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Abstract

To every partition n = n; + n2 + --- + ns one can associate a vertex operator realization of
the Lie algebras ao. and gl,. Using this construction we make reductions of the s-component
KP hierarchy, reductions which are related to these partitions. In this way we obtain matrix KdV
type equations. Now assuming that (1) 7 is a r-function of the [m, n2,...,n;]Jth reduced KP
hierarchy and (2) 7 satisfies a ‘natural’ string equation, we prove that 7 also satisfies the vacuum
constraints of the W\, algebra.
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0. Introduction

In recent years KdV type hierarchies have been related to 2D gravity. To be slightly
more precise (see [Dij] for the details and references), the square root of the partition
function of the Hermitian (7 — 1)-matrix model in the continuum limit is the 7-function
of the n-reduced Kadomtsev-Petviashvili (KP) hierarchy. Hence, the (n — 1)-matrix
model corresponds to nth Gelfand-Dickey hierarchy. For n = 2,3 these hierarchies
are better known as the KdV and Boussinesque hierarchy, respectively. The partition
function is then characterized by the so-called string equation:
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L j7=-——, (0.1)

where L_, is an element of the ¢ = n Virasoro algebra, which is related to the principal
realization of the affine lie algebra si,, or rather gl,. Let a; = —kx_;,0,3/dx; for
k < 0,k=0,k > 0, respectively, then

n*—1
24n

1
Ly = on Z gy it + Oor 0.2)

€z
By making the shift x,+1 — X411 +n/(n+1), we modify the origin of the 7-function
and thus obtain the following form of the string equation:

L_17=0. (0.3)

Actually, it can be shown [FKN, G] that the above conditions, nth reduced KP and
Eq. (0.3) (which from now on we will call the string equation), on a 7-function of the
KP hierarchy imply more general constraints, viz. the vacuum constraints of the W; .
algebra. This last condition is reduced to the vacuum conditions of the W, algebra when
some redundant variables are eliminated.

The W, algebra is the central extension of the Lie algebra of differential operators
on C*. This central extension was discovered by Kac and Peterson in 1981 [KP3]
(see also [Ra, KRa]). It has as basis the operators W,Ee“) = —t(g/at)t, L € Z,,
k € Z, together with the central element c. There is a well-known way to express these
elements in the elements of the Heisenberg algebra, the a;’s. The W), constraints
then are

WD = (WD 4 840ci}r=0 for £> 0,k > —2. (0.4)

For the above 7-function, W,E” = —ay; and ngz) =L, — [(nk+1)/n)lan.

It is well-known that the n-reduced KP hierarchy is related to the principal realization
(a vertex realization) of the basic module of ;l,,. However there are many inequivalent
vertex realizations. Kac and Peterson {KP1] and independently Lepowsky [L] showed
that for the basic representation of a simply-laced affine Lie algebra these different
realizations are parametrized by the conjugacy classes of the Weyl group of the corre-
sponding finite dimensional Lie algebra. Hence, for the case of sl they are parametrized
by the partitions n = ny +ny + - - - +n; of n. An explicit description of these realizations
was given in [TV] (see also Section 2). There the construction was given in such a way
that it was possible to make reductions of the KP-hierarchy. In all these constructions
a ‘natural’ Virasoro algebra played an important role. A natural question now is: If 7
is a 7-function of this [n;,ns,...,n;]Jth reduced KP hierarchy and 7 satisfies the string
equation (0.3), where L_; is an element of this new Virasoro algebra, does 7 also
satisfy some corresponding Wi;, constraints? In this paper we give a positive answer
to this question. As will be shown in Section 6, there exists a ‘natural’ Wi, algebra
for which (0.4) holds.

This paper is organized as follows. Sections 1-3 give results which were obtained in
{KV] and [TV] (see also [BT]). Its major part is an exposition of the s-component KP
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hierarchy following [KV]. In Section 1, we describe the semi-infinite wedge represen-
tation of the group GL, and the Lie algebras g/, and a.,. We define the KP hierarchy
in the so-called fermionic picture. The loop algebra El,, is introduced in Section 2. We
obtain it as a subalgebra of a,,. Next we construct to every partition n = n;+ny+- - -+n;
of n a vertex operator realization of a, and El,,. Section 3 is devoted to the description
of s-component KP hierarchy in terms of formal pseudo-differential operators. Section
4 describes reductions of this s-component KP hierarchy related to the above partitions.
In Section 5 we introduce the string equation and deduce its consequences in terms of
the pseudo-differential operators. Using the results of Section 5 we deduce in Section
6 the Wy, constraints. Section 7 is devoted to a geometric interpretation of the string
equation on the Sato Grassmannian, which is similar to that of [KS].

Notice that, since the Toda lattice hierarchy of [UT] is related to the 2-component
KP hierarchy, some results of this paper also hold for certain reductions of the Toda
lattice hierarchy.

1. The semi-infinite wedge representation of the group GL., and the KP hierarchy
in the fermionic picture

1.1. Consider the infinite complex matrix group

GLo ={A = (aij)ijez+1/2 | A is invertible and all but a finite number of
a;j — 6;j are 0}
and its Lie algebra
gloo = {a = (aij)ijez+1/2 | all but a finite number of a;; are 0}

with bracket [a,b] = ab — ba. This Lie algebra has a basis consisting of matrices
Ej, i,j € Z+ %, where E;; is the matrix with a 1 on the (i, j)th entry and zeros
elsewhere. Now gl is a subalgebra of the bigger Lie algebra

gloo = {a=(aij)ijez+1)2 | @ =0 if |i — j| > 0}.

This Lie algebra glo, has a universal central extension a, := gloo @ Cc with Lie bracket
defined by

[a+ ac,b+ Bc] =ab — ba+ u(a,b)c, (L.L.1)
for a,b € glo and a, B € C; here u is the following 2-cocycle:

n(E;j, En) = 8adp(0(i) — 8(j)), (1.12)
where 8 : R — C is defined by

0 ifi>0,
8(i) = m (1.1.3)
1 ifi<0.
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Let C* = @; Cv; be an infinite dimensional complex vector space with fixed
jez+1/2%Vj

basis {v;};ez+1/2. Both the group GL, and the Lie algebras gl and ao, act linearly
on C* via the usual formula:

Eij(vr) = 8jvi.

