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Abstract: In this paper we give a geometric description in terms of the Grassmann
manifold of Segal and Wilson, of the reduction of the KP hierarchy known as the vector
k-constrained KP hierarchy. We also show in a geometric way that these hierarchies are
equivalent to Krichever’s general rational reductions of the KP hierarchy.

1. Introduction

In recent years (vector) constrained KP hierarchies have attracted considerable attention
both from the mathematical and the physical community [2–27, 29, 31, 32]. Many
interesting integrable systems like the AKNS, Yajima–Oikawa and Melnikov hierarchies
appear amongst these constrained families. In the physics literature they are studied in
connection with multi-matrix models.

The (vector) constrained KP hierarchies were introduced as reductions of the KP
hierarchy

∂L

∂tn
= [(Ln)+, L], n ≥ 1,

for the first order pseudodifferential operatorL = ∂+
∑

j<0 `j∂
j . This reduction consists

of assuming that

(Lk)− =
m∑
j=1

qj∂
−1rj ,

such that the following conditions on the functionsqj andrj hold:

∂qj
∂tn

= (Ln)+(qj) and
∂rj
∂tn

= −(Ln)∗+(rj) for all n ≥ 1.
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In this way it generalizes the well-known Gelfand–Dickey hierarchies ((Lk)− = 0).
Much is known about these constrained hierarchies and many well-known features

are investigated, e.g. it was shown that they possess a bi-Hamiltonian structure [9, 20,
24, 29, 32], a bilinear representation [13], [21], [22], [32] and Bäcklund-Darboux and
Miura transformations [2, 4–7, 10, 23]. However, until recently, the geometry remained
unclear. It is well-known that one can associate to a point in an infinite Grassmannian
a solutionL of the KP hierarchy [28, 30]. In this paper we consider the Segal–Wilson
Grassmannian. LetH be the Hilbert space of all square integrable functions on the
circle S1 = {z ∈ C | |z| = 1}, which decomposes in a natural way as the direct sum
of two infinite dimensional orthogonal closed subspacesH+ = {∑

n≥0 anz
n ∈ H}

andH− = {∑
n<0 anz

n ∈ H}. The Segal–Wilson GrassmannianGr(H) consists of
all closed subspacesW ⊂ H such that the orthogonal projection onH− is a Hilbert-
Schmidt operator. In this setting, thekth Gelfand–Dickey hierarchy has the following
simple geometrical interpretation. The KP operatorL belongs to thekth Gelfand–Dickey
hierarchy if and only if the correspondingW ∈ Gr(H) satisfieszkW ⊂ W . One of
the authors gave in [19] (see also [18]) a simple interpretation of the constrained KP
hierarchy for the case of polynomial tau-functions, vizL belongs to them-vectork-
constrained KP hierarchy if and only if the correspondingW ∈ Gr(H) has a subspace
W ′ of codimensionm such thatzk(W ′) ⊂ W . We show in this paper that the same
interpretation also holds in the Segal–Wilson case. Using this geometrical interpretation,
we prove in Sect. 5 that the vector constrained KP hierarchy describes the same reduction
of KP as the general rational reductions of Krichever [17] (see also [15]). Our geometrical
interpretation is also useful to give solutions of these hierarchies (see e.g. [19]).

2. The KP Hierarchy Revisited

In this section we recall some results for the KP-hierarchy that we will need in this paper.
The KP hierarchy starts with a commutative ringR and a privileged derivation∂ of R.
In order to be able to take roots of differential operators in∂ with coefficients formR,
one extends this ringR[∂] to the ringR[∂, ∂−1) of pseudodifferential operators with
coefficients inR. It consists of all expressions

N∑
i=−∞

ai∂
i , ai ∈ R for all i,

that are added in an obvious way and multiplied according to

∂j ◦ a∂i =
∞∑
k=0

(
j

k

)
∂k(a)∂i+j−k.

