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Abstract: In this paper we give a geometric description in terms of the Grassmann
manifold of Segal and Wilson, of the reduction of the KP hierarchy known as the vector
k-constrained KP hierarchy. We also show in a geometric way that these hierarchies are
equivalent to Krichever’s general rational reductions of the KP hierarchy.

1. Introduction

In recent years (vector) constrained KP hierarchies have attracted considerable attention
both from the mathematical and the physical community [2-27, 29, 31, 32]. Many
interesting integrable systems like the AKNS, Yajima—Oikawa and Melnikov hierarchies
appear amongst these constrained families. In the physics literature they are studied in
connection with multi-matrix models.

The (vector) constrained KP hierarchies were introduced as reductions of the KP

hierarchy

oL
- = n+ >
R (UL RS

for the first order pseudodifferential operafor 0+3 ¢;07. This reduction consists
of assuming that

(LM- =Y g0 'y,
j=1

such that the following conditions on the functiopysandr; hold:
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el RN S = (LG >1
Bt (L™")+(g;) and oL, (L™)i(r;) forall n >1
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In this way it generalizes the well-known Gelfand—Dickey hierarchig§)(( = 0).

Much is known about these constrained hierarchies and many well-known features
are investigated, e.g. it was shown that they possess a bi-Hamiltonian structure [9, 20,
24, 29, 32], a bilinear representation [13], [21], [22], [32] aratBlund-Darboux and
Miura transformations [2, 4-7, 10, 23]. However, until recently, the geometry remained
unclear. It is well-known that one can associate to a point in an infinite Grassmannian
a solutionL of the KP hierarchy [28, 30]. In this paper we consider the Segal-Wilson
Grassmannian. Lell be the Hilbert space of all square integrable functions on the
circle St = {z € C | |2| = 1}, which decomposes in a natural way as the direct sum
of two infinite dimensional orthogonal closed subspafles= {), .,a,2" € H}
andH_ = {}°, _gan2" € H}. The Segal-Wilson Grassmannian(H) consists of
all closed subspacé® C H such that the orthogonal projection éh_ is a Hilbert-
Schmidt operator. In this setting, ti& Gelfand—Dickey hierarchy has the following
simple geometrical interpretation. The KP operdidrelongs to thé™ Gelfand—Dickey
hierarchy if and only if the correspondingf € Gr(H) satisfiesz*1W c W. One of
the authors gave in [19] (see also [18]) a simple interpretation of the constrained KP
hierarchy for the case of polynomial tau-functions, ¥ibelongs to then-vector k-
constrained KP hierarchy if and only if the corresponditige Gr(H) has a subspace
W’ of codimensionn such that*(W’) c W. We show in this paper that the same
interpretation also holds in the Segal-Wilson case. Using this geometrical interpretation,
we prove in Sect. 5 that the vector constrained KP hierarchy describes the same reduction
of KP as the general rational reductions of Krichever [17] (see also [15]). Our geometrical
interpretation is also useful to give solutions of these hierarchies (see e.g. [19]).

2. The KP Hierarchy Revisited

In this section we recall some results for the KP-hierarchy that we will need in this paper.
The KP hierarchy starts with a commutative riRgand a privileged derivatio@l of R.

In order to be able to take roots of differential operator8 imith coefficients formgR,

one extends this ring?[0] to the ring R[0, 0~ 1) of pseudodifferential operators with
coefficients inR. It consists of all expressions

N
Z a0 , a;€R forall i,

1=—00

that are added in an obvious way and multiplied according to

& 0ad = Z (i) ok (a)o™i =k,
k=0
Each operato® = )" p;0’ decomposes af = P, + P_ with P, = ) p;& its
j=0
differential operator part ané_ = >~ p;07 its integral operator part. We denote by

j<0
ResyP = p_1 theresidueof P. OnR[9, 0—*) we have an anti-algebra morphism called
taking the adjointThe adjoint ofP =} p;0" is given by

Pr=) (-0)p:
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Further one has a set of derivatiof8, | n > 1} of R that commute withD. The
equations of the hierarchy can be formulated in a compact way in a set of relations for
a so-called_ax operatorin R[0, 0~ 1), i.e. an operator of the form