We introduce, following [KP2], the corresponding semi-infinite wedge space F =
AI°°C this is the vector space with a basis consisting of all semi-infinite mono-
mials of the form v;, Av;, Avy, -+, where iy > i3 > i3> - and igyy =ipg— 1 for £ > 0.
We can now define representations R of GL,, on F by

R(A)(U,‘1 A U A Uy A ) = AU,‘1 A AU,’Z A Al)i3 AT (114)

In order to describe representations of the Lie algebras we find it convenient to define
wedging and contracting operators ¢,  and ¢j+ JeZ+ %) on F by

g (v Avig A--2)
_ 0 if — j =i, for some s
- { (=1)%0y Aviy - A, AU Av, Aeee if iy > —f > igp
g (o Ao A--2)
B 0 if j # i; forall s
- { (=)o Avy A~ Avi_, Avi, Aeee i j =g
Notice that the definition of |/1ji differs from the one in [KV]. The reason for this will
become clear in Section 7, where we describe the connection with the Sato Grassman-

nian. These wedging and contracting operators satisfy the following relations (i,j €
Z+3.Apm=+-):

YA+l =6 _ubij, (1.1.5)

hence they generate a Clifford algebra, which we denote by C¢.
Introduce the following elements of F (m € Z):

|m) = Um_1/2 AN Upm—3jp NUm_spp A=+
It is clear that F is an irreducible C/-module such that

$£10)=0 for j> 0. (1.1.6)
We are now able to define representations r, 7 of gl.,, @x on F by

r(Ey) =y,  AE)=w g, Hco)=I,

where : : stands for the normal ordered product defined in the usual way (A, u =+ or

-):
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syt ife>k
gt ={ TFTE . (1.1.7)
gyt if <k
1.2.  Define the charge decomposition
F=@Fm (12.1)
meZ
by letting
charge(|0)) =0 and charge(¢7) = 1. (12.2)

It is easy to see that each F(™ is irreducible with respect to gloo, oo (and GLo).
Note that |m) is its highest weight vector, i.e., 7(Ejj) = r(E;;) — 6;;6(i) and

r(Eij)|m)=0 fOI‘i<j,
r(Eg)im)=0 (=|m)) ifi>m(i<m).

Let O = R(GLy)|0) C F® be the GL.-orbit of the vacuum vector |0), then one has

Proposition 1.1 ([KP2]). A non-zero element 7 of F(® lies in O if and only if the
Jfollowing equation holds in F @ F:

Y wireyr=0. (1.2.3)
k€Z+1/2
Proof. For a proof see {KP2] or {KR]. 0

Eq. (1.2.3) is called the KP hierarchy in the fermionic picture.

2. The loop algebra ,El s Partitions of » and vertex operator constructions

2.1. Let gl,, = gl,(C{t,t71]) be the loop algebra associated to gl,(C). This algebra
has a natural representation on the vector space (C[z, 1" Let {wi} be the standard
basis of C”. By identifying (C[¢,£7!])" over C with C* via Unkyj—i/2 = t"‘wj we
obtain an embedding ¢ : Q,, — gloo:

b(t“e) =Y Ente—tyri1/2mtrj—1/25
sz
where e;; is a basis of gl,(C). }
A straightforward calculation shows that the restriction of the cocycle u to ¢(gl,)
induces the following 2-cocycle on g,

dx(t)
dt

u(x(1),y(1)) =Resp drtr ().
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Here and further Res,—o dt ) j fjt’ stands for f_;. This gives a central extension 5_?1,, =
571,, @ CK, where the bracket is defined by

[#x +aK, "y + BK] = t“”'(xy —yx) + €8¢ _ptr(xy) K.

In this way we have an embedding ¢ : El,, — a,, Where ¢(K) =c.

Since F is a module for a, it is clear that with this embedding we also have a
representation of Eln on this semi-infinite wedge space. It is well-known that the level
one representations of the affine Kac-Moody algebra El,, have a lot of inequivalent
realizations. To be more precise, Kac and Peterson [KP1] and independently Lepowsky
[L] showed that to every conjugacy class of the Weyl group of gl,(C) or rather si,(C)
there exists an inequivalent vertex operator realization of the same level one module.
Hence to every partition of n, there exists such a construction.

We will now sketch how one can construct these vertex realizations of El,,, following
[TV]. From now on let n = n) + np + --- + ny; be a partition of n into s parts,
and denote by N, = n; + np + -+ + ny—1. We begin by relabeling the basis vectors
v; and with them the corresponding fermionic (wedging and contracting) operators:
(1<a<s, 1<p<n, jeZ)

(a) —
Upoj—p+1/2= Unj—No—p+1/2»

+(a) R
Vrejgpe1/2= Ynjen,zos1/2- (2.1.1)

Notice that with this relabeling we have: ¢,f(“)|0) =0 for k > 0. We also rewrite the
E;j’s:

(ab) _F .
Naj—p+1/2.nmk—q+1/2 = Enj—Na—p+1/2nk—Np—q+1/2

The corresponding Lie bracket on a, is given by

[ESD, EED = 8peBuERD — 828mEyR" + 8aabpcSmdu(0(j) — 8(K))c,

acplab)y _ . —(a) .

and F(E;”) = ;¢
Introduce the fermionic fields (z € C*):
PO ()T Y yE@ (212)
keZ+1/2

Let N be the least common multiple of n;,n;,...,n;. It was shown in [TV] that the
modes of the fields

W@ (wh V)= O (02N (2.13)

for1 <a,b<s,1<p<n,l<q<n, where w, = e27ilna together with the identity,
generate a representation of g/, with K = 1.
Next we introduce special bosonic fields (1 < a < s):

a(a)(Z) = Ea,((a)z—k—l déf:|//+(a)(2)l//_(a)(2)z . (2‘1.4)
keZ
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The operators a(“) satisfy the canonical commutation relation of the associative oscillator
algebra, which we denote by a:

[, a$] = k&;6k -1 (2.1.5)
and one has
a’|lmy=0 for k> 0. (2.1.6)

It is easy to see that restricted to Eln, FO is its basic highest weight representation (see
{K, Ch. 12]).