Each operatorP =
∑
pj∂

j decomposes asP = P+ + P− with P+ =
∑
j≥0

pj∂
j its

differential operator part andP− =
∑
j<0

pj∂
j its integral operator part. We denote by

Res∂P = p−1 theresidueof P . OnR[∂, ∂−1) we have an anti-algebra morphism called
taking the adjoint. The adjoint ofP =

∑
pi∂

i is given by

P ∗ =
∑

i

(−∂)ipi.
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Further one has a set of derivations{∂n | n ≥ 1} of R that commute with∂. The
equations of the hierarchy can be formulated in a compact way in a set of relations for
a so-calledLax operatorin R[∂, ∂−1), i.e. an operator of the form

L = ∂ +
∑
j<0

`j∂
j , `j ∈ R for all j < 0. (2.1)

These equations are

∂n(L) =
∑
j<0

∂n(`j)∂j = [(Ln)+, L], n ≥ 1. (2.2)

Since this equation forn = 1 boils down to∂1(`j) = ∂(`j) for all j, we assume from
now on that∂ = ∂1. Equation (2.2) has at least the trivial solutionL = ∂ and can be seen
as the compatibility equation of the linear system

Lψ = zψ and ∂n(ψ) = (Ln)+(ψ). (2.3)

One needs a context in which the actions of (2.3) make sense and that allows you to
derive (2.2) from (2.3). For the trivial solution (2.3) becomes

∂ψ = zψ and ∂nψ = znψ for all n ≥ 1.

Hence if one takes∂n = ∂
∂tn

then the functionγ(z) = exp(
∑
i≥1

tiz
i) is a solution. The

spaceM of the so-calledoscillating functionsfor which we make sense of (2.3) can be
seen as a collection of perturbations of this solution. It is defined as

M = {(
∑
i≤N

aiz
i)e

∑
tiz

i | ai ∈ R, for all i}.

The spaceM becomes aR[∂, ∂−1)-module by the natural extension of the actions

b{(
∑

j ajz
j)e

∑
tiz

i} = (
∑

j bajz
j)e

∑
tiz

i

,

∂{(
∑

j ajz
j)e

∑
tiz

i} = (
∑

j ∂(aj)zj +
∑

j ajz
j+1)e

∑
tiz

i

.

It is even a freeR[∂, ∂−1)-module, since we have

(
∑

pj∂
j)e

∑
tiz

i

= (
∑

pjz
j)e

∑
tiz

i

.

An elementψ in M is called anoscillating function of typez`, if it has the form

ψ(z) = {z` +
∑
j<`

αjz
j}e

∑
tiz

i

.

The fact thatM is a freeR[∂, ∂−1)-module permits you to show that each oscillating
function of typez` that satisfies (2.3) gives you a solution of (2.2). This function is then
called awavefunctionof the KP-hierarchy.

Segal and Wilson give in [30] an analytic approach to construct wavefunctions of
the KP-hierarchy. They considered the Hilbert space

H = {
∑
n∈Z

anz
n | an ∈ C,

∑
n∈Z

| an |2< ∞},
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with decompositionH = H+ ⊕H−, where

H+ = {
∑
n≥0

anz
n ∈ H} and H− = {

∑
n<0

anz
n ∈ H}

and inner product< · | · > given by

<
∑
n∈Z

anz
n |

∑
m∈Z

bmz
m >=

∑
n∈Z

anbn.

To this decomposition is associated the GrassmannianGr(H) consisting of all closed
subspacesW ofH such that the orthogonal projectionp+ : W → H+ is Fredholm and the
orthogonal projectionp− : W → H− is Hilbert-Schmidt. The connected components
of Gr(H) are given by

Gr(`)(H) =
{
W ∈ Gr(H)| p+ : z`W → H+ has index zero

}
.

On each of these components we have a natural action by multiplication of the group of
commuting flows

0+ = {exp(
∑
i≥1

tiz
i) | ti ∈ C,

∑
| ti | (1 + ε)i < ∞ for some ε > 0}.

Now we take forR the ring of meromorphic functions on0+ and for∂n the partial
derivative w.r.t.tn. Then there exists for eachW in Gr(−`)(H) a wavefunctionψW

of type z` that is defined on a dense open subset of0+ and that takes values inW .
Moreover, it is known that the range ofψW spans a dense subspace ofW . Hence, if we

write ψW = PW · e
∑

tiz
i

with PW ∈ R[∂, ∂−1), thenLW = PW∂P−1
W is a solution

of the KP-hierarchy. Each component ofGr(H) generates in this way the same set of
solutions of the KP-hierarchy, so it would suffice, as is done in [30], to consider only
Gr(0)(H). However, it is more convenient here to consider all components.

