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Abstract 

This paper is the final part in a series of four on the dynamics of two coupled, parametrically 
driven pendulums. In the previous three parts (Banning and van der Weele, Mode competition 
in a system of two parametrically driven pendulums; the Hamiltonian case, Physica A 220 
(1995) 485-533; Banning et al., Mode competition in a system of two parametrically driven 
pendulums; the dissipative case, Physica A 245 (1997) l 1-48; Banning et al., Mode competition 
in a system of two parametrically driven pendulums with nonlinear coupling, Physica A 245 
(1997) 49-98) we have given a detailed survey of the different oscillations in the system, with 
particular emphasis on mode interaction. In the present paper we use group theory to highlight 
the role of symmetry. It is shown how certain symmetries can obstruct period doubling and 
Hopf bifurcations; the associated routes to chaos cannot proceed until these symmetries have 
been broken. The symmetry approach also reveals the general mechanism of mode interaction 
and enables a useful comparison with other systems. 

Keywords: Mode competition; Symmetry; Pendulums 

1. Introduction 

1.1. Outline 

This is the fourth and final part of  a series on the dynamics of two coupled, para- 

metrically driven pendulums. In the three previous papers [ I - 3 ]  we made a detailed 
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survey of the different oscillations associated (directly or indirectly) with the main 
parametric resonance of the system, paying particular attention to the phenomenon of 
mode competition. We have seen time and again that the dynamics, and especially the 
bifurcational behavior, can be understood to a large extent by considering the s y m m e -  

tries of the motions; in the present paper we shall use group theory to work out this 
notion. This will put the work on a somewhat higher level of abstraction, exposing 
the general rather than the system-specific features, thus enabling us to compare our 
results with those of others. 

The most important oscillations in the two-pendulum system have period 2 with re- 
spect to the driving, as a consequence of the fact that the driving is parametric. They 
are related to each other by symmetry breaking bifurcations (which do not affect the 
periodicity) and can be arranged in a so-called isotropy lattice. It turns out that the 
dynamics of the system is largely covered by the motions in this period-2 isotropy 
lattice, since bifurcations that generate motions of higher period (period doubling bi- 
furcations) and quasiperiodic motions (Hopf bifurcations) do not occur until relatively 
low in the lattice, when certain symmetries are no longer present. 

When two motions have a common daughter in the symmetry hierarchy, mode in- 
teraction via this daughter becomes a distinct possibility. This phenomenon has been 
observed in many experiments [4-14];  the underlying principle is always the same, 
but the actual appearance of the interaction may vary widely from system to system. 
Mode interaction typically occurs when two mother motions are born simultaneously 
from another motion; the interaction region in parameter space then originates from 
the intersection point of the mother-motions' birthlines. In our case the intersecting 
birthlines are associated with period doubling bifurcations of a period-1 motion (the 
trivial equilibrium motion). The two interacting modes, i.e., the mother motions, and 
their common daughter all have period 2 and hence the mode interaction takes place 
entirely within the period-2 isotropy lattice. In other systems the mother's birthlines 
may be associated with other kinds of bifurcation and the periodicity of the modes in- 
volved in the interaction may be different. But even for a system in which the birthlines 
are associated with period doublings as in our two-pendulum model, and even if it has 
exactly the same symmetry structure, small differences in the nonlinear terms of the 
equations of motion may cause the interaction to look quite dissimilar. A good example 

of this is provided by the compound pendulum of Skeldon and Mullin [6] and Skeldon 
[7], or simply by our own model with a different choice of (nonlinear) coupling [3]. 

The paper is built up as follows. In the remainder of this introduction we present the 
system and its symmetries. In Section Section 2 we discuss the Hamiltonian period-2 
isotropy lattice. In the main text we restrict ourselves to the part corresponding to 
the motions that have actually been observed in practice, and in the appendix a more 
complete version of the Hamiltonian lattice is presented. In Section 3 we give the 
dissipative period-2 lattice, which turns out to be much simpler than its Hamiltonian 
counterpart. In the dissipative case, moreover, there is no discrepancy between the 
observed and the complete versions of the lattice. Along with the lattices we also 
discuss the mode interaction in our system. In Section 4 we examine the possible 



E.J. Banning et al. /Physica A 247 (1997) 281 311 283 

"•.. 
.I 

- a  cos C~t 

k ".. 

Fig. 1. The system, consisting of two parametrically driven (identical) pendulums, coupled by a torsion spring. 

escape routes from the isotropy lattice, via period doubling and Hopf bifurcations. 
A comparison with other systems is given in Section 5 and finally, in Section 6, we 
summarize and make some concluding remarks. 

1.2. The system and its symmetries 

Our system consists of two pendulums, coupled by a torsion spring and subjected to 
a harmonic forcing in the vertical direction; this kind of forcing is known as parametric 
driving. The system is depicted in Fig. 1, and its equations of motion are given by 

Ol + f(t)sin01 + 7 0 1 - I - F ( O I , 0 2 )  = 0, (1.1a) 

02 + f(t)sin~2 + 7/~2 - F ( 1 9 1 , 0 2 )  = 0, ( l . lb)  

where f ( t )  contains the driving term: 

1 
f ( t )  --- 7(g + A122cosf2t), (1.2) 

the terms 701 and 70z represent viscous damping in the pivots (for Y = 0 the system 
is Hamiltonian) and the function F(01,92) stands for the coupling between the pendu- 
lums. The dissipation is deliberately chosen to be the standard viscous damping, linear 
in the angular velocities, in order to facilitate the comparison with other (theoretical) 
work on related systems; the coupling function, on the other hand, is allowed to be 
non-linear (cf. Eq. (1.5)). For more details on this model system please see Refs. 
[1 3]. 

We are interested in the 'pure modes' (i.e., the oscillations bifurcating from the 
downward equilibrium motion along the borders of the first-order resonance tongues, 
as indicated in Fig. 2) and in the oscillatory motions that bifurcate from them. For a 
proper description of these oscillations we exploit the symmetries of the system. To 
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Fig. 2. The first- and second-order resonance tongues in the (A, f2)-plane, for any coupling with linear 
coefficient K = 1 s -2 (cf. Eq. (1.5)). The dotted and solid lines represent the Hamiltonian bifurcation lines 
(7 = 0 s -L) and their dissipative counterparts (7 = 0.1 s - l  ) respectively. The pure modes let, 27, 113 and 
2fl are born along the borders of the first-order resonance tongues. 

begin with, we need two of  its spatial symmetries,  namely reflection and pendulum 
exchange: 3 

R :  (01,01,L92,02, t) --+ (-Zgl, - 0 1 ,  -~92, - 0 2 , t )  , (1.3) 

E :  (/91, 01, /~2, 02, t) --~ (z92,02,01,01, t ) . (1.4) 

(A symmetry is called 'spat ial '  i f  the corresponding operation does not affect the time 

coordinate.) It is easily checked that the equations of  motion (Eq. (1.1)) are left 

unchanged by these operations i f  the coupling does not violate the spatial symmetries, 

that is, i f  the coupling satisfies F(zgl,~92) ---- -F(z92 ,01)  -- - F ( - - 0 1 , - - 0 2 ) .  We thus 

take (cf. Ref. [3]): 

F(~gl, 02) = K(Ol - z92) + L(zgl - / . 9 2 )  3 -~-M(zgl - 1~2) 5 q- . - . .  ( 1 . 5 )  

Since both R and E are their own inverse we may write the associated part o f  the 

symmetry group of  the system as Z z ( R )  × Z2(E);  here Z2 denotes the cyclic group of  

order 2, consisting o f  the identity and one non-trivial element. Apart  from these spatial 

symmetries,  we also need the temporal symmetry associated with translation over one 

driving period: 