In order to express the fermionic fields ¥*()(z) in terms of the bosonic fields
a'?(z), we need some additional operators Q;, i =1,...,s, on F. These operators are
uniquely defined by the following conditions:

Qil0) =g {h10), Qi = (WP o, (2.1.7)
They satisfy the following commutation relations:
QiQ;=-0;0; ifi# ] [d,(‘i),Qj] = 6;i0100;. (2.1.8)

Theorem 2.1 ([DIKM1, JM}).

Y0 (z) = QF'z *ay’ exp (:FZ a2 ") exp (qzz a(')z“k). (2.19)

k<0 k>0

Proof. See [TV].

The operators on the right-hand side of (2.1.9) are called vertex operators. They
made their first appearance in string theory (cf. [FK1).

If one substitutes (2.1.9) into (2.1.3), one obtains the vertex operator realization of
gﬁ", which is related to the partition n = n; +n2 +- - - +n, (see [TV] for more details).

2.2. The realization of El,,, described in the previous section, has a natural Virasoro
algebra. In [TV], it was shown that the following two sets of operators have the same
action on F:

2 -1
- § § a®Bald
Ly = { 2n a’; ;-'i—n,k + 6k0 2an; } s (2.2.1)

i=l \j€Z
H—i 3 (L'+k) PHOUO 45 n—1 (22.2)
KT L) n 2 jnik T OO T (- -
=l \jeZ+1/2
So Lk = Hk,
{ j k i
(o1 == (L +3) v, (22.3)



102 J. van de Leur/Journal of Geometry and Physics 17 (1995) 95-124

and
3

[Li, Le] = (k=€) Lo + O3, —¢ 7

n.

2.3.  We will now use the results of Section 2.1 to describe the s-component boson-
fermion correspondence. Let C[x] be the space of polynomials in indeterminates x =
{x,((")}, k=1,2,...,i=1,2,...,5 Let L be a lattice with a basis 8,...,8; over Z
and the symmetric bilinear form (8;|8;) = &;;, where 8;; is the Kronecker symbol. Let

-1 ifi>j
gjj = / (23.1)
1 ifi<Lj.
Define a bimultiplicative function € : L x L — {1} by letting
e(8;, 6;) = &;j. (23.2)

Letd=681+---+8;, Q={yeL|(8y) =0}, 4={a;j:=8;—-6; |i,j=1,...,5, i #
j}. Of course Q is the root lattice of sI;(C), the set 4 being the root system.

Consider the vector space C[ L] with basis e”, y € L, and the following twisted group
algebra product:

e?eP = g(a, B)e* P, (2.3.3)

Let B = C[x] ®c C[L] be the tensor product of algebras. Then the s-component
boson-fermion correspondence is the vector space isomorphism

o:F-5B, (234)
given by
o(al) -.-al) b ... QkI0)) =my - mx(D XD @ eMO RS (235)

The transported charge then will be as follows:
charge(p(x) ® €7) = (8]y). (2.3.6)

We denote the transported charge decomposition by
B=PB™.
meZ
The transported action of the operators a{) and Q; looks as follows:
aa(_j,)na_l(p(x) ®e")=mxPp(x) ®e”, ifm>0,
aaP oV (p(x) ®e?) =dp(x)/ox’ @e”, ifm>0,
oo’ o™ (p(x) ® ") = (§jlyIp(x) ® ¢,
aQio" (p(x) ®e’) =e(8,7)p(x) ® e*9. 237

For notational convenience, we introduce §; = cra(()’ )o~!. Notice that €% = 0Q;o".
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2.4. Using the isomorphism o~ we can reformulate the KP hierarchy (1.2.3) in the
bosonic picture. We start by observing that (1.2.3) can be rewritten as follows:

Res,; - dz <Z¢+(j)(z)r®¢_(j)(z)r> =0, r€FO, (24.1)

j=l

Notice that for 7 € FOO, o(1) = EyEQ 7y(x)e”. Here and further we write 7,(x)e” for
7y(x) ®e?. Using Theorem 2.1, Eq. (2.4.1) turns under c @ o : FQF SLC[A, " ®
(C[L'] ® C[L"]) into the following set of equations: for all a,8 € L such that
(a]8) = —(B|8) =1 we have

Res;—o (dz Zs(sj,a — B)Z(S,-Ia—/s—m,)

Jj=1

= () 0"y gk —( 3 \z*
X exp E ) —x )25 ) exp —E <—-——,——77)—
ot und ") k

k=1

X ’ra-s,-(x')(e")"’ﬁ+a,-(x”)(ep)"> =0. (24.2)

3. The algebra of formal pseudo-differential operators and the s-component KP
hierarchy as a dynamical system

3.0. The KP hierarchy and its s-component generalizations admit several formulations.
The one we will give here was introduced by Sato [S]; it is given in the language of
formal pseudo-differential operators. We will show that this formulation follows from
the 7-function formulation given by Eq. (2.4.2).

3.1. We shall work over the algebra A of formal power series over C in indeterminates
x= (x,((’)), where k = 1,2,... and j = 1,...,s. The indeterminates xﬁ”,...,xﬁ” will
be viewed as variables and x,((’ ) with k > 2 as parameters. Let

a

d= —_.
()
axy’

= — 4.4
(1)
ax;

A formal s x s matrix pseudo-differential operator is an expression of the form

P(x,8) =Y  Pi(x)¥, (3.1.1)

J<N

where P; are s x s matrices over A. Let ¥ denote the vector space over C of all
expressions (3.1.1). We have a linear isomorphism § : ¥ — Mat;(LA((z))) given by
S(P(x,8)) = P(x,z). The matrix series P(x,z) in indeterminates x and z is called
the symbol of P(x,d).
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Now we may define a product o on ¥ making it an associative algebra:

2.1 4"S(P)
S(PoQ)=) ———
nZ;n! az

3"S(Q). (3.12)

From now on, we shall drop the multiplication sign o when no ambiguity may arise.