A subsystem of the KP-hierarchy consists of all solutionsL that are thekth root
of a differential operator. This gives you solutions of the KP-hierarchy that do not
depend on the{tkn, with n ≥ 1}. Those operators satisfy the conditionLk = (Lk)+.
The set of equations corresponding to this condition is called thekth Gelfand–Dickey
hierarchy. Now it has been shown that, among the solutions coming from the Segal–
Wilson Grassmannian, the ones that satisfy thekth Gelfand–Dickey hierarchy are exactly
characterized byzkW ⊂ W . In the next section we consider a generalization of this
condition.

3. An Extension of the ConditionzkW ⊂ W

In this section we consider, for eachk andm in N = {0, 1, 2, . . . }, k 6= 0 subspacesW
in Gr(H) that possess them-Vector k-Constrained (mV kC)-Condition:

There is a subspace W ′ of W of codimension m such that zk(W ′) ⊂ W.
(3.1)

This is a natural generalization of the condition that describes insideGr(H) the solutions
of thekth Gelfand–Dickey hierarchy. We will show here in a geometric way how you can
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associate to eachW , satisfying themV kC-condition, 2m functions{qj | 1 ≤ j ≤ m}
and{rj | 1 ≤ j ≤ m} for which the following equations hold:

∂n(qj) = (Ln
W )+(qj) for all n ≥ 1, (3.2)

∂n(rj) = −(Ln
W )∗+(rj) for all n ≥ 1. (3.3)

HereA∗ denotes the adjoint ofA in R[∂, ∂−1). MoreoverLW satisfies

Lk
W = (Lk

W )+ +
m∑
j=1

qj∂
−1rj . (3.4)

At the same time we will give links with the paper of Zhang [31].
Take anyW in Gr(−`)(H) that satisfies themV kC-condition. It is no restriction

to assume that them occurring in (3.1) is optimal, i.e. there is an orthonormal basis
{u1, . . . , um} of the orthocomplement ofW ′ in W such that

(Span{zku1, . . . , z
kum}) ∩W = {0}.

Since multiplication withz is unitary, the vectors{zk(u1), . . . , zk(um)} are an orthonor-
mal basis of the orthocomplement ofW in zkW +W . To the spaceW we associate the
subspaces

Wj = W ⊕ Czkuj , 1 ≤ j ≤ m.

Clearly theWj all belong toGr(−`+1)(H) and hence, they have wavefunctionsψWj
of

typez`−1, i.e.

ψWj
= ψWj

(t, z) = {z`−1 +
∑
s≥1

ajs(t)z`−1−s}e
∑

tiz
i

. (3.5)

Recall thatψWj
(t, z) is well-defined for allt belonging to the open dense subset

0
Wj
+ = {γ(z) = exp(

∑
tiz

i) ∈ 0+|γ−1Wj is transverse toz`−1H+}.

On0
Wj
+ we consider the function

sj(t) =< ψWj
(t, z) | zkuj > . (3.6)

Since the vectors{ψWj
(t, z) | t ∈ 0

Wj
+ } are lying dense inWj andm was assumed to

be optimal, the functions{sj} do not vanish. Hence, on a dense open subset of0+, there
is defined the function

ϕj =
1
sj
ψWj := rjψWj . (3.7)

It takes values inWj and has moreover the following useful property

ϕj(t) − zkuj ∈ W, (3.8)

for all t in a dense open subset of0+. This property is a consequence of the facts that
ϕj(t) − zkuj is by construction orthogonal tozkuj and thatW is the orthocomplement
of Czkuj insideWj . In [31], similar functions{ϕj} are introduced, only not using the
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geometry, but as solutions of a certain system of differential equations. In particular, we
can dispose of the condition (a) in the proposition of [31]. Thus we have obtainedm
functions{rj}.

To define the{qj} we consider

zkψW − (Lk
W )+(ψW ) = (Lk

W )−(ψW ) = {
∑
s≥0

bs(t)z`−1−s}e
∑

tiz
i

. (3.9)

For eachj, 1 ≤ j ≤ m, we have a functionqj on0
Wj
+ ,

qj(t) = < zkψW (t, z) − (Lk
W )+ψW (t, z) | zkuj >

= < zkψW (t, z) | zkuj >
= < ψW (t, z) | uj > .