T: (Ot,Ol,O2,02, t)  ~ (z91,01,~92,02, t + T), with T = 2n/f2.  (1.6) 

(A symmetry is called ' temporal '  i f  it does not affect the angles 01 and 02.) If  we 

restrict ourselves to motions that repeat themselves after every 2 periods o f  the driving 

(i.e., motions o f  period T and 2T) we may identify t + 2 - T  with t, and then ~" is also 

3 In particular, we do not need the rotational symmetry of the system to describe the motions we are 
interested in. 



E.J. Banning et al. IPhysica A 247 (1997) 281-311 285 

a Z2-symmetry. The symmetry group of the system, or at least the part relevant for 

our purposes, is then equal to 

Z2(R) x Z2(E) x Z2(T).  (1.7) 

This group contains 2 3 = 8 elements. In the special case of 7 = 0 (i.e., in the Hamil- 
tonian case) the operation of time reversal 

t :  (/.91, 01, /.92, ~2, t ) --'> (/.91,--/~1,/,92,--/~2,--t) (1.8) 

is also a symmetry of the system. Accordingly, for the Hamiltonian system (still re- 
stricting ourselves to 2T-periodic oscillations) the relevant symmetry group is 

Z2(FI) x Z2(E) x Z2(T) x Z2(t), (l .9) 

which has 2 4 = 16 group elements. 
The symmetries of the system are not necessarily present in the pendulum oscilla- 

tions. Indeed, / / a nd  T never appear as individual symmetries in the oscillations we 
are interested in (with the exception of the downward equilibrium motion). Generally, 
a motion of period 2, i.e., a solution to Eq. (1.1) that is periodic in time with period 
2T, is said to possess a symmetry if all points of its orbit are invariant under the 
corresponding operation. For example, a motion 0(t) possesses f i t  symmetry if and 
only if the following relation holds for all t: 

O(t) = RrO(t) ¢¢> Di(t) I ~-'(') I 

~2(t) \/'92(/) ,/ 

{ -O,(t + 7 ~) 

= ] -O,( t  + T) 
[ -02(t + T) ) " 
\ -~( t  + r) 

(1.10) 

The symmetries of a motion form a subgroup (formally called an isotropy subgroup) of 
the system's full symmetry group. Now, when a motion undergoes a symmetry breaking 
bifurcation, the two newly born motions in general have a symmetry group that is a 
maximal subgroup of the original motion's group. (See also Ref. [15], in particular 
the discussion concerning the equivalent branching lemma.) In the Z2-context of our 
system this means that, if the original motion has a symmetry group of the form 

z2 x z2 x z2,  (1.11) 

its products under a symmetry breaking bifurcation will have a group (i.e., a maximal 
subgroup) of the form 

z2 x z2. (1.12) 

As stated before, we are interested in the downward equilibrium motion, the pure 
modes originating at the first-order resonance tongues (see Fig. 2) and their bifurcation 
products. Of all these motions, only the downward motion itself possesses all of the 
symmetries mentioned above; its symmetry group is therefore equal to Eq. (1.7), or in 
the Hamiltonian case (1.9). (In the context of this paper it is convenient to regard the 
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downward motion as having periodicity 2 with respect to the driving, despite the fact 
that it actually repeats itself after every driving period.) The maximal subgroups of  
this group, together with their maximal subgroups, and so on, constitute the so-called 

isotropy lattice; this lattice represents all possible 2T-periodic oscillations born (directly 
or indirectly) from the downward equilibrium motion. In the next two sections we 

will construct this lattice both for the Hamiltonian and the dissipative case. Let us 

stress from the outset that the lattice we are about to present is not the complete 
isotropy lattice of  the system (which is considerably larger, covering every motion 

possible in our two-pendulum system), nor even the complete lattice for oscillations 

originating from the downward equilibrium (which would also include the motions 
born at the higher-order resonance tongues), but only the sub-lattice corresponding to 

the 2T-periodic oscillations we are interested in. 

2. The Hamiltonian isotropy lattice 

The (sub)groups in the isotropy lattice, tabulated in Table l, are divided over five 

levels. Each of  the levels is characterized by a general group structure, as follows: 

level I : Z2xZ2xZ2xZ2,  

l e v e l l I :  Z2 xZ2 x Z 2 ,  

level Ill : Z2 x Z2,  

level IV : Z 2 ,  

level V : 1 .  

with 16 elements per group,  (2.1a) 

with 8 elements per group,  (2.1b) 

with 4 elements per group,  (2.1c) 

with 2 elements per group,  (2.1d) 

with 1 element (the identity).  (2.1e) 

The number of  groups in each level may need clarification. In level I we find only one 

group, which corresponds to the trivial motion. The next level contains four groups, 
corresponding to the four 'pure modes '  bifurcating from the trivial solution along the 
borders of  the first-order resonance tongues. Each of  these level II groups has seven 
daughters (maximal subgroups) in level III. However, this does not mean that the total 

number of  groups in level III amounts to 4 x 7 = 28, since some of  the daughters 
coincide. To be specific, every level Il group shares one daughter with each of the three 
other level II groups. The total number of  groups in level lIl thus equals 28 - 6 = 22. 
The level III groups in turn each have 3 daughters in level IV; not all of  them are 
distinct, and close inspection (we will come to this in the appendix) reveals that there 
are in fact only 13 different groups in level IV. Finally, the fifth level consists o f  one 
single group, namely the identity transformation 1; this is the common daughter of  all 
13 level IV groups. Adding up, we thus find a total 1 + 4 + 22 + 13 ÷ 1 = 41 groups, 
spread over five levels. 

The 41 groups can be represented in an elegant, albeit complicated, three-dimensional 
graph; this is done in the appendix. In the present section we restrict ourselves to the 
groups that correspond to oscillations that have actually been observed. These are the 
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Table 1 
The groups of  the Hamiltonian isotropy lattice 

287 

Level 1 

Z2(R) × Z2(E) × Z 2 ( r )  × Z2(t) 

Level II 

Zz (RT)xZ2(E)×Z2( t )  
Z2(RT) × Z2(E) × Z2(Tt) 
Z2(RT) x Z2(ET ) × Z2(t) 
Z2(RT) × Z2(ET) × z 2 ( r t )  

Level 111 

Z2(Rr)  × z2(t)  
Zz(RT) × Z2(Tt) 
Z2(RT) × 12(Et) 
Z2(RT) × Z2(ETt) 
Z2(RT) × Z2(E) 
Z2(RT) × Z2(ET) 
z 2 ( e )  × z2(t)  
Z2(E) × Z2(Tt) 
Z2(ET) × Z2(t  ) 
Z2(ET) × Z2(Tt) 
Z2(RETt) × Z2(RTt) 
Z2(RTt) x Z2(RET) 
Z2(RET) × Z2(RETt) 
Z2(REt) × Z2(/~') 
Z2(RI') × Z2(RET) 
Z2(RET) × Z2(REt) 
Z2(REt) × Z2(RTt) 
Z2(RTt) × Z2(RE) 
Z2(RE) × Z2(REt) 
Z2(RETt) × Z2(m)  
Z2(Rt) × Z2(RE) 
& ( R E )  x Z2(RETt) 

Level 1V 

Z2( RT ) 
Z2(RE) 
Z2 ( RE T ) 
Z2(ET) 
Z2(E) 
Z2(REt) 
Z2 ( RETt) 
Z2(ETt) 
Z2(Et) 
Z2( Rt) 
Z2( RTt) 
Z2( Tt) 
Z2(t) 

Level V 
1 

= Z2(E) × Ze(RTt) 
= Z2(RET) x Z2(RTt) 
- -  Z2(RET) x Z2(t)  
= Z2(E) / Z2(Rt) 
- Zz(RET) × Z2(m)  
= Z2(RET) × Z2(rt)  
= Z2(ET) × Z2(RTt) 
= Z2(RE) × Zz(RTt  ) 
-- Z2(RE) × Z2(t) 
= Z2(ET) × Z2(Rt) 
= Z2(RE) × z 2 ( m )  
= Z2(RE) × Z2(r t )  