L=0+Y ;0" ,t;e€R forall j<O. (2.1)
j<0
These equations are
On(L) =D (L) = [(L™)e, L1, > 1. 2:2)
j<0

Since this equation for = 1 boils down tod,(¢;) = 9(¢;) for all j, we assume from
now on that = 0;. Equation (2.2) has at least the trivial solutibrr 0 and can be seen
as the compatibility equation of the linear system

Lip=zp and 9n(¢) = (L")+(4)- (2.3)

One needs a context in which the actions of (2.3) make sense and that allows you to
derive (2.2) from (2.3). For the trivial solution (2.3) becomes

oY=zp and I, =2z"yp forall n>1.
Hence if one taked,, = % then the functiony(z) = exp(>_ t;2%) is a solution. The
" i>1
spaceM of the so-calledscillating functiongor which we make sense of (2.3) can be
seen as a collection of perturbations of this solution. It is defined as

M = {(Z aizi)eztizi | a; € R, forall i}.
i<N
The space\l becomes a&[d, 9~ 1)-module by the natural extension of the actions
i a;2)e '} = 2, bajzi)ed i
6{(2]» ajzj)ez t,,z'l} = (Z] 3(aj)zj + Zj ajzj+l)ez tlz'b'

It is even a freeR[0, 0~ 1)-module, since we have

An element) in M is called aroscillating function of type?, if it has the form

B =+ Y agaifel b

j<e

The fact thatM is a freeR[0, 9~1)-module permits you to show that each oscillating
function of typez that satisfies (2.3) gives you a solution of (2.2). This function is then
called awavefunctiorof the KP-hierarchy.

Segal and Wilson give in [30] an analytic approach to construct wavefunctions of
the KP-hierarchy. They considered the Hilbert space

H:{Zanzn‘anec72|an |2<OO},

nez neEZ
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with decompositiond = H, & H_, where

H+:{Zanz” € H} and H_ :{Zanz” € H}

n>0 n<0

and inner produck - | - > given by

< Zanz" | Z by 2™ >= ZG"E'

neZ mEZ neE”Z

To this decomposition is associated the Grassman@igi#/) consisting of all closed
subspaceHl’ of H such thatthe orthogonal projectipn: W — H. is Fredholmandthe
orthogonal projectiop_ : W — H_ is Hilbert-Schmidt. The connected components
of Gr(H) are given by

Gr(H) = {W € Gr(H)| p+ : 2'W — H. hasindex zerp.

On each of these components we have a natural action by multiplication of the group of
commuting flows

Iy ={exp()_t:z") [t € C, Y [ ti|(1+¢)' < oo forsomee > 0}.
i>1

Now we take forR the ring of meromorphic functions on, and for g, the partial
derivative w.r.t.t,,. Then there exists for eadiv in Gr(—9(H) a wavefunctiom)y,
of type ¢ that is defined on a dense open subseFofnd that takes values .
Moreover, it is known that the range ¢fy, spans a dense subspacéiof Hence, if we
write Yy = Py - ez“zi with Py, € R[0,07Y), thenLy, = Pwan;l is a solution
of the KP-hierarchy. Each component@f(H) generates in this way the same set of
solutions of the KP-hierarchy, so it would suffice, as is done in [30], to consider only
GrO(H). However, it is more convenient here to consider all components.

A subsystem of the KP-hierarchy consists of all solutidnthat are thek" root
of a differential operator. This gives you solutions of the KP-hierarchy that do not
depend on thét,,, with n > 1}. Those operators satisfy the conditibfi = (L*)..
The set of equations corresponding to this condition is called:th&elfand—Dickey
hierarchy. Now it has been shown that, among the solutions coming from the Segal—
Wilson Grassmannian, the ones that satisfydh&elfand—Dickey hierarchy are exactly
characterized by*W c W. In the next section we consider a generalization of this
condition.