Becausem is optimal, the functions{qj} are non-zero on an open dense subset of0+.
Sinceuj does not depend ont and since ∂

∂tn
ψW = (Ln

W )+(ψW ), we get directly forqj ,

∂qj

∂tn
= < ∂

∂tn
(ψW )(t, z) | uj >=< (Ln

W )+(ψW (t, z)) | uj >
= (Ln

W )+(< ψW | uj >) = (Ln
W )+(qj).

(3.10)

Thus Eqs. (3.2) for the derivatives of the{qj} are clear. Those for the{rj} require more
work.

First we derive an expression for (Lk
W )−(ψW ). Thereto we consider

8(t) = zkψW − (Lk
W )+(ψW ) −

m∑
j=1

qjϕj . (3.11)

Sinceϕj takes values inWj , the function (Lk
W )+(ψW ) does so in the spaceW andzkψW

in zkW . Hence we have that8(t) belongs toW +zkW for all relevantt. By construction
we have that for allj, 1 ≤ j ≤ m,8(t) is orthogonal tozkuj , hence8(t) even belongs
toW . From the form of theϕj , we see that on an open dense set of0+ one has

8(t) = {
∑
s≥0

csz
`−1−s}e

∑
tiz

i

.

By construction, there holds

W ∩ (z`H+)⊥γ(z) = {0},
so that we arrive at

zkψW − (Lk
W )+(ψW ) =

m∑
j=1

qjϕj . (3.12)

This equation is part of the system of differential equations for theϕj as used in [31].
Recall thatϕj has the form

ϕj = {rjz`−1 + lower order terms inz}e
∑

tiz
i

.

Hence,
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∂ϕj

∂x
=
∂ϕj

∂t1
= {rjz` + lower order terms}e

∑
tiz

i

.

On the other hand we know thatϕj(t) − zkuj belongs toW for all t. Thus also∂ϕj

∂x (t)
belongs toW . InW we have that

∂ϕj

∂x
− rjψW = {

∑
s≥0

αsz
`−1−s}e

∑
tiz

i ∈ (z`H+)⊥γ,

and this has to be zero. By definition we haveϕj = rjψWj and differentiation w.r.t.x
gives

ψW =
1
rj
∂(rjψWj

) = (r−1
j ∂rj)(ψWj

). (3.13)

Consequently, we have forϕj ,

ϕj = rjψWj
= rj(r−1

j ∂−1rj)ψW = ∂−1rjψW .

Now we substitute this in Eq. (3.12) and obtain

(Lk
W )−(ψW ) = {

m∑
j=1

qj∂
−1rj}ψW . (3.14)

Since the pseudodifferential operators act freely on wavefunctions, we see thatLW and
the functions{qj} and{rj} are exactly connected by Eq. (3.4)

(Lk
W )− =

m∑
j=1

qj∂
−1rj .

What remains to be shown, is the differential Eq. (3.3) for therj . As ϕj(t) − zkuj

belongs toW , it follows that for alln ≥ 1, ∂ϕj

∂tn
(t) lies inW . Recall that

ϕj = {rjz`−1 + lower order terms inz}e
∑

tiz
i

.

Then we have

∂ϕj

∂tn
= {rjzn+`−1 + lower order terms}e

∑
tiz

i

= {rj∂n−1}ψW + {∑
s≥0αsz

n−1+`−s}e
∑

tiz
i

= Anj(ψW ) + {∑
s≥0 βsz

`−1−s}e
∑

tiz
i

,

withAnj a uniquely determined differential operator in∂ of ordern−1 and with leading
coefficientrj . Since both∂ϕj

∂tn
asAnj(ψW ) are lying inW , we get

∂ϕj

∂tn
−Anj(ψW ) = 0 =W ∩ (z`H+)⊥γ(z).

On the other hand we know thatϕj = ∂−1rjψW and this leads to

Anj(ψW ) = ∂−1∂rj
∂tn

ψW + ∂−1rj(Ln
W )+(ψW ). (3.15)
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This gives you an expression forAnj in LW andrj ,

Anj = ∂−1(
∂rj
∂tn

+ rj(Ln
W )+).

By taking the residue in∂ of the operators in this equation, we see that

Res∂(Anj) = 0 =
∂rj
∂tn

+ Res∂(∂−1rj(Ln
W )+) =

∂rj
∂tn

+ (Ln
W )∗+(rj).