13( 

2a 
2/~ 

1~-2a interaction: A 

1 fl-2fl interaction 
1 >2f l  interaction: MP 
1 fl-2a interaction 
1 ~- 1 fl interaction 
2~-2fl interaction 
la-crowncenter: nonsymm, la 
I fl-crowncenter 
2a-crowncenter: D 
2fl-crowncenter 
I a-crown 
1 a-crown 
1 a-crown: C 
1 fl-crown 
I fi-crown 
1 fl-crown 
2a-crown 
2a-crown 
2a-crown: nonsymm. 2a 
2fl-crown 
2fl-crown 
2fl-crown 

center: ML 
Axis 1 
Axis 1 
Axis 1 
Axis 1 
Axis 2 
Axis 2 
Axis 2 
Axis 2 
Axis 3 
Axis 3 :B2  
Axis 3 
Axis 3:B1 

Note: The generators of  the groups (except at levels 1V and V) can be chosen in various ways. The notation 
in the first column is the most elegant one from a theoretical point of  view (as explained in the appendix) 
and the alternative notation, where necessary, anticipates the inclusion of  dissipation as in Section 3. 
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Fig. 3. The part of the Hamiltonian lsotropy lattice corresponding to the observed oscillations of period 2T. 
The solid lines represent symmetry breaking bifurcations that have actually been observed in practice, the 
dashed lines correspond with symmetry breakings that are allowed in principle but have never been observed. 
The short lines indicate connections to groups associated with non-observed motions; these groups can be 
found in the pictures of the complete lattice in the appendix, see Figs. 12~d. 

15 groups of  Fig. 3, covering the levels I, II and V completely but the levels III and IV 

only (very)  partially. The vertices in this figure correspond to the observed motions (and 

their respective symmetry groups) and are labeled by their names as given in Refs. [ l -  

3]. The solid lines indicate the observed mother-daughter connections, which take place 

via symmetry breaking bifurcations. There are also dashed lines in the figure; these 

indicate mother-daughter connections that are allowed in principle but have not been 

observed. For the sake of  completeness, the short lines represent symmetry breaking 

bifurcations to motions that are quite possible from a group theoretical point of  view 

but were never found within the investigated range of  driving parameters [ 1 3]; in the 

appendix all the blanks associated with these nonobserved motions will be filled in. 
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Fig. 4. The part of  the Hamiltonian isotropy lattice corresponding to the observed mode interactions, being a 
small subset of  Fig. 3 (which in turn is a small subset of  the complete lattice given in the appendix). Apart 
from the group theoretical structure and the names of the various motion types (as in Fig. 3) we have also 
depicted what they look like in the two-pendulum system. 
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Let us now consider the observed mode interactions in somewhat more detail. In 
Fig. 4 we have reproduced the (remarkably small) part of the lattice associated with 

this, together with real-life pictures of  the oscillations involved. In these pictures the 
numbered spheres mark the position of the pendulums every time the bar of suspension 
passes its middle position; at the instants l, 3 the bar is moving upwards and at 2, 4 

it is moving downwards. The crosses signal the moments the bar of suspension goes 
through its lowest position; this moment was used in Refs. [1 3] for stroboscopic 

sampling. 
Looking at Fig. 4 we see that the MP-motion is clearly some 'mixture' of 1~ and 

2/~, and in the same way ML is a mix of MP and A. That is, the MP-motion looks 

remarkably like a linear superposition of the pictures of 1~ and 2[3, and ML resembles 
a superposition of MP and A; this is in fact the reason why we call them 'mixed' 

modes. Nevertheless, this interpretation must be taken with a grain of salt, since in a 
nonlinear system the linear superposition of two solutions does not generate a third one; 
or, put otherwise, the mixed motions are not (linearly) decomposable into constituent 

motions. Moreover, such an interpretation would suggest that a mixed motion can only 

be stable when both of its mothers are stable, but nothing could be further from the 
truth [2,3,16]. 

Fig. 4 also illustrates how the various symmetries present themselves in the pendulum 

oscillations. Whenever there is R T  symmetry the trajectories of both pendulums are 
mirror symmetrical with respect to a vertical plane through the bar of suspension. 
An E symmetry means that the trajectories of the two pendulums are identical. (If  

the E symmetry appears on its own there is a direct point-to-point correspondence 
between the trajectories, while in the case of  E T  or Et  the correspondence involves 

an extra temporal operation). The presence of the time reversal symmetry t, pure or 
in combination with the other temporal symmetry T, implies that the pendulums 'turn 
in their tracks'. They then trace out a single line in space; in the absence of t and Tt  

the forward and backward swings are not identical and the trajectories show loop-like 

structures. 

3. The dissipative isotropy lattice 

The isotropy lattice of the dissipative system is much simpler than its Hamiltonian 
counterpart. This is a consequence of the absence of the time reversal symmetry t, 
which greatly reduces the number of  vertices in the lattice and even cuts away a 

whole level. To be specific, the lattice now has four levels: 

level I : Z2 × Z2 × Z2, with 8 elements per group, (3.1a) 

level II : Zz × Z2,  with 4 elements per group, (3.1b) 

level I I I :  Z : ,  with 2 elements per group, (3.1c) 

level IV : 1, with 1 element (the identity). (3.1d) 
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Table 2 
The groups of the dissipative isotropy lattice 
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Level I 
Zz(R)XZz(E)XZ2(T ) 0 

Level II 
Zz(RT) × Zz(E) 1~, lfl 
Z2(RT) × Z2(ET) 2c~, 2fl 

Level Ill 
Zz( RET ) C 
Z2(E) Nonsymmetrical 1:~ 
Z2(RT) MP, A 
Zz(RE) Nonsymmetrical 2~ 
Z2(ET) D 

Level IV 

1 B 

Note: The group structures follow directly from those in Table 1 by omitting the generator containing t;, for 
the 12 groups in Table 1 that are indicated by two alternative notations the second one has to be used. 

Level I consists of a single vertex, representing (as before) the 0-motion. It now has 
only 2 daughters in the second level since, from a group theoretical point of view, there 

is no distinction anymore between the level II vertices formerly labeled e and ft. The 
tetrahedral structure of the Hamiltonian lattice (see appendix) thus collapses already at 

the first stage; indeed, we will not be needing three dimensions to adequately display 

the complete dissipative isotropy lattice. Both level II vertices have three daughters in 
the third level. Since they have one common daughter, the Z 2 ( R T )  group, the number 
of level III vertices is equal to 6 - 1 = 5. This number can also be calculated as 

follows: 8 (the number of elements in the original Z2 x Z2 x Z2 group) minus 2 (the 
'absent' vertices R and T) minus 1 (the identity 1). A third way to find this number 

is by inspection of the Hamiltonian fourth level, which contains 13 vertices positioned 

on three orthogonal axes, see Fig. 12c in the appendix. The vertices on two of these 
axes contain t and hence disappear from the picture, and the remaining 5 vertices are 
the level III vertices of the dissipative picture. The five vertices of level III all have 

one and the same daughter, namely the identity 1; this single vertex constitutes the 
fourth and last level of  the lattice. Adding up, the total number of vertices over the 
four levels equals 1 + 2 ÷ 5 ÷ 1 = 9; they have been tabulated in Table 2. 

