 
nances  in Table 1. 

The magnet ic-f ie ld dependence of  the ampli tudes 

of the major  Fiske resonances IF(B) ,  i.e. the mea- 
sured current minus  the subgap current, for the quar- 

Table 1 
Resonance voltages measured for the quartic junction, idem for 
the quartic with cross, and the theoretical resonance voltages of 
(n, m) modes in a square 41×41 ixm 2 junction with a Swihart 
velocity ~ = 0.036c (i.e. the same as the quartic junction (1) has). 
Resonances at higher voltages are not listed in this table 

Vqu Vqc Mode (n, m) Vth 
(mV) (mV) (mV) 

0.19 0.21 (1, 0) 0.27 
F1 0.38 F1 0.40 (1, 1) 0.39 
F2 0.54 F2 0.49 (2, 0) 0.55 
F3 0.62 F3 0.62 (2, 1) 0.61 
F4 0.74 0.72 (2, 2) 0.77 

0.82 F4 0.79 (3, 0) 0.82 
F5 0.88 F5 0.88 (3, 1) 0.86 

more more (3, 2) 0.99 
(3, 3) 1.09 

(al 4 -  

.3 

/ .2 

t ," J r 7  \ \ '~£.% 

0 .5 1 1.5 
13 (mT)  

(b) .5 

.4 

0 ] 2 3 
B (mT) 

0 .5 1 1.5 
B ( m r )  

Fig. 5. Experimental IF(B) curves of (a) the quartic junction (1); 
(b) the "quarfic with bar" junction (2); and (c) the "quarti¢ with 
cross" junction (3). The lines through the data plots are drawn as 
a guide for the eye. For (a): F1 at 0.38 mV (+), F2 at 0.54 mV 
( ~ ), F3 at 0.62 mV (~), F4 at 0.74 mV ( X ), and F5 at 0.88 mV 
(zx). For (b): F1 at 0.36 mV (+), and F2 at 0.54 mV (v).  For 
(c): F1 at 0.40 mV (+), F2 at 0.49 mV (v),  F3 at 0.62 mV (no 
field dependence), F4 at 0.79 mV (x),  and F5 at 0.88 mV (zx). 
The critical current is indicated by squares ([]) in each graph. 

tic shaped junct ion,  is shown in Fig. 5(a). Al l  curves 
show only one max imum,  beyond  which the reso- 
nance current is rapidly suppressed to the level of  the 
subgap current. At  lower temperatures (1.6 K), the 
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same behavior is observed. In contrast, the IF(B) 
curves of  square N b / A I  junctions, with the field 
applied along one of  the junction sides, showed 
multiple maxima [11], and resembled Fraunhofer 
patterns, shifted along the field axis. 

To model the field dependence of  the Fiske reso- 
nances in the quartic junction, we approximate the 
quartic shape by a square junction of  41 Ixm, where 
the magnetic field is applied at an angle of  45 ° with 
respect to the x-axis (equivalent to the "diamond- 
shaped junction" in Ref. [4]). We are then able to 
calculate the amplitude of  two-dimensional Fiske 
resonances in rectangular junctions as a function of  
the magnetic field, applied at an arbitrary angle in 
the x-y plane, according to Nerenberg et al. [12]. 
This model assumes that the perturbation qh(x, y, t) 
of  the superconducting phase ~p(x, y, t) due to the 
Fiske modes is small. In our N b / A I  junctions high-Q 
resonances have been observed [11], however, and 
therefore the small-perturbation condition only holds 
for larger fields, where the resonance amplitudes are 
small. 