The last equality is a direct consequence of the following property of residues of pseu-
dodifferential operators.

Lemma 3.1. In the ringR[∂, ∂−1) of pseudodifferential operators with coefficients in
R, we have for eachf in R andP =

∑
j≤N pj∂

j in R[∂, ∂−1),

Res∂(∂−1fP ) = (P ∗)+(f ),

where(P ∗)+ =
∑

0≤j≤N

(−∂)jpj is the differential operator part of the adjoint ofP .

Proof. First we recall that Res∂ behaves as follows w.r.t. to taking the adjointP ∗ =∑
j≤N

(−∂)jpj of P ,

Res∂(P ∗) = −Res∂P.

This is easily reduced to operators of the forma∂n, n ∈ Z. Next one notices that it
suffices to prove the equality in the lemma for differential operators. The left-hand side
for such aP transforms as

Res∂(∂−1fP ) = −Res∂(P ∗f (−∂)−1) = Res∂(P ∗f∂−1).

As P ∗f is a differential operator with constant termP ∗(f ), this gives the proof of the
lemma. �

So we have shown that eachrj satisfies Eq. (3.3):

∂rj
∂tn

= −(Ln
W )∗+(rj),

and we can conclude thatLW , the{qj} and the{rj} form a solution of them-vector
k-constrained KP-hierarchy.

4. The Main Theorem

In this subsection we will prove the converse of the result from the foregoing subsection
and thus come to the main theorem. So we start with aW in Gr(−`)(H) and functions
{qj} and {rj}, all defined on a dense open subset of0+, such that the Eqs. (3.2) ,
(3.3) and (3.4) are satisfied. We will show that such aW fulfills themV kC-condition
from Sect. 3. Recall that there is a unique pseudodifferential operatorPW such that

ψW = PW (e
∑

tiz
i

). It has the form

PW = ∂` +
∑
j<`

pj∂
j = {1 +

∑
s<0

p`+s∂
s}∂`. (4.1)
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It is not difficult to see that the fact thatψW is a wavefunction is equivalent toPW

satisfying the Sato-Wilson equations

∂PW

∂tn
P−1

W = −(PW∂nP−1
W )−, (4.2)

whereP− denotes the integral operator part
∑
i<0

pi∂
i of the elementP =

∑
pj∂

j in

R[∂, ∂−1). Next we consider for eachj, 1 ≤ j ≤ m, the operatorsQj andRj defined
by

Qj := qj∂q
−1
j PW and Rj = r−1

j ∂−1rjPW . (4.3)

We want to show that theQj and theRj also satisfy the Sato-Wilson equations. To do
so, we need some properties of the ringR[∂, ∂−1) of pseudodifferential operators with
coefficients fromR. We resume them in a lemma

Lemma 4.1. If f belongs toR andQ toR[∂, ∂−1), then the following identities hold:

(a) (Qf )− = Q−f ,
(b) (fQ)− = fQ−,
(c) Res∂(Qf ) = Res∂(fQ) = f Res∂(Q),
(d) (∂Q)− = ∂Q−− Res∂(Q),
(e) (Q∂)− = Q−∂− Res∂(Q),
(f) (Q∂−1)− = Q−∂−1+ Res∂(Q∂−1)∂−1,
(g) (∂−1Q)− = ∂−1Q− + ∂−1 Res∂(Q∗∂−1).

Since the proof of this lemma consists of straightforward calculations, we leave this to
the reader. Now we can show

Proposition 4.1. The operatorsQj andRj , 1 ≤ j ≤ m, satisfy the Sato-Wilson equa-
tions.

Proof. If we denote ∂
∂tn

by ∂n, then we get forQj = qj∂q
−1
j PW that

∂n(Qj)Q−1
j = ∂n(qj∂q

−1
j )qj∂

−1
j q−1

j + qj∂q
−1
j ∂n(PW )P−1

W qj∂
−1q−1

j

= −qj∂q−1
j (Ln

W )−qj∂−1q−1
j + ∂n(qj∂q

−1
j )qj∂−1q−1

j .