One defines the differential part of P(x,d) by Py(x,d) = Yo P;(x)3/, and let

P_ = P — P,. We have the corresponding vector space decomposition:
v=v_ov,. (3.1.3)

One defines a linear map * : ¥ — ¥ by the following formula:

(Z P,-af) =3 (-3) o'P;. (3.14)
J Jj

Here and further 'P stands for the transpose of the matrix P. Note that * is an anti-
involution of the algebra ¥.
3.2. Introduce the following notation:

[o o]
i i . . S x(®
z - xP =Zx,(c’)z", e * =diag(e** ,...,e¥" ).
k=1

The algebra ¥ acts on the space U, (U_) of formal oscillating matrix functions of the
form

Zszjez." (/Z P,-zje'”) , where P; € Mat,(A),
J&N j<N
in the obvious way:

P(x)d e*** = P(x)(Lz) et

One has the following fundamental lemma (see [KV]).

Lemma 3.1. If P,Q € ¥ are such that

Res;0(P(x,9)e*") (Q(¥,3")e™*") dz =0, (32.1)
then (PoQ*)_=0.
3.3. We proceed now by rewriting the formulation (2.4.2) of the s-component KP
hierarchy in terms of formal pseudo-differential operators.

For each @ € supp7:={@ € Q| 1=3,,7a€" 7o # 0} we define the (matrix
valued) functions

VE(@,x,2) = (Vi (a,x,2))} (33.1)
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as follows:

Vi (a,x,2) défe(ﬁj, a + 8;) 7 CilEetdi=8) (7 (x))~!
X exp (:i:Zx(’) ") exp (?Z @ ) Tat(8-5)(X). (3.3.2)

It is easy to see that Eq. (2.4.2) is equivalent to the following bilinear identity:
Res,o V' (a,x,2z) 'V (B,x',2)dz =0 forall a,B € Q. (3.3.3)

Define s x s matrices WE(™ (@, x) by the following generating series (cf. (3.3.2)):

o0

Z W,f('")(a,x)(:i:z)_'”
m=0
= &1 -1 - a Z—k 334
=iz (ra(2)) T | @0 F Y 5 T | Tk, (). (33.4)
=t 9%k
We see from (3.3.2) that V*(a, x,z) can be written in the following form:
el N
VE(a,x,2) = (Z WE™ (a, x) R*(a, :l:z)(iz)"") et s, (33.5)
m=0
where
RE(a,2) =Y 8(8;, @) Ei(£2)*?1?, (3.3.6)

=1

Here and further E;; stands for the s x s matrix whose (i, j) entry is 1 and all other
entries are zero. Now it is clear that V¥ (a,x,z) can be written in terms of formal
pseudo-differential operators

o0
Pt(a) =P¥(a,x,0) =1+ ZW‘H”‘)(a,x)a_'”,

m=1
R*(a) = R*(a,d) (33.7)
as follows:
vi(a,x,z) = Pr(a)RE(a)et? ™. (3.3.8)

Since obviously R (a,8)"! = R*(a,d)*, using Lemma 3.1 we deduce from the
bilinear identity (3.3.3):

P~ (a) = (P (a)")!, (33.9)
(P*(a)R*(a— B)PH(B)")_=0 forall a,B € supp 7. (3.3.10)
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Victor Kac and the author showed in [KV] that given 8 € supp 7, all the pseudo-
differential operators P*(a), a € supp 7, are completely determined by P*(8) from
Egs. (3.3.10). They also showed that P = P*(a) satisfies the Sato equation:
oP
—G; =—(PEjj0d*oP™")_oP (33.11)
ax;!

To be more precise, one has the following

Proposition 3.2. Consider the formal oscillating functions Vt(a,x,z), V" (a,x,2),
a € Q, of the form (3.3.8), where Ri(a,z) are given by (3.3.6) and PE(a,x,9) €
I;+Y¥_. Then the bilinear identity (3.3.3) for all a, B € supp 7 is equivalent to the Sato
equation (3.3.11) for each P = P*(a) and the matching conditions (3.3.9), (3.3.10) for
alla,B € supp 7.

3.4. Fix a € Q, introduce the following formal pseudo-differential operators L(a),
CY (@), and differential operators B (a):
L=L(a)=Pt(a)odoPt(a)!,
CY =CYP(a)=P*(a)E;PT(a)”’,
BY = By (a) = (P (a)Ej;0d™ o PT(a)™!),;. (34.1)

Then

o0
L=14+ Z UV (x)a™,
j=1

CO=E;+» CUWN(x)a™, i=1,2,-,s, (342)
J=1

subject to the conditions

5
Zc(i) =1, cWL = LC(E), cWOcWwh =5ijc(i). (34.3)

i=1
They satisfy the following set of equations for some P € I + ¥ _:
LP=P3,
CYWP=PE;,
0P/ox" = —(LO*¥Y_P, where LV =C¥L. (3.4.4)

Proposition 3.3. The system of equations (3.4.4) has a solution P € I; + ¥_ if and
only if we can find a formal oscillating function of the form

W(x,z) = (Is +3 W‘f)(x)z"') e (34.5)

=
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that satisfies the linear equations

: IW
LW =zW, CYW=WE;, 0 B{PW. (3.4.6)

And finally, one has the following

Proposition 3.4. If for every a € Q the formal pseudo-differential operators L = L(a)
and CY = CY(a) of the form (3.4.2) satisfy conditions (3.4.3) and if Egs. (3.4.4)
have a solution P = P(a) € I;+ ¥_, then the differential operators B,(cj) = B,((j) (a)
satisfy one of the following equivalent conditions:

OL _ pi O
PR (B, L], pRO) =[B.C"], (34.7)
aL® ;
axk’
4B W ,
L L =[B,B"1. (349)

(9x,((j) B ax;")
Here LY = LY (@) =CY (a) o L(a).