The 9 groups have been arranged in the form of a graph in Fig. 5. The level I vertex 
is positioned at the top of the hierarehy, and labeled in the same shorthand notation as 
in the previous section. The level II vertices are symbolized by squares, and the level IIl 
vertices are displayed as circles. The solid lines symbolize mother-daughter connections 
and indicate the allowed symmetry breaking bifurcations. The lattice shows that mode 
interaction between the 1- and 2-motions is possible via an interaction mode with group 
Z2(RT). In practice only the lcc- and the 2fl-motions have actually been observed to 
interact via the MP-motion. Symbolically, this interaction is expressed as follows: 

2~ ---+ MP +- 1~, (3.2) 
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Fig. 5. The dissipative isotropy lattice. 

where the arrows stand for symmetry breaking bifurcations. Other mode interactions 

which according to the isotropy would be equally possible, such as 2e --+ A ~ 1~, 

are no t  observed in practice; this is to say, the bifurcation from 1:~ to A is quite com- 

mon (and important) but a bifurcation from 2:~ to A has never been witnessed in the 

parameter ranges investigated in Refs. [ 1-3] .  

It should be noted that one vertex may correspond with two or more different (i.e., 

physically distinguishable) types of  motion. For instance, the |:~- and lfl-motions have 

the same symmetry properties but they are separated by a saddle-node bifurcation 

and hence can be distinguished from each other; the same holds for the MP- and 

A-motions. In fact, in our experience, all the motions which occupied different vertices 

in the Hamiltonian lattice but collapse onto the same vertex in the dissipative lattice 

(for instance, the pairs le- l f l  or A-MP) are still separated by a saddle node bifurcation. 

In this context it is illustrative to see how the Hamiltonian picture o f  mode interactions 

(Fig. 4) is affected. Its dissipative counterpart is shown in Fig. 6, where the dashed 

line between A and MP indicates the saddle-node bifurcation; it takes, so to speak, the 

place o f  the former ML-motion. Where in the Hamiltonian system one would have a 

bifurcation sequence le  ~ A ---+ ML +- MP +--- 2fl, one now gets 

1~ ---+ A s~s MP +-- 2fi, (3.3) 

with the symbol ~ denoting the saddle-node bifurcation in which A and MP are 
created together. 

As a side remark, it is interesting to note that the absence o f  time-reversal symmetry 
implies that in the dissipative system all  motions show loop-like structures, as opposed 
to what we saw in the Hamiltonian case. 
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\ / \ 
~4~ ~2~ 

MP ~ ~ Iz ,4~ A 
RT ¢I RT 

~ 4 ~ ~  

~ddle-no4~ 
Fig. 6. The dissipative version of Fig. 4, showing the part of the isotropy lattice where the mode interaction 
takes place. The dashed line, representing the saddle-node bifurcation between the A- and MP-motion, has 
taken the place of the (Hamiltonian) ML-motion. 

4. Escape from the isotropy lattice 

4.1. Bifurcations affecting the periodicity 

The bifurcational life of the oscillations originating, directly or indirectly, from the 
main resonance tongues is largely captured by the isotropy lattices discussed in the 
previous two sections. That is to say, the most important motions in the system all 
lie within the lattice (they have period 2T), the transitions from the one to the other 
taking place via symmetry breaking bifurcations. The system could be pulled out of 
the lattice by a period doubling or a Hopf bifurcation, since these affect the periodicity 
and generate motions with periods other than 2T. However, these types of bifurca- 
tion are relatively rare, since they can only occur for motions that are void of cer- 
tain symmetries. To be specific, we will show in Section 4.2 that period doubling of 
a motion is (generically) impossible when it possesses a combination of the time 
translation symmetry T and a pure spatial symmetry (R, E or RE). Subsequently, in 
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Section 4.3, we show that the presence of a pure spatial symmetry prohibits the motion 
from undergoing a Hopf bifurcation. 

The results derived in this section do not stand alone. In fact, bifurcations in the 
presence of symmetry form an active area of research; the interested reader can consult 
Ref. [15]. 

4.2. Period doubling biJ~trcations 

Let us begin by constructing a stroboscopic map M from the equations of motion 
(Eq. (1.1)), by sampling the angles and angular velocities of the pendulums every 
time the bar of suspension goes through its lowest point. A motion O(t) with twice the 
period of the driving will show up as a fixed point of the second iterate of M: 

O(t) = M ( M ( O ( t ) ) )  =- M(2)(O(t)), (4.1) 

for all values of t. The stability of O(t) is governed by the eigenvalues of the Jacobian 
matrix of the twice iterated stroboscopic map, defined by 

OM(Zl = LIO,,+T)LI,~¢,I = t l r ,~ , ,L l ,~ , ,  . (4.2) 
LI2) ]OCt)- ~0 OCt) 

The symplectic character of Hamiltonian systems guarantees [17,18] that M is a sym- 
plectic map. 4 This means that the Jacobian matrix of M is symplectic with respect to 
the standard symplectic matrix J ,  i.e., 

L r j L = J  with J =  - h  " 

Here I2 denotes the 2 × 2 identity matrix. The Z2-symmetries in our pendulum system 
can be expressed as symplectic matrices with respect to the same matrix J [17]. The 
product of two symplectic matrices is again a symplectic matrix, and its eigenvalues 
appear either as complex pairs on the unit circle (2,2, with 1)~1 = 1), as real pairs 

(2,2 J), or as quadruplets (2,2,).-I , .~-t).  
Suppose now that 0(t) possesses a combination of T and a spatial symmetry, for 

example ET In that case it cannot undergo a period doubling, i.e., when an eigenvalue 
pair arrives at - 1  it will, generically, stay on the unit circle. To prove this we first 
rewrite the E T  symmetry, ETO(t) = 0(t), as follows: 

TO(t) = E-IO(t )  = EO(t), (4.4) 

or TO = EO for short. Here we have used the fact that E is its own inverse. Eq. (4.2) 
then tells us that the stability of 0(t) is governed by the eigenvalues of 

Lt2)IO = L[roLI6 = LIEoL[o. (4.5) 

4 In the present analysis we treat the Hamiltonian case. If one includes viscous dissipation the map M 
becomes semi-symplectic [27] and the argument proceeds analogously. 
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Fig. 7. The eigenvalues of a matrix which is the square of a symplectic matrix can only lie on the nega- 
tive real axis if they are degenerate, i.e., if the eigenvalues of the 'square-root' symplectic matrix form a 
quadruplet on the imaginary axis. 

Now, since E is a symmetry o f  the differential equations (i.e., of  the pendulum system) 

it is also a symmetry o f  the stroboscopic map: 

M(E(O( t ) ) )  = E(O(t + T))  = E(M(O( t ) ) ) .  ( 4 . 6 )  

Differentiating with respect to 0 and evaluating at 0 = 0 yields for the left-hand side 

8M_~0) ~ _ 8M(EO) 8(E0) = L[EOE, 
8 - ~  00 0 

and for the right-hand side 

8EM(O)~ 0 -  8EM(O)~ 8M(O)~ 0 = E L I ~  

Thus we obtain 

(4.7) 

(4.8) 

Lle~E= ELIo o r  Lleo = ELIoE, ( 4 . 9 )  

and with this we can write Eq. (4.5) as 

t(2)l~ _- L[eoLIo = ELIoELI~ ~ . (4.1o) 

That is, the Jacobian matrix of  the second iterate o f  M is equal to the square of  the 

symplectic matrix ELI& (Similar quadratic behavior has been described in 

Refs. [1,19].) So two eigenvalues of  L(2)I~ 7 can lie on the negative real axis only 
if they are degenerate, i.e., if ELIo has a quadruplet of  eigenvalues on the imaginary 
axis, as in Fig. 7. This can be the case in isolated points in the (A, f2)-plane but not 
along whole lines. 
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Thus, there can be no period doubling bifurcation line for a motion with E T  sym- 

metry and, more generally, it follows that such lines are ruled out for any motion that 
has a combination of the T symmetry with a spatial symmetry; that is, for all but four 
of the observed motions in the Hamiltonian isotropy lattice. The only observed mo- 

tions that can (and do) undergo a period doubling bifurcation are the non-symmetrical 
let(E, t, Et, 1), the nonsymmetrical 2~(RE, t, REt, 1 ) and the mixed motions B1 and B2 
(t, 1 and RTt,  1, respectively). So indeed, escape from the lattice via period doubling 

is seen to be a relatively rare phenomenon. 5 This remains true in the presence of 
viscous damping; in that case the nonsymmetrical 1~- and 2c~-motions (E, 1 and RE, 1, 

respectively) and the B-motion (1) are the only three observed motions that undergo 
period doubling. 