The theoretical field dependence of  all resonances 
is shown in Fig. 6, and roughly shows the same 
features as our experimental result, shown in Fig. 
5(a), namely one lobe and a subsequent suppression. 
This behavior is observed for all realistic values of  

.6 ,",, - -  10 0.27 mV / 
, ---- 11 0.39 mV 

, \ 20 0.55 mV 
. . . . . . .  21 0.61 mV 

.4 , \ ---- 22 0.77 mV 
/ ; \  \ ..... 3 2  0 .99  m V  

,..z /,'//' ~ .  / ,; \ ',,\, - ...... 33 1.09 mV 

. 2  

0 .5 1 
B (mW) 

Fig. 6. Theoretical IF(B) curves for two-dimensional Fiske reso- 
nances in a 45 ° rotated 41 × 41 I~m 2 square junction, according to 
Nerenberg et al. [12]. The quality factor Q has been set arbitrarily 
to the realistic value 25, (1, 0) mode at 0.27 mV: solid, (1, 1) 
mode at 0.39 mV: dashed, (2, 0) mode at 0.55 mV: dotted, (2, 1) 
mode at 0.61 mV: dot-dashed, (2, 2) mode at 0.77 mV: medium- 
dashed, (3, 2) mode at 0.99 mV: dot-dot-dashed, (3, 3) mode at 
1.09 mV: short-dashed. The (3, 0) and (3, 1) modes are not 
shown, since they are very small compared to the other modes. 

Q. Due to the fairly good approximation of  the 
quartic shape by a 45 ° rotated square, the Nerenberg 
model describes the field dependence of  the low-order 
modes in a quartic junction reasonably well. 

According to the theoretical argument given in 
Section 2, the field dependence Fig. 5(a) is expected 
to show an even better sidelobe suppression than the 
one shown in Fig. 6. At 4.2 K the magnitude of  the 
subgap current prohibits a verification of this ex- 
pected difference. However, also at 1.6 K we ob- 
served no second lobe, and we conclude that any 
second lobe is much smaller than the subgap current, 
which is significantly less than the maxima of  the 
second lobes in the model of  Fig. 6. Hence we 
conclude that there is a significantly more rapid 
sidelobe suppression of  Fiske resonances in a quar- 
tic-shaped junction than in a rotated square. 

5.3. Quartic with bar 

For the "quartic with bar"  junction (2), we found 
Fiske resonances at a number of voltages, most of 
them different from those of (1), but similarly spaced. 
It is difficult to compare the resonance voltages, 
because the shape of  junction (2) differs too much 
from the rotated square, and therefore we do not list 
them in Table 1. The IF(B) curves measured at 1.6 
K for the two most dominant modes are shown in 
Fig. 5(b). We were not able to measure the IF(B) 
curves of  the other resonances. 

For the resonance F1 at 0.36 mV not only one, 
but more lobes are observed. The first idea that 
comes to mind is that it is caused by a resonance due 
to a standing wave in the anodized bar. From the 
normalized Swihart velocities 3/c = ( t / e  rd) 1 / 2  = 

0.12 in the anodized regions (er, Nb2O s = 29.4 [13]), 
we find that the lowest resonance voltage for a 
resonance in the bar is 0.96 mV, largely exceeding 
0.36 mV, and we conclude that the bar is not likely 
to support its own resonant modes, but merely dis- 
torts the modes. 

The field modulation of F1 has the same periodic- 
ity as the It(B) curve, i.e. maxima occur at integer 
multiples of flux quanta inside the anodized bar. 
From Eq. (12) we understand that the IF(B) curve 
reflects the specific shape function of the whole 
structure through its cosine Fourier transform. In this 
case one may expect Fraunhofer-like patterns due to 
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the rectangle for larger magnetic fields, where the 
influence of the quartic outer shape is already damped 
out. 

than that of the larger bar, which much more distorts 
the electromagnetic resonances. 

5.4. Quartic with cross 

The resonance voltages of the "quartic with 
cross" junction (3) are shown in Table 1, and are 
quite similar to those measured for the quartic junc- 
tion (1). The influence of the internal structures on 
the resonance voltages seems to be quite small. The 
IF(B) curves (Fig. 5(c)) show qualitatively the same 
behavior as those in Fig. 5(a), although some differ- 
ences can be observed. The first two resonances (F1 
and F2) for junctions (1) and (3), have almost the 
same field dependence, except for the small second 
lobe in F2 for junction (3). A fairly strong resonance 
(F3) was observed at the same voltage as for junc- 
tion (1), but we were not able to measure the field 
dependence. The modes F4 show quite different peak 
amplitudes in both junctions, whereas the modes F5 
behave similarly. 