3. An Extension of the Conditionz¥W C W

In this section we consider, for eagtandm in N = {0,1,2,...}, k # 0 subspaced”
in Gr(H) that possess the-Vector k-Constrained (mV kC)-Condition:

There is a subspace W' of W of codimension m such that z¥(W') c W.
(3.2)

This is a natural generalization of the condition that describes id&ig& ) the solutions
of thek™ Gelfand—Dickey hierarchy. We will show here in a geometric way how you can
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associate to eadlV, satisfying thenV kC-condition, 2n functions{g; | 1 < j < m}
and{r; | 1 < j < m} for which the following equations hold:

On(gqj) = (Lyy)+(g;) forall n>1, (3.2)

0n(r;) = —(L1)i(r;) forall m > 1. (3.3)

Here A* denotes the adjoint of in R[9, 9~1). MoreoverLyy satisfies
Liy = (L)« + > q;0 ;. (3.4)
J=1

At the same time we will give links with the paper of Zhang [31].

Take anyWW in Gr(-9(H) that satisfies thenV kC-condition. It is no restriction
to assume that the: occurring in (3.1) is optimal, i.e. there is an orthonormal basis
{u,...,un} of the orthocomplement d¥’ in W such that

(Spar{z*uy, ... , 2"u,, }) N W = {0}.

Since multiplication with: is unitary, the vector§z*(u1), . . . , 2*(u,,)} are an orthonor-
mal basis of the orthocomplementiéf in z*TW + W . To the spac&” we associate the
subspaces

W; =W @ Cz¥uj, 1< j <m.

Clearly theW; all belong toGr(~“1)(H) and hence, they have wavefunctiong, of
typez‘~1, i.e.

b, =w, (62) = (1D a0 e (3.5)

s>1
Recall that)yy, (¢, z) is well-defined for alk belonging to the open dense subset
I ={y(z) = exp(z t;2') € Tu|y~'W; is transverse to:*"*H, }.
onT}? we consider the function
5i(t) =< Yw, (¢, 2) | zkuj > . (3.6)
Since the vector$yw, (¢, 2) | t € FZVJ'} are lying dense if¥; andm was assumed to

be optimal, the functiongs, } do not vanish. Hence, on a dense open subget ahere
is defined the function

1
v = dw =t (3.7
J
It takes values ifW; and has moreover the following useful property

w;(t) — zkuj ew, (3.8)

for all ¢ in a dense open subsetBf. This property is a consequence of the facts that
©;(t) — 2*u; is by construction orthogonal td'u; and thatiV’ is the orthocomplement
of Cz*u; insideW;. In [31], similar functions{¢;} are introduced, only not using the
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geometry, but as solutions of a certain system of differential equations. In particular, we
can dispose of the condition (a) in the proposition of [31]. Thus we have obtained
functions{r,}.

To define the{g; } we consider

Py — (L) (w) = (L) - () = 1D b2 5 et (3.9)

s>0
For eachj,1 < j < m, we have a functiog; on F‘f/j,

q;(t) = < 2w (t, 2) — (L)« w (¢, 2) | 2Fud >
=< 2P (t, 2) | 2Fu; >
=<tYw(t, z) | u; >.

Becausen is optimal, the functiongg; } are non-zero on an open dense subsét.of
Sinceu; does not depend anand sinceaf—ww = (L%)+(¥w), we get directly forg;,

S =< W)t | uy >=< T wt ) [0 > (g0
= (LS vw |y >) = (L) ().

Thus Egs. (3.2) for the derivatives of thig; } are clear. Those for thi-; } require more
work.
First we derive an expression fak{,) _ (¢w). Thereto we consider

O(t) = 2w — (L) (Ww) = Y ;5. (3.11)
j=1

Sincey, takes values ifV;, the function L’gv)+(1pw) does soin the spad®& andz vy
in zFW. Hence we have that(t) belongs tdV +z* TV for all relevantt. By construction
we have that for alj, 1 < j < m, ®(t) is orthogonal to:*u;, henced(t) even belongs
to W. From the form of thep;, we see that on an open dense sdt.pbne has

o(t) = {Z csze_l_s}ez bz’
s>0
By construction, there holds
W N (2 Hi) ' y(2) = {0},

so that we arrive at

m

Fpw — (L) (0w) =D ¢595- (3.12)