4.3. H o p f  bifurcations 

A second way to escape from the isotropy lattice is by means of a Hopf bifurcation. 
In the context of mappings this bifurcation is also known as the Neimark-Sacker 

bifurcation [20] and describes the birth of a limit cycle, introducing quasiperiodic 

behavior into the system (whereas in the context of flows a Hopf bifurcation creates 
periodic behavior). The bifurcation is related to the birth of  an eigenvalue quadruplet of 

the stroboscopic map M; the actual bifurcation takes place at the moment when two of 
the four quadruplet-eigenvalues move outside the unit circle. In a Hamiltonian system 

these two moments (the birth of the quadruplet and the Hopf bifurcation) coincide, but 

in the presence of dissipation the birth precedes the bifurcation. Now, the eigenvalues 
corresponding to a motion confined to a plane in stroboscopic phase space can never 

form a quadruplet, since for such motions the eigenvalues always come in pairs and 
lie either on the real axis or on the unit circle (the latter being replaced by the reduced 

circle [2] if dissipation is present); these motions can therefore not undergo Hopf 

bifurcations. In this subsection we will show that such motions can be recognized by 
the presence of a pure spatial symmetry. 

Consider a motion 0(t) that possesses, for instance, the RE symmetry. In matrix 
language this is expressed as: 

X.E,~O(t) = O( t )  

or, more explicitly, 

o I o - 

- 01 o o O~(t) = - ~ , ( t )  = o_.~(t)~' 
o -  o o ,~2(t) -~ , ( t )  ~2(t)/ 

(4.11) 

(4.12) 

5 If we do not restrict ourselves to the observed motions but consider the complete lattice, we find that none 
of the 4 level II vertices, eight of the 22 level III vertices and ten of the 13 level IV vertices admit period 
doubling bifurcations. 
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where XRE, d stands for the matrix representation of the RE symmetry in the ,0-coordinates 
(For convenience we have written the transformation only for the stroboscopic phase 
space coordinates, i.e, not for the time coordinate, since the latter is unaffected). Note 
that XRE, O has two eigenvalues equal to - 1  (and two equal to 1); we shall show that 
this fact enables us to describe the motion under consideration using one degree of 
freedom less. To this end we bring XRE, O into diagonal form, using the coordinate 
transformation given by the inverse of the matrix of eigenvectors of XRE, O, namely: 

I 
½~ 0 ~ ] 

V_ l : - - Iv /2  0 I V ~  
IV/2 0 IV/~ . (4.13) RE,~ 0 

l ~  o l ~ j  0 - ~  

The new coordinates (the 'natural' coordinates for a motion with RE symmetry) are 
given by 

v _ l  ~1 = IV/~ --'01 -~- '02 --(~2 
RE, d ,02 01 + 02  - -  q~] ' ( 4 . 1 4 )  

02 -01 + 02 2 

These are not surprisingly, just the familiar normal coordinates for our pendulum system 
[ 1-3]. The matrix representation of the RE symmetry in the new coordinates is found 
as follows: 

- I  0 1 0 
0 0 - 1  
0 0 0 

-- XRE,~, (4.15) 

and this is the diagonal matrix we were looking for. Now, the action of RE on the 
motion in the new coordinates is expressed as 

XRE,~( t )  ---- ~(t)  (4.16) 

or, written more explicitly, io0001   t  / , 0 0 /-_<(') 
o o -  01 | q(t) : -L( t )  : ¢ ' (~ ) /  
0 0 0 - \ _ (b2 ( t )  _(~2(t) _ ~ 2 ( t ) /  

(4.17) 

and from this we immediately see that q~l(t) = 0 as well as  q~l( t )  = 0, for all t. Thus 
we conclude that any motion which possesses RE symmetry is confined to a plane in 
stroboscopic phase space (defined by qSl = 0 and q~l = 0). This means that it cannot 
undergo a Hopf bifurcation. 
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In effect, we have demonstrated that a motion with R E  symmetry is a normal mo- 
tion; 6 indeed, it is a (symmetrical or nonsymmetrical) 2-motion and as a matter of 
fact we already knew [1] that this type of motion cannot undergo a Hopf bifurcation. 

The interesting new thing is of course that we have shown this by using the spatial 

symmetry of the motion, obtaining its natural coordinates as a bonus. The proof hinges 
on the fact that the matrix representation has two eigenvalues equal to - 1 ;  conve- 

niently enough, all the spatial symmetries in our system have matrix representations 
with either two or four eigenvalues equal to - 1 .  (This number cannot be odd because 

we are dealing with linear Z2-symmetries: the determinant of their matrices is equal 

to ÷ 1, so the number of negative eigenvalues must be even.) Each pair of negative 
eigenvalues of a spatial symmetry effectively eliminates one degree of freedom (or, 
equivalently, two phase-space dimensions) from a motion. Both E and R E  have matri- 

ces with one pair of negative eigenvalues; the respective motions (1- and 2-motions) 
are accordingly confined to a plane in stroboscopic phase space. The matrix associated 

with the symmetry of reflection, R, has two  pairs of negative eigenvalues; the only 
motion with R-symmetry, the downward equilibrium motion, is indeed confined to a 

p o i n t  in stroboscopic phase space. 
In the Hamiltonian isotropy lattice all this means that there is not a single motion in 

level 1 or II which admits a Hopf bifurcation. However, in level Ill there are 12 vertices 
(out of  22) and in level IV no less than 11 (out of 13) which correspond to motions 

that can undergo a Hopf bifurcation. Of all the observed motions in level lII only the 
nonsymmetrical 1~- and 27-motions cannot give way to quasiperiodic behavior; the 
rest of  the observed motions in level III and IV can. Thus, the escape from the lattice 

by means of a Hopf bifurcation can (and does) occur more often than escape via a 

period doubling. This remains true in the presence of viscous damping; also in that 
case the levels I and II are ruled out, but in the lower regions of the lattice only the 

nonsymmetrical 1- and 2-motions are not allowed to undergo a Hopf bifurcation. 
In conclusion, we have shown that any escape from the isotropy lattice must nec- 

essarily occur be low level [I (the level of the pure modes). At level III escape is 

possible, but not from every vertex; moreover, when escape is allowed it is either via 

a Hopf or a period doubling bifurcation, but no t  in both ways. It is not before the 
fourth level that escape from the lattice becomes the rule rather than the exception; it 

is now possible from each vertex, and often in both ways. In this context, however, it 
should be noted that the vertices which survive dissipation (and are therefore the most 
important ones from a practical point of view) are exactly those which admit only one 
type of escape. All in all, the results in this section explain the observational fact that 
the dynamics of our two-pendulum system is largely captured by motions belonging 
to the period-2 isotropy lattice. 

6 The argument can also be used in reverse order to establish the spatial symmetries of any given normal 
mode. 
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5. Comparison with other systems 

In our previous papers we have regularly referred to other systems which exhibit 
mode interaction, but postponed a detailed comparison until we had a generic (rather 
than system-specific) picture of the phenomenon. The group theoretical approach pro- 
vides us with such a picture and the time has finally come to carry out the comparison. 
We shall discuss two systems in particular, namely the compound pendulum of Skeldon 
and Mullin, and the Faraday experiment as performed by Ciliberto and Gollub. It should 
be noted that these systems have also been studied extensively, like our two-pendulum 
system, on the level of the equations of motion (for the compound pendulum one may 
consult Refs. [6,7], and for the Faraday experiment Refs. [ 21-26]); but in the present 
context we operate on the more abstract level of symmetry groups. 