It is understandable that the magnetic-field depen- 
dence of the resonances is similar to the results 
obtained for the quartic junction. If the shape com- 
pensation works well, all cosine Fourier transforms 
in Eq. (12) become very small for large fields. In 
Section 4 it was already shown that for the "quartic 
with cross" junction (3) the shape compensation 
does not completely hold, and a "difference shape" 
has to be accounted for, which is probably responsi- 
ble for the second lobe of F2. 

It is also seen that the IF(B) curves for reso- 
nances in junctions (1) and (3) at lower voltages 
show a better agreement than those at higher volt- 
ages. This can be explained by the fact that the 
standing waves in the microwave cavity, formed by 
the combination of the barrier and the anodized 
internal structures, are not much reflected at the 
boundary between both regions, as long as the an- 
odized structures are small compared to the wave- 
length of the resonance (i.e. for low-order modes). 
Indeed, from the resonance voltages we estimated 
wavelengths ranging from 20 to 100 txm for the 
resonances in the barrier area. This explains why the 
influence of the smaller "star" ,  on the mode pat- 
terns, and hence on the resonance voltages, is smaller 

6. Imaging of Fiske resonances by LTSEM 

In addition to the magnetic-field dependent mea- 
surements, images of Fiske resonances in quartic- 
shaped junctions have been obtained by low-temper- 
ature scanning electron microscopy (LTSEM). This 
technique has been extensively described in Ref. 
[14], and can also be used to obtain two-dimensional 
images of Fiske resonance modes [6,8]. A summary 
of the principles is given below. 

For imaging, the junction is current biased on a 
Fiske step in the I - V  curve. A voltage image is 
obtained by monitoring the electron-beam (25 keV) 
induced change of the junction voltage A V ( x  o, Yo), 
as a function of the beam position (x 0, Y0) on the 
junction surface. The lateral resolution is mainly 
determined by the thermal healing length of the 
sample, and is on the order of 1 p~m. 

The physical interpretation of the obtained image 
depends on the bias point in the I - V  curve and on 
the mechanisms which cause the beam-induced volt- 
age change. For our purpose the beam power must 
be carefully adjusted to ensure that the beam acts as 
a passive probe. The main effect of the electron-beam 
irradiation is a local increase of the temperature, and 
hence an increase of the quasiparticle losses ( a  
term) and the surface losses (/3 term). Regarding the 
Josephson junction as an open-ended microwave 
cavity, the dominant effect is the increase of the 
surface losses. This causes a reduction of the quality 
factor Q of the resonance mode in the junction, 
which is defined as the electromagnetic energy stored 
in the cavity mode divided by the energy lost per 
cycle. The detected voltage signal - A V ( x  0, Y0) is 
proportional to the beam-induced change of the sur- 
face losses A Ps. According to basic microwave the- 
ory we can write 

AP s = ~A1 Re{Z~}fs[Htan(X, y)[2 d x d y  (13) 

per electrode, where A Re{Z s} denotes the beam- 
induced change of the real part of the surface 
impedance Z~ and Hta n is the tangential component 
(amplitude) of the RF part of the magnetic field. For 
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an (n, m) Fiske mode in a rectangular junction with 
length L this reduces to [6] 

A Ps at k~ sin 2 ( k, x o) COS 2 ( k,. Y0) 

+ k 2 cosE(k, x0) sin2(k,.yo), (14) 

where k, = n~r/L, and k,. = m~r/L. Here L, Xo, 
and Y0 are the junction length and the beam-position 
coordinates, respectively. An extension of the model 
to the multimode case is described in Ref. [8]. 