J=1

This equation is part of the system of differential equations forthas used in [31].
Recall thatp; has the form

;= {r;z""1+ lower order terms inz}e>- "',

Hence,
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Op; _ 995 _

ox 8151

On the other hand we know that (t) — z*u; belongs ta¥ for all t. Thus alsoaa%(t)
belongs td¥'. In W we have that

{r;2' + lower order termge2_ "',

a(p —1-s izt
S —rw ={)_ e T el € (PH)
s>0

and this has to be zero. By definition we hgve= r;¢y, and differentiation w.r.tx
gives

1
Yw = fa(rﬂ/’Wj) = (T;larj)(iﬁwj). (3.13)
J
Consequently, we have far;,

0 = ribw, = (0 ) Yw = 0w

Now we substitute this in Eq. (3.12) and obtain

(L) (w) =D ;0 s w. (3.14)

J=1

Since the pseudodifferential operators act freely on wavefunctions, we sdg;theatd
the functions{q; } and{r;} are exactly connected by Eq. (3.4)

(Lh)-=> g0 ;.
=1

What remains to be shown, is the differential Eq. (3.3) for theAs ¢;(t) — 2*u;

belongs tdV, it follows that for alln > 1, g%(t) lies in . Recall that

;= {r;z"~t+ lower order terms inz}e2- =",
Then we have

% = {r;2""~1 + lower order termje2_ %"
n

- {Tjan—l}ww + {ZSZO aszn—l+€—s}ez ti,zi

= A7LJ(¢W) + {2320 ﬂszé—l—s}ez ti21a
with A,,; a uniquely determined differential operatodinf ordern — 1 and with leading
coefficientr;. Since both‘;%j asA,;(¢Yw) are lying inW, we get

i,

ot

On the other hand we know that = 9~1r;4y, and this leads to

— Api(Ww) =0 =W N (2" Ha) (2).

107

Api(Ww) =0~ ot

Pw + 0 (L) (w). (3.15)
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This gives you an expression fdr,; in Ly andr;,

or;
4

An7 = 8_1(8tn rj(L{/IV)"')
By taking the residue i® of the operators in this equation, we see that
8T' — n 8?' n yk
Res)(An;) =0= i +Reg) (0 lTj( W) = ﬁ + (Lyy)i(ry).

The last equality is a direct consequence of the following property of residues of pseu-
dodifferential operators.

Lemma 3.1. In the ring R[0, 0~ 1) of pseudodifferential operators with coefficients in
R, we have for eaclf in Rand P = 3",y p;0’ in R[9,07Y),

Res (071 fP) = (P*)«(/),

where(P*), = > (—0)’p; is the differential operator part of the adjoint éf.
0<j<N

Proof. First we recall that Resbehaves as follows w.r.t. to taking the adjoifit =
> (~0)ip; of P,
J<N

Res)(P*) = —Reg P.
This is easily reduced to operators of the fowd*, n € Z. Next one notices that it
suffices to prove the equality in the lemma for differential operators. The left-hand side
for such aP transforms as

Res) (01 fP) = —Res)(P* f(—0) ") = Reg(P* fo ).

As P* f is a differential operator with constant tetii(f), this gives the proof of the
lemma. O

So we have shown that eachsatisfies Eq. (3.3):

or,; n s

o =~ LR0),
and we can conclude thaty, the {¢;} and the{r;} form a solution of then-vector
k-constrained KP-hierarchy.