Now we apply successively the identities from Lemma 4.1 to the first operator of the
right-hand side

qj∂q
−1
j (Ln

W )−qj∂−1q−1
j = qj∂(q−1

j Ln
W qj)−∂−1q−1

j =
qj∂(q−1

j Ln
W qj∂

−1)−q−1
j − qj∂Res∂(q−1

j Ln
W qj∂

−1)∂−1q−1
j =

qj(∂q−1
j Ln

W qj∂
−1)−q−1

j + qjRes∂(q−1
j Ln

W qj∂
−1)q−1

j −
qj∂Res∂(q−1

j Ln
W qj∂

−1)∂−1q−1
j = (qj∂q

−1
j Ln

W qj∂
−1q−1

j )− +
q−1
j Res∂(Ln

W qj∂
−1) − qj∂q

−1
j Res∂(Ln

W qj∂
−1)∂−1q−1

j .

By applying Lemma 3.1 to these last two residues we get

(qj∂q
−1
j Ln

W qj∂
−1q−1

j )− + (Ln
W )+(qj)q−1

j − qj∂q
−1
j (Ln

W )+(qj)∂−1q−1
j .

On the other hand
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∂n(qj∂q
−1
j )qj∂

−1q−1
j = ∂n(qj)q−1

j − qj∂q
−2
j ∂n(qj)qj∂

−1q−1
j .

Thus we see that, if∂n(qj) = (Ln
W )+(qj), the operatorQj satisfies the Sato-Wilson

equation

∂n(Qj)Q−1
j = −(Qj∂

nQ−1
j )−. (4.4)

ForRj , we proceed in a similar fashion

∂n(Rj)R−1
j = −r−1

j ∂−1rj(Ln
W )−rj∂rj + ∂n(r−1

j ∂−1rj)r−1
j ∂rj

= −r−1
j ∂−1(rjLn

W r−1
j )−∂rj + −∂n(rj)r−1

j + r−1
j ∂−1(∂n(rj)r−1

j )∂rj .

Now we successively apply Lemma 4.1 (g) and (c) and (4.2) to the first term of the
right-hand side of this equation

− r−1
j ∂−1(rjL

n
W r−1

j )−∂rj = −r−1
j {(∂−1rjL

n
W r−1

j )−

− ∂−1Res∂(r−1
j (Ln

W )∗+rj∂
−1)}∂rj

= −r−1
j (∂−1rjL

n
W r−1

j )−∂rj + r−1
j ∂−1r−1

j (Ln
W )∗+(rj)∂rj

= −r−1
j {(∂−1rjL

n
W r−1

j ∂)− + Res∂(∂−1rjL
n
W r−1

j )}rj + r−1
j ∂−1r−1

j (Ln
W )∗+(rj)∂rj

= −(r−1
j ∂−1rjL

n
W r−1

j ∂rj)− − r−1
j (Ln

W )∗+(rj) + r−1
j ∂−1r−1

j (Ln
W )∗+(rj)∂rj .

Since∂n(rj) = −(Ln
W )∗(rj), we see that the last two terms cancel∂n(r−1

j ∂rj)r−1
j ∂rj

and thus we have obtained the Sato-Wilson equation forRj ,

∂n(Rj)Rj = −(Rj∂
nR−1

j )−. (4.5)

This concludes the proof of Proposition 4.1. �

This proposition has some important consequences. Since the{rj} and the{qj} are
non-zero on a dense open subset of0+, we define on such a subset of0+ oscillating
functionsψQj

andψRj of typez`+1 resp.z`−1 by

ψQj
= qj∂q

−1
j · ψW and ψRj

= r−1
j ∂−1rj · ψW . (4.6)

In factQj andRj are B̈acklund–Darboux transformations of the KP hierarchy. To be
more precise, we conclude from Proposition 4.1.

Corollary 4.1. The functionsψQj
andψRj

are wavefunctions of planesWQj
andWRj

.
Moreover we have the following codimension 1 inclusions:

WQj
⊂ W and W ⊂ WRj

.

Proof. From the Sato-Wilson equations one deduces directly that for alln ≥ 1,

∂nψQj
= (Qj∂

nQ−1
j )+ψQj

and ∂nψRj
= (Rj∂

nR−1
j )+ψRj

.