Eqgs. (34.7) and (3.4.8) are called Lax type equations. Eqs. (3.4.9) are called the
Zakharov-Shabat type equations. The latter are the compatibility conditions for the
linear problem (3.4.6).

4. [ny, ny, ..., ng]-reductions of the s-component KP hierarchy

4.1. Using (2.1.9), (2.1.3), (2.3.5) and (2.3.7), we obtain the vertex operator realiza-
tion of gl in the vector space B{™ that is related to the partitionn=n; +ny +- +ns
Now, restricted to sl,,, the representation in F (m) is not irreducible anymore, since sl
commutes with the operators

n
B =1/ ‘Z afl), (4.1.1)

In order to describe the irreducible part of the representation of s, in B(® containing
the vacuum vector 1, we choose the complementary generators of the oscillator algebra
a contained in sl, (k € Z):

al((j) ifkéan,
BY = Njpraf*D —np(al) + a2+ + af))
¢ A T A S W “° ifk=fnjand 1< j<s,
V/Nj+1(Njz1 — njyp1)

(4.12)
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so that the operators (4.1.1) and (4.1.2) also satisfy relations (2.1.5). Hence, introduc-
ing the new indeterminates

¢ .
xP if k ¢ m;N,
Nimxg™) — (mxfy) + mx{? + -+ myx))
¥ = A il s 2 ifk=tn;jand 1< j<s,

VNis1t(Njs1 —njpr)

] 2
nlxgm) + ”2x§n2) 4+t nsx§2

if k=¢n;and j=3s,

\ an
(4.13)

we have C[x] =C[y] and
o(BP) =3/9y? and o(BY) =ky{ ifk>0. (4.1.4)

Now it is clear that the subspace of B irreducible with respect to s, and containing
the vacuum 1 is the vector space

BY 1 =Cl |1<j<s, k€N, orj=s, ke N\n,Z) ®C[Q]. (4.15)

[n1.n2,..

expressing the fields (2.1.3) in terms of vertex operators (2.1.9), which are expressed
via (4.1.2) in the operators (4.1.4), the operators e%=% and &; — 6; (1<i<j<ys)
(see [TV] for details).

The s-component KP hierarchy of Egs. (2.4.2) on 7 € B(® = C[y] ® C[Q] when
restricted to 7 € Bfgl),nz ..... ) is called the [ny,ny,...,n;1th reduced KP hierarchy. It is
obtained from the s-component KP hierarchy by making the change of variables (4.1.3)

and putting zero all terms containing partial derivatives by y(, yéflz,ygjz, e

The totality of solutions of the [n;,n3,...,n;]th reduced KP hierarchy is given by
the following

Proposition 4.1. Let Oip, p,,..n,1 be the orbit of 1 under the (projective) representa-
tion of the loop group SL,(C[t,t7']) corresponding to the representation of sl, in
B .1 Then

[n1,n2,....ns

0
O[m,nz ..... n,] = U(O) ﬂB( )

[n1,n2,...,m5] *

In other words, the t-functions of the [ny,ny,...,n;1th reduced KP hierarchy are

precisely the T-functions of the KP hierarchy in the variables y(j ), which are independent
of the variables y},ff, £eN.
Proof. The same as the proof of a similar statement in [KP2]. a

4.2. Tt is clear from the definitions and results of Section 4.1 that the condition on the
s-component KP hierarchy to be [ny,n;,...,n;]th reduced is equivalent to
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s

P!
Z—%:o, for all k€ N (42.1)
j=1 xkllj

Using the Sato equation (3.3.11), this implies the following two equivalent conditions:

>\ W (a) SN
> PR =W(a)) " Ej, (422)
= kn; sl
5
( L(a)"""C(j)> =0. (4.2.3)
j=1

5. The string equation

5.1.  From now on we assume that 7 is any solution of the KP hierarchy. In particular,
we no longer assume that 7, is a polynomial. For instance, the soliton and dromion
solutions of [KV, §5] are allowed. Of course this means that the corresponding wave
functions V*(a, z) will be of a more general nature than before.

Recall from Section 3 the wave function V(a,z) = V(a,z) = P(a)R(a)e** =
P*(a)R* (a)e* ™. It is natural to compute

WV(a,z) 9 2x
T2 % P(a)R(a)e
=P(a)R(a)ie“
dz
=P()R() Y > kx{P9* ' EgR(a) ' P(a) ' V(a, 2).
a=1 k=1
Define
M(a) :=P(a)R(a) > Y kx{?3* ' EqR(a) "' P(a)7!; (5.1.1)
a=1 k=1

then one easily checks that [L(«),M(a)] =1 and
[Z L(a)™C'® (a),M(a) ) | niL(a)"""C(“)(a)jl =1. (5.1.2)
a=1 a=1 ¢

Next, we calculate the (i, j)th coefficient of

(M(a)znlL(a)‘-"ac“)(a)) P(a)R(a).
a=1 a

Let P = S(P(a)) and R = S(R(a)); then
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(S<<M(a)zniL(a)‘-"ac<“)(a)) P(a)R(a)>>
a=1 a ..
- ]

( ((P(a)R(a)ZZ —kx{P3* " E,aR(a) TP (a)” ‘) P(a)R(a)>>

a=1 keN Na

PR n, X @
( - z:l: n—Eaa ma y ;‘ {Z PRE 2% — x\D E,,PR
_Zk+na (a) 6PR}>

k+na (a)
a
Xk ij
Define

0o —k
. J z
Ta+6;—8; = €XPp (— E WT) Ta+8.-—8,~(x)
k=1

b k .
=7'a+8i—5,-(---,x1(‘)— _]b/kz 3. )9

then

Fars—5;
(PR);j = €(8;|a + 8;) 7%~ 1+(5l0 2278

Ta
and hence

(s <<M(a) Z ;ll—L(a)l"‘“C(“)(a)) P(a)R(a)))
a=1 ¢ .

eBila+8) |1 [ 9 i )
B n; {;; (X_: 6x,((j)z T4 (8 = 14+ (8jla@)) 2™ | Fassi—s

Fatsi—6 Fatsi—5;
+Zk(1) L0 gk nx(')—a -

k=1 Ta Ta
n Tatsi-5; = 1H(8;
-3 s T (T—’)}z% ok, (513
a=1 a

5.2.  'We introduce the natural generalization of the string Eq. (0.3). Let L_,; be given
by (2.2.1); the string equation is the following constraint on 7 € F(®

L_1T=0.