The compound pendulum of Skeldon and Mullin [6,7], sketched in Fig. 8, consists 
of two rods joined in such a way that they swing in perpendicular directions. The 
point of suspension is being moved up and down harmonically, so (like our own two 
pendulums) the system is parametrically driven. The group theoretical structure of the 
oscillations associated with the main resonance tongues is exactly the same as in our 
case; that is, the trivial motion from which all the others follow has (in the presence 
of dissipation) Z2 x Z2 × Z2 symmetry. The first two Z2 symmetries are reflections 
of the angles 0 and ~b, Z2(Ro) and Z2(R4~ ), and the third one is the familiar time 
shift by one period of the driving, Z2(T) (again we restrict ourselves to 2T-periodic 
motions). The two pure modes that are bom from the trivial motion are the ~b-mode, in 
which the upper rod hangs vertically downward and only the lower one is oscillating, 
and the O-mode, in which the whole contraption moves as one, i.e., the upper rod 
oscillates and the lower one follows suit, locked in its joint. The symmetry groups of 

these pure modes are Z2(Ro)× Z2(RoT) and Z2(RoT)× Z2(R4~), to be compared with 

~mode ~-mode 

1 

(a) (b) 

Fig. 8. The parametrically driven compound pendulum (after Refs. [6,7]), together with the corresponding 
(dissipative) isotropy lattice. 
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(a) (b) 

Fig. 9. The (A, 12)-plane, plus bifurcation diagrams along the arrow in the (A, (2)-plane, for (a) the compound 
pendulum; (b) our two-pendulum system. 

the symmetrical 2- and 1-motions in our two-pendulum system. The mode interaction, 
between the counterparts of  our 2/3- and l~-motion, is again established by the common 
daughter (corresponding to our MP-motion) with symmetry group Z2(R~R~T). The 
complete dissipative isotropy lattice is included in Fig. 8. 

Despite the fact that the group theoretical structure is identical to that of  our two- 
pendulum system, the position of  the mode interaction region (with respect to the inter- 
section point of  the resonance tongues) is quite different. In Fig. 9 we have reproduced 
the (A, f2)-planes of  both systems side by side, together with the bifurcation diagrams 
associated with paths, indicated by the arrows, around the mode interaction points. 
The obvious similarities testify to the fact that the underlying mechanism of  the mode 
interaction is the same in both cases; the discrepancies stem from differences in the 
nonlinearities of  the systems. The coupling terms, for instance, differ considerably: in 
our case the pendulums are coupled via a torsion spring, while the coupling in the 
compound pendulum resides in the joint. It should not come as a surprise that such 
differences can have huge consequences, since in our own system we have already 
seen something similar when we included a (small) cubic term in the coupling [3]. 
Without this term, i.e., with a purely linear coupling, we hardly had any mode inter- 
action at all. 
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(4,3)-mode 

301 

i.o 

(a) (b) 

Fig. 10. (a) Schematic setup of the Faraday experiment. (b) The (4,3)-mode, represented by the surface plot 
of J4(r) • cos(40), with J4(r) a fourth-order Bessel function. The numbers indicate that the pattern has 4 
maxima in the angular direction and 2(-- 3 - 1 ) nodes in the radial direction. 

Another system with the same Z2 x Z2 x Z2 structure is described in Refs. [8-10],  
where the mode interaction of cross-waves in a rectangular wave tank is investigated. 
Also in this case the location of the interaction region is greatly influenced by the 
specific nonlinearities in the system's equations of the motion. 

The Faraday experiment, involving the wave patterns on the surface of a paramet- 
rically driven fluid container (see Fig. 10) has a different group structure. In the case 
of a circular container the spatial symmetry of the flat fluid surface is given by 0(2),  
the orthogonal group in two dimensions, consisting of all rotations around the centre 
of the container and all reflections in axes that pass through that centre. Crawford 
et al. [26] have made a detailed investigation of the symmetries of this system, with 
particular emphasis on the mode interaction between the surface patterns (4,3) and 
(7,2) as observed by Ciliberto and Gollub [4,5]; here we reproduce only the essence 
of their analysis. 

The group structure of the trivial motion (the flat fluid surface that is being moved 
up and down) needed for a proper description of the mode interaction is 0(2)  x 
Z2(T). The subgroups corresponding to the (7,2) and (4,3) modes are/)I4(R, (2n/14)T) 
and Ds(R,(2n/8)T), respectively [26]. Here D21(R,(2n/21)T) is the dihedral group 
generated by the reflection R, given by 0 ~ - 0 ,  and the element (n/l)T, which 
represents a rotation over an angle (n/l) combined with a time shift by one driving 
period. In Fig. 1 la the corresponding symmetry lattice is presented; it is seen that, in 
this case, the pure modes have two common daughters, implying that there are two ways 
to interact. The difference between these two ways is rather subtle. The interaction mode 
with symmetry group Za(R) is invariant under the (purely spatial) reflection 0 ~ - 0 ,  
while its sister with symmetry group Z2(RT) is left unchanged by the (spatio-temporal) 
operation of reflection combined with time translation. In the experiment of Ciliberto 
and Gollub it was not specified which of these two established the actual interaction 
between the two pure modes; in fact, only the Hopf bifurcated version of one of them 
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(a) 

Z~(l) e ~ e / e  Z~(IIT) 
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flat 
s u r f a c e  

- -  stable m o d e  
. . . . .  m o d e  with 2 unstable directions in stroboscopic phase  space 
. . . . . . . . . .  m o d e  with 4 unstable  directions in stroboscopic phase  space 

• " " ( b )  

(7,2) 
~o~ 

- -  trivial to pure mode  
. . . .  pure mode  to mixed mode 
. . . . . . .  mixed  mode  to limit cycle 
. . . . . . .  onset  of  chaos 
- - - -  saddle-node o f  pure mode 

Fig. l l. (a) The isotropy lattice corresponding to the interaction between the pure modes (7, 2) and 
(4, 3) in the Faraday experiment (after Ref. [26]). (b) The (A, f2)-plane and the bifurcation diagram along 
the arrow in the (A, f2)-plane. 

was observed. This Hopf  bifurcation introduces an extra periodicity into the motion, 

generating periodic amplitude oscillations, but does no t  affect the Z2 symmetry [26]. 

The amplitude oscillations were found to subsequently undergo period doublings and 
eventually become chaotic; that is why the original paper by Ciliberto and Gollub was 
titled 'Pattern competition leads to chaos' .  

In Fig. l lb the neighborhood of  the mode interaction point in the (A, f2)-plane is 
sketched, together with the bifurcation diagram along the arrow. It may be noted that 

a dashed line in this bifurcation diagram does not imply semi-s tabi l i ty ,  but rather that 
the corresponding mode has two unstable directions in stroboscopic phase space; this 
still leaves innumerable stable directions, since the number of  degrees of  freedom in 

the Faraday experiment is much larger than 2. Similarly, a dotted line does not imply 
full instability; it just indicates that there are four unstable directions. 