This shows the first part of the claim. Consider the following subspace inGr(H):

WQj
= the closure of Span{ψQj

(t, z)}.
The inclusions between the spacesW andWQj

follows from the first relation of (4.6)
and the fact that the values of a wavefunction corresponding to an element ofGr(H)
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are lying dense in that space. Since for a suitableγ in 0+ the orthogonal projections of
γ−1WRj

onz`H+ resp.γ−1W onz`+1H+ have a one dimensional kernel, one obtains the
codimension one result. For the inclusions between the spacesW andWRj

we consider

the adjoint wavefunctionsψ∗
W = P ∗−1

W e−
∑

tiz
i

andψ∗
Rj

= −r∂r−1ψ∗
W . Since the

complex conjugatezψ∗
W (t, z) of zψ∗

W (t, z) corresponds to the spaceW⊥, the same
argument as before shows the codimension 1 inclusion:

Wj := the closure of Span{zψ∗
Rj

(t, z)} ⊂ W⊥.

HenceψRj
(t, z) corresponds toW⊥

j , which must beWRj
= the closure of Span

{ψRj
(t, z)}. This concludes the proof of the corollary. �

Now we can formulate the main results of this paper.

Theorem 4.1. LetW be a plane inGr(H) and letLW be the corresponding solution of
the KP-hierarchy. Then form, k ∈ N, k 6= 0, the following 2 conditions are equivalent:

(a) The spaceW satisfies themV kC-condition.
(b) There exist functions{qj | 1 ≤ j ≤ m} and{rj | 1 ≤ j ≤ m} defined on an open

dense subset of0+ such that the following conditions are fulfilled:
(i) ∂n(qj) = (Ln

W )+(qj) for all n ≥ 1,
(ii) ∂n(rj) = −(Ln

W )∗+(rj) for all n ≥ 1,

(iii) Lk
W = (Lk

W )+ +
m∑
j=1
qj∂

−1rj .

Proof. In Sect. 2 it has been shown that (a) implies (b). So we assume from now on (b).
The relation (b) (iii) leads to

Lk
W (ψW ) = zkψW

= (Lk
W )+(ψW ) +

m∑
j=1
qj∂

−1rjψW

= (Lk
W )+(ψW ) +

∑
j

rj 6=0

qjrjr
−1
j ∂−1rjψW

= (Lk
W )+(ψW ) +

∑
j

rj 6=0

qjrjψRj
.

Thus we see with the usual density argument that

zkW ⊂ W +
∑

j

WRj
=

∑
j

WRj
= W̃ .

Since eachW has codimension one inWRj
, we see that the codimension ofW in W̃

is ≤ m. LetW1 be the orthocomplement ofW in W̃ andp1 : H → W1 the orthogonal
projection onW1. InsideW we consider

W 1 = {w ∈ W | p1(zkw) = 0}.
Since dim(W1) ≤ m, we see thatW 1 is a subspace ofW of codimension≤ m and by
constructionzkW 1 ⊂ W . This completes the proof of the theorem. �
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5. General Rational Reductions of the KP Hierarchy

We are now going to connect the vector constrained KP hierarchy to reductions of
the KP hierarchy introduced by Krichever [17]. For that purpose we assume thatW
is a plane inGr(H) that satisfies themV kC-condition, where we choosem to be as
minimal as is possible for that plane. LetLW = PW∂P−1

W , with PW of the form (4.1),
be the corresponding solution of the KP hierarchy and letW 1 ⊂ W be the subspace
of codimensionm such thatW1 = zkW 1 ⊂ W . Notice first thatW1 is a subspace of
W andzkW of codimensionk +m andm, respectively. Hence there exist differential
operatorsL1 andL2 of orderk +m andm, respectively, such that

L1ψW = ψW1, L2z
kψW = ψW1 (5.1)

and thatψW1 is again a wavefunction. From (5.1) one immediately deduces that

Lk
W = L−1

2 L1. (5.2)

We first prove the following lemma.

Lemma 5.1. LetL = P∂kP−1 be a pseudodifferential operator of orderk and letL1
andL2 be differential operators of orderk+mandm, respectively, such thatL = L−1

2 L1.
Then one has the following identities:

L1(L−1
2 L1)i/k = (L1L

−1
2 )i/kL1, L2(L−1

2 L1)i/k = (L1L
−1
2 )i/kL2.

Proof. SinceL1P = L2P∂
k, one can find a pseudodifferential operatorQ of the same

order asP such thatL1 = Q∂k+mP−1, L2 = Q∂mP−1, and thusL1L
−1
2 = Q∂kQ−1.