(5.2.1)
Using (2.3.7) we rewrite L_; in terms of operators on B(®
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5 ng—1
-3 {a 0+ g S s,

3
+— Z(k+na)x,§“+)" 0 } .

Since 7 = ZQEQ Tq€” and L_;7 =0, we find that for all a € Q:

s na—1
> {(8 )1 + o Z p(na )i,

a=1

9
+—Z(k+na)x,§“+>n (a)} =0. (52.2)

ak_

Clearly, also L_17q48-5; =0; this gives (see e.g. [D]):

S

Z{(aa|a+a,~—aj)( = 5n)
a=1 njz !
ne—1
. Saj Oaj
(a) aj (a) _ aj
+ Zp(na p) ( pz”> (xna—p (nj _p)znj—p>

1 8aj F]
+— (k+n,) (x‘“) . ) Farsi—s, =0.  (523)
na ; AT T (k) 2F ) gy [T

So, in a similar way as in [D], one deduces from (5.2.2) and (5.2.3) that
7a+6,—5,-7;2L—17'a — 7' L_1%ars,-5, = 0.

Hence, we find that forall e € Q@ and 1 <i,j < s:

11 (& 2
~k—n; ) k—n;
L (S e e et

= Oxg k=1

+ (8 — 1+ (8la) + 1 — Iny)z™™ - n,-xﬁ:") Farsis,

—Z Z(k+na)x§f?,, 2 (?"";"""*)}=0. (5.2.4)

Comparing this with (5.1.3), one finds
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> 1
3 ((Z {(—M(a)L(a)“”aC‘“’(a))
a=1 Ma -

ng — 1
2n,

L(a)'"“C(”)(a)} P(a)R(a)) =0.
ij
We thus conclude that the string equation induces for all @ € Q:

8

Z{(%M(Q)L(a)l-—mc(a)(d)) _ na; lL(a)—nac(a)(a)} =0. (5.2.5)

2

a=1

So, if (5.2.5) holds

s

N(a) = Z {niM(a)L(a)‘—"«cW(a) -

a=1

n, —1

L(a)™C@ () }

a

is a differential operator that satisfies

[ZL(a)"“C(“)(a),N(a) =1.

a=1

6. Wi, constraints

6.1. Lete;, 1 <i<s be a basis of C’. In a similar way as in Section 2, we identify
(C[t,t71])* with C*®, viz., we put

vy = e (6.1.1)

We can associate to (C[¢,£71])* s-copies of the Lie algebra of differential operators
on C*; it has as basis the operators (see [Ra] or [KRa]):

—t*+(a/at) ey, forkeZ, L€Z,, 1<i<s.

We will denote this Lie algebra by D*. Via (6.1.1) we can embed this algebra into gl
and also into da..; one finds

—H(3/31) ey 1o Z —m(m—1)---(m—£€+ 1)E<_"';')'_k_1/2,_m_l/2. (6.1.2)
meZ

It is straightforward, but rather tedious, to calculate the corresponding 2-cocycle; the
result is as follows (see also [Ra] or [KRa]). Let f(t),g(t) € C[t,t~']; then

w(f(2)(3/3t) eaa, (1) (3/t) ™ epp)
2im!

=5abm Resio dt f"*D (1) gD (1).

Hence in this way we get a central extension D* = D* @ Cc of D*® with Lie bracket
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[F(£)(3/t) eaq + ac, g(1) (3/3t)™ep + Be]

= 8 { (£ (1) (30 3(8) (3/a)™ — £(1) (3/a0)™ £ (1) (3/1)") eaq

£im!

. wmm (m+1) 10
Ty Reseo dt 7 (g (t)c}. (6.13)

Since we have the representation 7 of a,, we find that
P(—t* 0/ eaa) = ) _m(m—1) - (m =+ 1)t D D
meZ
In terms of the fermionic fields (2.1.2), we find

‘aZ'/l-#(a) (Z)
: I3

Y A9 )z =
Z

k€Z

v~ D (2):. (6.1.4)

6.2. We will now express —t5*¢(9/dt)%eq in terms of the oscillators a{®. For this
purpose, we first calculate

(Y=Y O MY D ()= (y - YT (Y D(z) - 1

= Xa(y,2) — 1,
where
a'® a(a)
Xu(n2)=(2)" exp (-Z"T(y"‘—z"‘)
z k<0
val e
xexp| = =0T =2 . (6.2.1)
k>0
Then
YT D (2) 1 X, (y,2)

Yy~ D (2): =

(6.2.2)

azt 2+1 ayt+l

Y=z

Notice that the right-hand-side of this formula is some normal ordered expression in the
a,((") ’s. For some explicit formulas of (6.2.2), we refer to the appendix of [AV].

6.3. In the rest of this section, we will show that D* has a subalgebra that will provide
the extra constraints, the so called W-algebra constraints on 7.