4. The Main Theorem

In this subsection we will prove the converse of the result from the foregoing subsection
and thus come to the main theorem. So we start wiiti a Gr(—9(H) and functions

{g;} and{r;}, all defined on a dense open subsetof such that the Egs. (3.2) ,
(3.3) and (3.4) are satisfied. We will show that sudiy dulfills the mV kC-condition

from Sect. 3. Recall that there is a unique pseudodifferential opefgtosuch that

Uw = P (e2=4*"). It has the form

Py =0" +ijaﬂ' = {1+Zpg+835}a‘f. (4.1)

j<e s<0
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It is not difficult to see that the fact thaty, is a wavefunction is equivalent tBy,
satisfying the Sato-Wilson equations

oPw
ot

Pt = —(Pwo"Pyt)_, (4.2)

where P_ denotes the integral operator par p;0° of the element? = Y p;7 in
i<0

R[0,071). Next we consider for each 1 < j < m, the operator§); and R; defined

by

Qj =q;0q;*Pw and R;=r;0 ', Py. (4.3)

We want to show that th€, and theR; also satisfy the Sato-Wilson equations. To do
so, we need some properties of the riR, 0~ 1) of pseudodifferential operators with
coefficients fromR. We resume them in a lemma

Lemma 4.1. If f belongs toR andQ to R[9, 9~1), then the following identities hold:

(@ @Qf)-=Q_f,

(b) (fQ)- = fQ-,

(c) Reg(Qf) =Res(fQ) = f Res(Q),

(d) 0Q)- =0Q_— Reg(Q),

(e) QI)- =Q_0— Reg(Q),

M (QO7Y)_ =Q_07+ Res(QO~Ho71,
@ 07'Q)- =07'Q_+9 *Res(Q 0.

Since the proof of this lemma consists of straightforward calculations, we leave this to
the reader. Now we can show

Proposition 4.1. The operators); and R;,1 < j < m, satisfy the Sato-Wilson equa-
tions.

Proof. If we denote% by 0,,, then we get fo); = qjaqj_lPW that
0n(Q)Q; " = On(q;0q; Va;05 *a; * + ¢;00; *0n(Pw) Pyt q;0~q;
= —q;0q; (L) -q;0 " gt + 0n(q;0q; ;07 q; .

Now we apply successively the identities from Lemma 4.1 to the first operator of the
right-hand side

q;0q; (L) -q;0 7 q; = q;0(q; *Liyq;) -0~ gt =
q;0(q; "Ly ;0™ Y —q; — ¢;0Res(q; 'Ly ;0 N0 1q;t =
q;(0q; 'Ly ;07 gt + ¢jRes(q; Ly q;0~Y)g; -
¢;0Re(¢; ' Liyyq;0 10 ;= (4045 " Lijyq;0 a; 1)~ +
q; 'Res (LY, q;07Y) — q;0q; "Resy (L, ¢;0~ )0 ¢, .

By applying Lemma 3.1 to these last two residues we get

(2007 *Liyq; 0~ q; M)~ + (L )+(g)a; * — ¢;00; (Liy)+(q;)0 ;.
On the other hand
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0n(2;00; V407 a; = Onla)a; * — ¢;00; 20n(a;)q;0 a;

Thus we see that, if,,(¢;) = (L;)+(q;), the operatoi); satisfies the Sato-Wilson
equation

9n(Q))Q5 " = —(Q;9"Q;M)-. (4.4)
For R;, we proceed in a similar fashion
On(R)R;* = —r7 0~ r (L) 1O + 0 (r 20~ r))r; or;
= =7 Y07 Ly D _0ry + =0, (rj)r 410X 0 (ry)ry O

Now we successively apply Lemma 4.1 (g) and (c) and (4.2) to the first term of the
right-hand side of this equation

— r;la_l(rj 7‘}1,7";1),87"]- = —r;l{(a_lrj ’V’Vrj*l),
— 0~ 'Reg(r; {(Liy)ir;0" 1)} or;
= —r7 N0 Ly -0y + 0T (L )i ()
= —r N0ty Ly t0) - + Res (0 My Liyrs Dby + 15107 T (LY, )i(ry)0r
= —(r7 0 Ly tor) - — vy ML) + v 0 e ML) ().