In our experiment we obtained LTSEM voltage 
images of a 104 Ixm plain quartic junction of HG#4,  
and of a number of junctions of HG#10. The image 

118 

29 59 8 ~  29 
m / 1 1 8  147 

(b) / 

~ ~ 147 
-~ 118 .4 

29 59 88 ~ " ~  29 
~-~m/118  147 

Fig. 7. Three-dimensional LTSEM image of a Fiske resonance at 
0.27 mV in a quartie junction of 104 ~ m  on H G # 4  (a). The 
magnetic field (0.21 mT) was applied in the plane of the junction, 
and at an angle of 154 ° with respect to the x-axis. Theoretical 
image of a rectangular (2, 0) mode, shown as a wire frame model 
(b). The z-axes display the LTSEM signal in arbitrary units. 

Fig. 8. Three-dimensional LTSEM image of a Fiske resonance at 
0.34 mV in a quartic junction of 104 ~ m  on HG#4.  The magnetic 
field (0.26 mT) was applied in the y direction. The z-axis displays 
the LTSEM signal in arbitrary units. 

of the resonance found at 0.27 mV for the 104 Ixm 
plain quartic junction on wafer HG#4  is shown in 
Fig. 7(a). A magnetic field of 0.21 mT was applied 
at an angle of 154 ° with respect to the x-axis. In Fig. 
7(b) the theoretical pattern of a square (2, 0) mode at 
0.27 mV, calculated using Eq. (14), is shown in the 
x'-y' coordinate system, where both axes are rotated 
45 ° with respect to the x- and y-axes. The agreement 
between the modes is clear. For low-order modes, 
the junction shape does not deviate much from a 
square in units of resonance wavelengths, and it is 
justified to call the observed mode a quasi (2, 0) 
mode. Apparently, the magnetic-field direction fa- 
vors this mode. The observed rounding of the mea- 
sured pattern at the lower-left side and the top-right 
side is caused by boundary effects and signal smear- 
ing. For most of the resonances at higher voltages it 
appeared more difficult to obtain stable biasing, es- 
pecially when the field was applied in the y direction 
(for which the junction is designed to give a good 
It(B) sidelobe suppression). The resonance at 0.34 
mV was quite dominant, however, and its LTSEM 
image is shown in Fig. 8. The magnetic field (0.26 
mT) was applied in the y direction. All square 
(n, m) modes that can be calculated by Eq. (14) 
deviate from the observed pattern, although it re- 
motely resembles a (2, 1) or a (3, 1) mode. From the 
LTSEM results we conclude that the higher-order 
modes do not resemble rectangular modes, which is 
logical because the deviation of the quartic geometry 
from the rotated square, in units of resonance wave- 
lengths, is smallest for the low-order modes, for 
which the best correspondence is expected. 
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7. Conclusions Acknowledgement 

It can be theoretically shown, that for small junc- 
tions it is possible to use the barrier shape to obtain a 
very good sidelobe suppression of both the critical 
current and the Fiske resonances. Junctions with 
structures inside the barrier area were also consid- 
ered. 

The measurement of the critical current as a 
function of the magnetic field for a quartic-shaped 
junction shows an almost perfect sidelobe suppres- 
sion. The Ic(B) curves obtained for the quartic junc- 
tion with bar, and the quartic junction with a cross 
inside are modelled with the theory. From the mod- 
elling we can conclude that the borders of the inter- 
nal structures have shifted about 0.75 Ixm, and that 
the self-field effect cannot be completely neglected. 
A direct fast Fourier transform of the Ic(B) data 
confirmed the results obtained. 

As expected from the theoretical argument, the 
measurement of the Fiske resonances in quartic- 
shaped junctions as a function of the applied mag- 
netic field IF(B) shows no sidelobes, whereas a 
lobelike IF(B) dependence is found for the quartic- 
shaped junction with a bar inside. The sidelobes for 
the quartic shaped junction with a cross inside are 
reasonably well suppressed. The initial assumption, 
that the internal regions are acting as wave breakers, 
and hence lead to a better suppression, was dis- 
proved. 

We also obtained images of the resonances using 
low-temperature scanning electron microscopy. The 
low-order modes of the quartic junction are quasi- 
rectangular, whereas the field patterns of the high- 
order modes are specific to the exact shape of the 
junction. 

This work in the program of the Foundation for 
Fundamental Research on Matter (FOM) was par- 
tially funded by the Netherlands Technology Foun- 
dation. 
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