From now on we assume that T is a T-function of the [ny,na,...,n;Jth reduced KP
hierarchy, which satisfies the string equation. So, we assume that (4.2.3) and (5.2.1)
holds. Hence, for all a € supp 7 both
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Q(a) =) L(a)™C“ (a)

a=1

and

s

N =Y {niM(a)L(a)‘—"ac“)(a) -

a=1

Do lL(a)_”"C(“)(a)}

are differential operators. Thus, also N(a)?Q(a)? is a differential operator, i.e.,

s ; p
((Z iM(a)L(a)‘-"n - ”—"ZlL(a) —"«> L(a)q""C(“)(a)> =0
n 2n,

a=1 ¢

for p,qe Z,. (6.3.1)

Using (6.3.1),we are able to prove the following

Lemma 6.1. Foralla € Q and p,q € Z,
Res, g dz qu"" ( ! “'"“)/2 (1—"“)/2)p(V+(a x,2))
z=0 na 32 [ Rad]

X Eqa'V™ (a,x',2) =0. (6.3.2)

Proof. Using Taylor’s formula we rewrite the right-hand side of (6.3.2):

a
Res,— dz Zz""" (n ZU=m/2
a

14
z(l—n..)/Z) (V¥ (@, x,2))Eq
9z

X exp (ZZ(x“)’ 2 3([)>‘V"(a,x,z). (6.3.3)
Xk

=1 k=1

Since

v (axz)

= (P @x DE P (@) TV (@),

it suffices to prove that for all m > 0

R
1
Res;— dz qun., (n—Z(]_"")/Za—Z(l-n")/z) (V+(a,x,2))

a=1 a

X Eged™V~ (a,x,2) =0. (6.3.4)

Now, let

qun.,( (1—na)/2_z(1—n..>/2) (V*(@,%,2))Eaa = Zsa“‘ *z

and V™ (a,x,z) =Y., T;d /e "%, then (6.3.4) is equivalent to
joJ
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0=Res,— dz Z Sz _ie"za"'(e_"'z'T}(—Z)j)
iLJ

i,j €=0
= > (—1)“]’(’;’)&#(%).
0<i<m
i+j+f=m+1

On the other hand (6.3.1) implies that

0= 8d7") (-9)'Tj)_
i j

_ Z(_l)j(—ie— j) 34T~y _.
ij

230

Now let i + j + £ =m + 1; then we obtain that for every m > 0

> (~1)f(";’)sia‘('n)
0<e
i+j+l=m+1

Y (-t (’2’) $i3'('Ty),
0<e<m
i+j+l=m+1

0

which proves (6.3.5)
Taking the (i, j)th coefficient of (6.3.3) one obtains

Corollary 6.2. Forall a € Q, 1 <i,j < sand p,q € Z, one has

5

1 a p

Res,— dz qun.. (n_z(l—na)/2a_z-z(l—na)/2) W@ (2))
a=1 a

X Tars—8, @ Y™ D (2)Tars,—8, = 0.

115

(6.3.5)

(6.3.6)

Notice that (6.3.6) can be rewritten as infinitely many generating series of Hirota

bilinear equations (for the case p = g =0 see [KV]).

6.4. The following lemma gives a generalization of an identity of Date, Jimbo, Kashi-

wara and Miwa [DJKM3] (see also [G]):

Lemma 6.3. Let X, (y,w) be given by (6.2.1); then
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L)
Res;0 dz )¢+ (2) X5 (3, W) Tats,-5,6" 7% @ ™ (2) Tays,—5,€ 0

a=1

= (W= PP (1) Tar5-5, % @YD (W)Tass,-5,e° %, (64.1)

Proof. The left-hand-side of (6.4.1) is equal to

s

Bab
Res, o dz Ze(a,,,a,- + 8;) 7 (BulBit8) =2y, (Bola+bi=-8,) ~ (Bola+8i-5.) (z __i’))
a=1

x gt =5 wxz exp (— f: l(y_k - w"‘)—‘9 + lz"‘——a ) Tass,—5,6 "%
(b) (a) +9i—%
el ox k™ ox

® —x@.z i l -9 %
e exp 2 5@ | Tarts, .
k=1 k

Recall the bilinear identity for 8 = a:

s
Res;0 dz ) " (2)Tars-5,6" % @ Y™ @ (2)Tars,5,¢" %% = 0.
a=1
Let X,(y,w) ® 1 act on this identity; then

)
Res, o dz Z €(8,, 8 + 5j)z(5a|5i+5j)—2y(5b|a+5i)w—(5b|a+51)

a=1

— Sap
% (y Z) “ ex“’)-y—x"’)~w+x(")-z
w—2

X ex _i_l_( —k__w—k)_a___*_lz—kL T ea+5;
p k y ax,(cb) k 3xl(ca) a+6;—8,

=
o0
@, 1 _, @ -
=1 k.

Now, using this and the fact that

1-y/z
1-w/z’

where 8(w/z) = Zkez(W/Z)k (such that f(w,z)8(w/z) = f(w,w)é(w/z)), we
obtain that the left-hand side of (6.4.1) is equal to

oo

_ *, 1 _, 2 !

(w—1y) y(8b|a+6, 85) ox Y exp (_ Z Tcy k ) Ta+5.-—853a+5'
k=1

y—z _ (2 l-zfy _y
w—z wl—z/w

—-w
. S(w/z) +

ax,ﬁ’”
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® w—(85|a+5b—5j)e—-x“’) W

o0
X exp W | Tay5,-5,€7 7,
(Sa50) e

which is equal to the right-hand side of (6.4.1) W]

Define c, (£, p) as follows:

U=m2d_ =my2\’ _ % YT AN
re) e __ LU = Ry
(z 7 F4 > £§=0 cr(€,p)z (az> . (6.4.2)

One also has

p
(M(a)L(a)™™*" — L(m, — DL(&) ™) =3 (£, p) M) L(a) ™7,
=0
(6.4.3)

Then it is straightforward to show that

cp(L,p) = > [(go+1)(1—np)) (6.4.4)

0<go<q--<gp—¢-1<p—1

X+ 3 =np) =11 [(gpoe1 + DM =mp) —(p—£—-1)].

Now using (6.4.2) and removing the tensor product symbol in (6.3.6), where we write
x and x’ for the first and the second component, respectively, of the tensor product, one
gets:

s p
1\” _ al +(a) z
Res,; =9 dz E (n—) Zqn..§ :ca(lf,p)z nap+€ !/jazl( )
a=t =0

X Tassi—8, (Y™ (2) Tars,-5,(x') = 0.

Using Lemma 6.3, this is equivalent to

s s
1 p
Resy-0 dydz Z¢+(“)(y) z (_.) Z9m
z=0 a=1 b1 TP

y z”: co(£sP)  _mpre 9 Xp(W,2)
i+l ° gt

w=Zz

£=0

X Tass,—5,(X) €070y~ (y)'7o 15, 5,(x') (2% = 0.