Sinced,(r;) = —(L};,)*(r;), we see that the last two terms candg(r; *0r;)r; *or;
and thus we have obtained the Sato-Wilson equatiomfor

On(Rj)R; = —(R;0"R; ") _. (4.5)
This concludes the proof of Proposition 4.1. O

This proposition has some important consequences. Sincériheand the{q,} are
non-zero on a dense open subsel of we define on such a subsetIof oscillating
functionsyg, andy g, of type z*** resp.z*~* by

’(ﬂQ]. = qjaqj_l - and ij = rj_lc?_lrj - Yw. (46)

In fact ; and R; are Backlund-Darboux transformations of the KP hierarchy. To be
more precise, we conclude from Proposition 4.1.

Corollary 4.1. The functiong), andyr, are wavefunctions of planégg,, andWg, .
Moreover we have the following codimension 1 inclusions:

Wqo, CW and W C Wg,.
Proof. From the Sato-Wilson equations one deduces directly that far 2ll1,
Ontba, = (Q0"Q; Y, and 9yun, = (R;0"R; etn,.
This shows the first part of the claim. Consider the following subspacg-(i#/):
Wq, = the closure of Spanig, (t, 2)}.

The inclusions between the spad&sandWW, follows from the first relation of (4.6)
and the fact that the values of a wavefunction corresponding to an elemém( &)
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are lying dense in that space. Since for a suitahile I'.. the orthogonal projections of
YW, onz*H, respy~!W onz***H, have a one dimensional kernel, one obtains the
codimension one result. For the inclusions between the spécasd!V, we consider

the adjoint wavefunctiongy;, = P;V‘lefz“zi andyp. = —rdr~Yyy,. Since the
complex conjugate; (¢, z) of zij, (¢, z) corresponds to the spad€~, the same
argument as before shows the codimension 1 inclusion:

W; := the closure of Spanyy, (f,2)} C wt.

Hence ¢y, (t, z) corresponds tdV:-, which must beWr, = the closure of Span
{%r,(t, 2)}. This concludes the proof of the corollary. [

Now we can formulate the main results of this paper.

Theorem 4.1. LetW be a plane irGr(H) and letLyy be the corresponding solution of
the KP-hierarchy. Then fom, k € N, k& # 0, the following 2 conditions are equivalent:

(a) The spacéV satisfies thenV kC-condition.

(b) There exist function§g; | 1 < j < m} and{r; | 1 < j < m} defined on an open
dense subset @f, such that the following conditions are fulfilled:
() On(e) = (Ly)e(g) Tforalln>1,
(i) On(rj) =—(LY)i(r;) foralln >1,

(i) L, = (LE)+ + Zlqja—lrj.
]:

Proof. In Sect. 2 it has been shown that (a) implies (b). So we assume from now on (b).
The relation (b) (iii) leads to

Ly (bw) = 2Mpw

= (Liy)+(Pw) + Zlqjaflrﬂl)w
=

= (L) (w) + 3 gjrry 0w
rj;o

= (L)« @w) + 3 q;7j0rR, -
1-3730

Thus we see with the usual density argument that
KW CW+D Wr, = Wg, =W.
J J

Since eachiV has codimension one Wy, we see that the codimension 13f in W

is < m. Let W be the orthocomplement &F in W andp; : H — Wy the orthogonal
projection onl¥/;. InsideWW we consider

W= {we W | pi(z"w) = 0}.

Since dim{¥;) < m, we see thalV’! is a subspace di of codimension< m and by
constructionz*W? c W. This completes the proof of the theorem. [
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5. General Rational Reductions of the KP Hierarchy

We are now going to connect the vector constrained KP hierarchy to reductions of
the KP hierarchy introduced by Krichever [17]. For that purpose we assuméithat

is a plane inGr(H) that satisfies thenV kC-condition, where we choose to be as
minimal as is possible for that plane. LB = Py 0P, with Py, of the form (4.1),

be the corresponding solution of the KP hierarchy and#fét ¢ W be the subspace

of codimensionn such thafi?y, = z*1W?! ¢ W. Notice first thatiV; is a subspace of

W andz*W of codimensiork + m andm, respectively. Hence there exist differential
operatord.; and L, of orderk + m andm, respectively, such that

Libw = Yw,,  L22"pw = tw, (5.1)
and that)yy, is again a wavefunction. From (5.1) one immediately deduces that
LY, = Ly'Ly. (5.2)
We first prove the following lemma.