In spite of  a few conspicuous differences with respect to the two-pendulum picture 
(e.g., the fact that all the bifurcations from the trivial motion are now directed towards 
the right) it is obvious from Fig. 1 lb that the mechanism for mode interaction between 
the two pure modes is the same: it is again established by a common daughter in the 
symmetry hierarchy. The analogy goes even further, in that the interaction mode is seen 
to undergo the same kind of  transition to chaos, via a Hopf  bifurcation and ensuing 
period doublings; but this is of  course a less generic similarity, since it depends on 
the specific nonlinearities of  the two systems and (as shown in Section 4) on the 
symmetries involved. 
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6. Summary and conclusions 

In this paper we bring our study of two coupled, parametrically driven pendulums to 
an end. The first three papers [ 1-3] give a detailed description of the specific dynamics 
of the oscillations arising, directly or indirectly, from the main tongues of parametric 
resonance. In the present paper we take a more general point of view and concentrate 
on the symmetries of the system rather than on (the specific form of) the equations 
of motion. It turns out that behind the multitude of bifurcation sequences observed in 
practice lies an overall structure that is determined by the symmetry of the system. 

The symmetries relevant for the oscillations we are interested in, as discussed already 
in the previous papers, are associated with the operations of reflection (R), exchange 
of pendulums (E), time shift by one driving period (T) and, in the Hamiltonian case, 
the operation of time reversal (t). Since these operations are their own inverse (for T 
this means that we restrict ourselves to motions with twice the period of the driving) 

the relevant symmetry group of the dissipative system is of the form Z2 x Z2 x Z2, and 
that of the Hamiltonian system Z2 x Z2 × Z2 × Z2. The trivial equilibrium is the only 
motion which possesses all the symmetries of this group; the oscillatory motions with 
period 2T correspond with subgroups of Z2 × Z2 x Z2 (or Z2 z Z2 × Z2 × Z2) and are 
organized in the so-called isotropy lattice. In the present paper we have constructed 
and interpreted this lattice; the Hamiltonian version is presented in Section 2 (and the 
appendix) and its dissipative counterpart in Section 3. The vertices in the isotropy 
lattices represent the subgroups and the lines connecting them indicate the allowed 
symmetry breaking bifurcations. 

The mode interactions in the two-pendulum system can readily be recognized in the 
isotropy lattices. Not all of  the interactions suggested by the lattices are necessarily 
observed in practice, though. The Hamiltonian lattice is full of possible mode inter- 
actions, but only two have been observed in the two-pendulum system. The first one 
is associated with the primary mode interaction point, i.e., the point where the two 
resonance tongues intersect [2,3]; it takes place between the modes ls  and 2/3 via the 
MP-motion, or in group theoretical language, between Z2(RT) x Z2(E) × Z2(t) and 
Z2( RT) x Z2( ET) x Z2( Tt) via their common subgroup Z2( RT) × R2( Et). The second 
one is associated with the secondary mode interaction point [3] and takes place be- 
tween the MP- and A-motions via their common daughter ML, or in group language, 
between Ze(RT) x Z2(Et) and Z2(RT) × Z2(t) via the subgroup Z2(RT). In the dis- 
sipative case only the first of these two interactions survives. Here, in the absence 
of time-reversal symmetry, the groups of the interacting modes are Z2(RT) × Z2(E) 
and Z2(RT) × Ze(ET), and their common daughter has symmetry group Z2(FIT). The 
second interaction disappears, since the motions A and MP now fall within the same 
symmetry class Z2(FIT); the only remnant of the former interaction is the saddle-node 
bifurcation separating these two motions (see also [3]). 

The dissipative lattice is a collapsed version of the Hamiltonian one. Motions that are 
neatly separated (on different vertices) in the Hamiltonian lattice are clustered together 
(on one vertex) in the dissipative case. Indeed, the saddle-node connections between 
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these clustered motions in the dissipative system would be rather puzzling if one were 
not familiar with the Hamiltonian case. Thus, as remarked before in Ref. [1], the 
Hamiltonian system provides the backbone of the dissipative system. The general lesson 
here is that, even though the dissipative system is more directly linked with experiment, 
knowledge of the Hamiltonian system is indispensable for a proper understanding of 
the dynamics. 

Another thing dictated by the symmetry of the motions, as shown in Section 4, is 
whether or not they can undergo period doubling- and Hopf bifurcations. The presence 
of a spatio-temporal symmetry with temporal part T (in our system: RT, R E T  or ET)  

prohibits the motion from undergoing a period doubling bifurcation. Likewise, a pure 
spatial symmetry forms an obstacle for a Hopf bifurcation, and in the two-pendulum 
system already one such symmetry (R, E or RE) is enough to make a Hopf bifurcation 
impossible. Applying these (general) results to the system under consideration one 
finds that escape from the isotropy lattice, i.e., a transition to oscillations which do 
not have periodicity 2T, is not possible before the third level (in agreement with the 
observations in the three previous papers [ 1-3]). The lattice therefore captures the 
better part of the bifurcation sequences observed in the system. 

In general, for systems with many degrees of freedom, period doubling bifurcations 
may be anticipated to be rarer than Hopf bifurcations. To prohibit a period doubling 
one single spatio-temporal symmetry (of the type described above) is enough. A Hopf 
bifurcation, on the other hand, is not completely obstructed unless the motion is con- 
fined to a (two-dimensional) plane in stroboscopic phase space; this generally takes 
more than one spatial symmetry. In this context it is also worth noting that, in systems 
governed by many-dimensional equations of motion, the route to chaos via successive 
period doubling bifurcations without the assisting intervention of a Hopf bifurcation is 
(if it exists at all) normally restricted to a very narrow path through parameter space. 
We have already come across this fact for the case of the 17-motion in Refs. [1,2]. 

Finally, the symmetry approach enables a meaningful comparison with other systems 
exhibiting mode interaction. Most of the experimental observations of mode interaction 
have been done in systems with many degrees of freedom and complicated equations 
of motion [4,5,8-14]; a comparison with these systems on the level of the detailed 
equations is difficult and hardly adds anything to the understanding of the phenomenon. 
On the level of the symmetry properties, however, such a comparison is both simpler 
and more rewarding. Indeed, the unifying principle of mode interaction then presents 
itself almost automatically: mode interaction can only occur between those modes that 

have a common dauyhter in the system's symmetry  hierarchy. 

Of course, we do not mean to say that the equations of motion are unimportant, 
only that comparisons between different systems on that level tend to get convoluted. 
The specific features of the interaction (such as the position of the interaction region in 
parameter space, the stability of the interaction mode and the bifurcations it undergoes) 
depend heavily on the nonlinear terms in the equations of motion. An illustration of 
this is provided by the compound pendulum discussed in Section 5 [6,7], which has 
exactly the same isotropy lattice as our system but for which the actual appearance 
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of the mode interaction is quite different. Here, as usual, the equivalence of the mode 
interaction only becomes transparent on the more abstract level of symmetry groups. 
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Appendix. The structure of the Hamiltonian isotropy lattice 

An elegant way of representing the 41 groups of the Hamiltonian isotropy lattice (see 
Section 2 in the main text) is by means of a three-dimensional graph. The vertices of 
this graph stand for the groups and the connecting lines represent the allowed symmetry 
breaking bifurcations. In this appendix we shall construct the graph step by step. 

The first step is from the trivial motion, at level I, to the pure modes of level II. The 
natural way to position the four (equivalent) level II vertices is in a tetrahedral structure 
surrounding the level I vertex. This yields Fig. 12a, in which the level I vertex has 
been depicted as a sphere and the level II vertices as cubes. The groups represented by 
the vertices have been indicated in shorthand notation; l iT  × E x t, for instance, stands 
for the group Z2( l iT )  × Z2(E)  x Z2(t), with elements RT, E, t, RTE, liTt, Et, l iTEr and 
1. Throughout the isotropy lattice, vertices corresponding to motions that have actually 
been observed (and discussed in Refs. [ 1-3])  will be labeled with the motion's name. 
In Fig. 12a this means that the level I vertex carries the name of the 0-motion, and 

the level II vertices those of the normal motions 1~,2~, lfl and 2ft. 
Fig. 12b shows the next step, that is, the transition from level II to level III. The 

vertices of level II are (again) depicted as cubes and those of level III as gray spheres. 
Each of the spheres is accompanied by the three group elements that, together with 
the identity 1, constitute the symmetry group it represents. 