Since alsoL−1
2 L1 = P∂kP−1, one finds that theirkth roots satisfy

(L−1
2 L1)1/k = P∂P−1, (L1L

−1
2 )1/k = Q∂Q−1.

Using this, one easily verifies the identities of the Lemma.�

Since bothψW andψW1 are wavefunctions that are connected by Eqs. (5.1), we find,
using (5.2) and Lemma 5.1, that

LW = (L−1
2 L1)1/k and LW1 = L1(L−1

2 L1)1/kL−1
1 = (L1L

−1
2 )1/k. (5.3)

Hence
∂iψW1 = ((L1L

−1
2 )i/k)+ψW1 = ((L1L

−1
2 )i/k)+L1ψW ,

and on the other hand is also equal to

∂i(L1ψW ) = ∂i(L1)ψW +L1((L−1
2 L1)i/k)+ψW ,

from which one deduces that

∂iL1 = ((L1L
−1
2 )i/k)+L1 − L1((L−1

2 L1)i/k)+. (5.4)

In a similar way one obtains from the other identity of (5.1) that

∂iL2 = ((L1L
−1
2 )i/k)+L2 − L2((L−1

2 L1)i/k)+. (5.5)

Notice that in this way we have exactly obtained Krichever’s general rational reductions
of the KP hierarchy [17]. Krichever considers KP pseudodifferential operatorsL of the
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form (2.1), such thatLk = L−1
2 L1, whereL1 andL2 are coprime differential operators

of orderk + m andm, respectively. It can be shown that Eqs. (5.4) and (5.5) forL1
andL2 are equivalent to the KP Lax equations forL. It is not difficult to see that our
operators must be coprime, since we have chosen ourm to be minimal. We will now
prove that the converse also holds, i.e, that the following theorem holds.

Theorem 5.1. LetW be a plane inGr(H) and letLW be the corresponding solution of
the KP-hierarchy. Then form, k ∈ N, k 6= 0, the following 2 conditions are equivalent:

(a) The spaceW satisfies themV kC-condition, withm as minimal as possible.
(b) There exist coprime differential operatorsL1 andL2 of orderk +m andm, respec-

tively, such that the following conditions are fulfilled:
(i) Lk

W = L−1
2 L1,

(ii) ∂iL1 = ((L1L
−1
2 )i/k)+L1 − L1((L−1

2 L1)i/k)+,
(iii) ∂iL2 = ((L1L

−1
2 )i/k)+L2 − L2((L−1

2 L1)i/k)+.

Proof. We have already shown that (a) implies (b). So we assume from now on (b). Let
ψ1 be the oscillating functionL1ψW , then by using Lemma 5.1:

(L1L
−1
2 )1/kψ1 = (L1L

−1
2 )1/kL1ψW = L1(L−1

2 L1)1/kψW = zL1ψW = zψ1.

Now consider

∂iψ1 = ∂i(L1)ψW +L1∂iψW

= (((L1L
−1
2 )i/k)+L1 − L1((L−1

2 L1)i/k)+ +L1((L−1
2 L1)i/k)+)ψW

= ((L1L
−1
2 )i/k)+L1ψW

= ((L1L
−1
2 )i/k)+ψ1.

Henceψ1 is again a wavefunction of the KP hierarchy. If we letW1 be the closure of
the span of theψ1(t, z), thenψW1 = ψ1. SincezkψW is also a wavefunction,

L2z
kψW = ψW1.

Thus we see with the usual density argument that

W1 ⊂ zkW of codimensionm,
W1 ⊂ W of codimensionk +m.

(5.6)

HenceW 1 = z−kW1 is a subset ofW of codimensionm such thatzkW 1 ⊂ W . Since
our differential operators are coprime, one cannot find lower order operatorsM1 and
M2 such thatLW = M−1

2 M1. Hence there is no smaller subspaceW1 and no smallerm
such that (5.6) is satisfied. �

As a consequence of this, we obtain that in the Segal–Wilson setting, the vector con-
strained KP hierarchy and Krichever’s general rational reduction define the same reduc-
tion of the KP hierarchy.
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paper [17], and especially Henrik Aratyn, for sending us [1]. In this paper he presents his proof that the vector
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given in this paper.
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