Lemma 5.1. Let L = P9* P~ be a pseudodifferential operator of orderand letL;
and L, be differential operators of ordér+m andm, respectively, such that = Lz_lLl.
Then one has the following identities:

Li(Ly La)* = (LaLy /% Ly, Lo(Ly La)* = (LaLy 1)/ * Ly

Proof. SinceL, P = L,Pd", one can find a pseudodifferential operagpof the same
order asP such thatl; = Q9**"P~1, L, = Q9™ P, and thusL; L, = Q9*Q ™.
Since alsdl., 'L, = PO* P~1, one finds that theit™ roots satisfy

(L' L)Y* = POPTY, (LaLY)Y* = QoQ
Using this, one easily verifies the identities of the Lemma.d

Since bothyy, andwyy, are wavefunctions that are connected by Egs. (5.1), we find,
using (5.2) and Lemma 5.1, that

Lw = (L L)Y* and Ly, = Ly(L; L)Y L7t = (L L H)YE. (5.3)
Hence
Oibwy = (LaLy M) M)atpw, = (LaLy D *)eLatpw,
and on the other hand is also equal to
Oi(Lipw) = 0(L)vow + La((Ly "L) ®)stpw,

from which one deduces that

0iLy = (L1Ly )'*)eLy = La((Ly *La) " *)s. (5.4)
In a similar way one obtains from the other identity of (5.1) that

0Lz = (L1ly ) *)eLo — La((Ly * L) *)s. (5.5)

Notice that in this way we have exactly obtained Krichever's general rational reductions
of the KP hierarchy [17]. Krichever considers KP pseudodifferential operatofghe
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form (2.1), such that.* = Lz‘lLl, wherelL; and L, are coprime differential operators
of orderk + m andm, respectively. It can be shown that Egs. (5.4) and (5.5)for
and L, are equivalent to the KP Lax equations forlt is not difficult to see that our
operators must be coprime, since we have chosemota be minimal. We will now
prove that the converse also holds, i.e, that the following theorem holds.

Theorem 5.1. LetW be a plane irGr(H) and letLyy be the corresponding solution of
the KP-hierarchy. Then fom, k € N, k& # 0, the following 2 conditions are equivalent:

(a) The spacéV satisfies thenV kC-condition, withm as minimal as possible.
(b) There exist coprime differential operataks and L, of orderk +m andm, respec-
tively, such that the following conditions are fulfilled:
) Liy =Ly,
(i) 9iL1=((LaLy)/*)eLy — La((Ly " La) /%)y,
(i) 9;La = ((LaLyY)'/*)sLa — Lo((Ly L)/ ¥)s.

Proof. We have already shown that (a) implies (b). So we assume from now on (b). Let
11 be the oscillating functioL1 ¢y, then by using Lemma 5.1:

(LaLy Y *epy = (LaLy WY * Lipwy = La(Ly L)Y * 4w = 2Lavbw = 21
Now consider

01 = 0i(La)Yw + L10ibw

((LALy Y %)Ly — La((Ly *La)/ %) + La((Ly " La) %)) dowr
((L1Ly ™) Lipw

= ((LaLy ) /%)

Hencey; is again a wavefunction of the KP hierarchy. If we &} be the closure of
the span of they: (¢, z), thenyyy, = v1. SincezFyyy is also a wavefunction,

Loz by = Yw,.

Thus we see with the usual density argument that

W1 C 2*W  of codimensionn, (5.6)
Wy Cc W of codimensiork + m. '
HenceW! = =% is a subset of¥ of codimensionn such that*W?* ¢ W. Since
our differential operators are coprime, one cannot find lower order operatpend
Mo such thatLy, = M{lMl. Hence there is no smaller subsp@Zeand no smallem
such that (5.6) is satisfied. O

As a consequence of this, we obtain that in the Segal-Wilson setting, the vector con-
strained KP hierarchy and Krichever’s general rational reduction define the same reduc-
tion of the KP hierarchy.
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