The level II vertices each have seven daughters in level III, which can be divided 
into three categories. The first category consists of four vertices, singled out by the 
fact that none of their group elements contains the operation R. As an example from 
this category we see the mixed motion type D (with elements ET, t, E T t  and 1) right 
above its mother 2~. Together the vertices of this category form a new, large tetraeder. 

The second category consists of 12 vertices, positioned in four crown-like structures 
placed on top of the level II vertices; the vertices of the first category form the centers 
of these crowns. The second category is characterized by the fact that l i  is present (in 
combination with other symmetry operations) but never as the element l i t  An example 
is the nonsymmetrical 2or-motion (with elements liE, t, l iE t  and 1) in the upper left 
part of the picture. 

The third category consists of the remaining six vertices. In this category l i  occurs 
in combination with all other symmetries (the identity 1 excepted, i.e., R never occurs 
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Fig. 12. The Hamiltonian isotropy lattice. 
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Fig. 12. Continued. 
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alone) and moreover, every vertex in this category contains the element RT These ver- 
tices are of special importance since they have two mothers (in level II) and hence rep- 
resent possible interaction modes between them. In the figure these interaction-vertices 
are positioned halfway between their two mothers. For example, the vertex labeled as 
MP is a daughter of both the lc~- and the 2/~-vertex, and indeed we know from Ref. [3] 
that the MP-motion establishes the interaction between the 1~- and the 2/%motion. It 
should be noted, however, that not all mode interactions suggested by the isotropy 
lattice are realized in practice. More specifically, of the six interaction-vertices in 
Fig. 12b, MP is the only one which has actually been observed to act as an inter- 
action mode between its two mothers (the 1~- and 2/~-motion) in our two-pendulum 
system. As for the A-motion its connection with the l~-motion has been observed (and 
indeed plays an important role in our system [ 1-3])  but not  its connection with the 
2~-motion, and so it has never been seen to act as an interaction mode between the 
two. 

For each vertex in level III there are three different ways of writing the group 
structure (since every group contains three nontrivial elements). In the left column of 
Table 1 in the main text we have chosen a notation which economizes the number of 
generators per category. Consider the seven daughters of a level II vertex. The daughter 
that falls into the first category (the center of the crown) is, of course, determined by 
two generators. The three daughters that fall in the second category (the crown itself) 
can be specified cyclically by three generators. Finally, to describe the three daughters 
that fall in the third category (the interaction modes)four  generators are needed. This 
notation is the most elegant one from a theoretical point of view. 

An alternative notation is presented in the middle column of Table 1. This notation 
anticipates Section 3, where the (Hamiltonian) system is perturbed by dissipation, which 
causes the time-reversal symmetry t to disappear. In this notation the operator t, if  it 
appears at all, is put in one generator only; thus, the group structure of the level III 
vertices in the dissipative system can immediately be obtained from the middle column 
of Table 1 by simply omitting the generator containing t. This is also true (without 
the need of an altemative notation) for the vertices of the other levels. 

We then go on to Fig. 12c, displaying the transition from level III to level IV. 
Each of the level III vertices (the gray spheres) has three daughters in the next level, 
numbering up to a total of 13, as already mentioned in the main text; the latter have 
been indicated by dark spheres. They lie on three orthogonal axes through the centre 
of the lattice, in such a way that the tetrahedral symmetry of the structure is preserved. 
The symmetry groups represented by the dark spheres consist of only two elements, 
namely the identity 1 and the element indicated in the figure. It may be noted that 
the six outer vertices and the vertex in the center all contain R, while the six vertices 
in between do not. Furthermore, every vertex in level IV is intimately related to its 
mirror-vertex (with respect to the center of the tetrahedral structure), the one being 
converted into the other by the operation T. These properties reflect the special status 
(in our lattice) of the R and T operations; we shall come back to this briefly at the 
end of the appendix. 



E.J. Banning et al./ Physica A 247 (1997) 281-311 309 

As always, the solid lines between the vertices of  level III and IV represent the 
mother-daughter connection. 7 It is easily verified from this picture that each daughter 

in level IV has five mothers in level III and the central daughter, RT, even has six 

mothers; as a consequence we have a plethora of  possible mode interactions. Again, this 
does not mean that all the interactions suggested by the lattice are actually observed in 

practice. In fact, only the ML-motion (corresponding to the central vertex FIT) has been 

observed to act as an interaction mode between two of its mothers, namely between 

the A- and the MP-motion [3]. 
The wireframe of all the mother-daughter connections in Fig. 12 is quite complicated, 

and it is not easy to discern the geometric pattern. To guide the eye, therefore, a 'solid' 
version is presented in Fig. 12d. This figure consists of  a tetraeder cut through by three 

orthogonal planes; the resulting structure has perfect tetrahedral symmetry (just as Fig. 
12a and Fig. 12b). The symmetry is even more apparent when we take a view from 

right above one of the tops of  the tetraeder, as in Fig. 13a, or from a point just above 

an intersection point of  two orthogonal planes, as in Fig. 13b. These viewpoints have 
been indicated in Fig. 12d by the pointing hands. Fig. 13a and Fig. 13b nicely illustrate 

the symmetry of the structure but they also have a weak side: some vertices lie exactly 
behind others and are therefore obscured. This is the reason why in the main pictures 

(Fig. 12a-Fig. 12c) we have chosen another, less biased viewpoint. 

For the sake of completeness it should be noted that all 13 groups of level IV have 
one and the same daughter, namely the identity 1, which by itself constitutes level V. 

The corresponding picture would consist of  the 13 dark spheres, connected by 13 solid 

lines to a single vertex in the middle. The motions corresponding to this identity-vertex 
are still 2T-periodic oscillations, but do not possess any of the symmetries considered. 

We now have an overview of the isotropy lattice, and we have seen time and 

again that its structure is dictated to a large extent by the operations R and T They 
never appear as single elements (whereas E and t do) and, moreover, their combi- 

nation R T  appears right in the center of the tetrahedral structure. This special status 

is the group-technical expression of the fact that we have chosen to consider (right 
from the start, in Fig. 12a) only those groups that represent oscillations bifurcating 

from the 0-motion at the first-order resonance tongues. In terms of group theory this 
means that we have taken Z2(R) x Z2(E) x Z2(T) x Z2(t) to represent the 0-motion 
and subsequently considered only those four maximal subgroups that contained neither 
R nor T as single elements (but, as a consequence, always the combination RT).  At 

the next stage, in Fig. 12b, it means that only those level III vertices that contain 

the element FIT serve as interactions between level II vertices. One step further in the 
lattice, it explains why level IV (depicted in Fig. 12c) consists of  13 vertices: this 

number is equal to 16 (the number of  elements of  the original Z2 x Z2 x Z2 x Z2 
group) minus 2 (the two 'absent' vertices R and T) minus 1 (the identity 1 ). Finally, 

7 There is one intricacy here: the connection from an interaction vertex of level III (e.g., the one that is 
positioned between RT and t, labeled 'A' in Fig. 12b) towards the outer level IV vertex on its axis (R'rt) 
seems to establish a mother-daughter connection between the two level IV vertices on the axis (Rrt and t). 
This is, of course, an artifact of the drawing. 
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\ 

(b) 

(a) 

Fig. 13. The Hamiltonian isotropy lattice viewed from, as indicated in Fig. 12d, (a) the top of the tetraeder. 
(b) the intersection of two orthogonal planes. 

it is the reason why l iT and 1, i.e., the elements common to all four pure modes in 
level I, eventually turn up (at the levels IV and V) in the very centre of  the symmetry 
structure. 
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