Now, recall (6.1.4) and (6.2.2), then
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s 14

1\? co(4,p) It X, (w, 2)
R d E :(_) qnb§ ____ —mp+l 7 bL L7
€S,-0 dZ : s Z 2. 7+ 1 Z i

w=Z

s

1 p p a[ +(b)
=Res, dz Z (—) " ZCb(f,P)Z_""p”i—‘é-T(Z')-'/f_(b) (z):
b1 b =0 9

s p 4
1\* a
=3 (2) Sateprr (—srmmme(2) en)

pril
A
1\? a p
B Y Ao g )
=\ at
s
aJ 4
=-3¢ ((,(m—l)ﬂtm,q (6t"b) ,(1—m,)/2) ebb)
b=1

s b
= E F (l‘(m’—l)/2 (—AZ (%) ) t(l_””)/z) ebb) where Ap = T
b
b=1

def W (p+1)
= Wq’jp . (64.5)

Hence, (6.3.6) is equivalent to

s
Res,= dy Z Y@ (y) W;f;l)

a=1

X Targi-8,(X) e 0Py~ (y) 7, 5 _5,(x') (eF%70%) = 0. (6.4.6)

If we ignore the cocycle term for a moment, then it is obvious from the sixth line
of (6:4.5), that the elements W{P*!) are the generators of the W-algebra Wy o, (the
cocycle term, however, will be slightly different). Up to some modification of the
elements Wé” +1 , one gets the standard commutation relations of W, ., where ¢ = nl.

As the next step, we take in (6.4.6) x,(‘i) = x,(ci)', forall k€ N, 1 <i<s; we then

obtain
(p+1)
a (Wi, 7 o
—T (__q_P__‘i) =0 lf i=],
ax; Ta
T Wz, = r, Wt if i # j 6.4.7
at8—6;Wap Ta =TaWy p Tat+si-5 W1 F ] (6.4.7)

The last equation means that for all «, 8 € supp 7 one has

(p+1) (p+1)
Wip ‘Ta - Weop 78 ]

Ta :]

(6.4.8)

Next we divide (6.4.6) by 7,(x)7.(x"), of course only for @ € supp 7, and use (6.4.8).
Then for all «, 8 € supp 7 and p,q € Z,. one has
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s 00 _g (p+1)
) 79 W, 78(x)
Res:0 dz ) exp (_ Zk_ k4 ,(c“)) ( 78(x)
=1

a=1 X

P () Tays-5,(x) Ja+5i=, ™D (2) Tars,—5,(x') (£

—6iy! _
72 (%) 72 () ) =0.

Since one also has the bilinear identity (3.3.3) (see also (2.4.1), (2.4.2)), we can
subtract that part and thus obtain the following

Lemma 64. For all a,8 € supp 7 and p,q € Z, one has

s 00 g (p+1)
% WP rs(x)
R d E _ E s 1 -1 ~ap PR
€8:=0 Al {CXP ( - & axl(‘a)) } < Tp(x)

a=1

YD (2)7ar8-5,(x) p+bib U™ D(2) Tass,~8,(x) (ex+5eb)

Ta(X) 7o () ) =0. (64.9)

Define

s x -k g WPt Dra(x)
S s ey Ay = - ) -1 — Eﬂa‘
wnanor = fo (-5 ) -} ()

a=1

Notice that the first equation of (6.4.7) implies that doS(8,p,q,x,d) = S(B,p,q,x,d)0
3. Then viewing (6.4.9) as the (i, j)th entry of a matrix, (6.4.9) is equivalent to

Res,— dz PT(a)RT(a)S(B,p.q,x,3)e** P~ (a) R~ (a) e %) =0.(6.4.10)
Now using Lemma 3.1, one deduces

(P*(a)R*(a)S(B,p,q,x,0)R* (a) "' PH(a)™")_ = 0; (64.11)
hence

P*(a)S(B,p.q,x, )Pt ()~ = (P*()S(B,p.q.x,0)P* (e)™") - =0.
So S(B,p,q,x,3) =0 and therefore

o (£eeate) ()

k=1 Xk B

from which we conclude that

WP*Drs = constant 75 forall —k < p > 0. (6.4.12)

In order to determine the constants on the right-hand side of (6.4.12) we calculate the
Lie brackets,

2 -1 1
[W(_]),——k+p+ Wy >] 75=0, (6.4.13)

and thus obtain the main result
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Theorem 6.5. The following two conditions for T € F®) are equivalent:

(1) T is a T-function of the [ny,ny,...,nglth reduced s-component KP hierarchy
which satisfies the string Eq. (5.2.1).

(2) Forallp > 0,k > —p:

(WIEP+1) +5kOCP)T=0, (6.4_14)
where
p+l P —
.ol
“@= 2p+2 (n) ge e'(g+2> (6.4.15)
X Z [(go+3)(na— D]

0<q0<q1-<gp—¢—1<p—1
XU@+Ha=1D)+11 - [(gpt1+ D) (na— 1) +p—£-1]

R Y () (5 ).

a=1 j=1

For p =0, 1, the constants ¢, are equal to 0, respectively Zf,:l (ng —1)/24n,.

Proof of Theorem 6.5. The case (2) = (1) is trivial. For the implication (1) = (2),
we only have to calculate the left-hand side of (6.4.13). It is obvious that this is equal
to (W,g”“) + ¢p k) Tg, Where

—1

It is clear from (6.1.3) that c,; = 0 for k # 0. So from now on we assume that k =0
and ¢, = cpp. Then

¢ W(2) W(P+1)
p = p+1 ,u( 1 )

—Ng —n., g a ¢
p+lz:(na)erl ( (1 =ma) 1™ 0750 ZC"(“’)I H(at))

1 1\ & 1 ng+ ¢
= — !
2p+2 2 (na) Z( DT ( ) ca(t.P),

which equals (6.4.15).
It is possible to find a shorter expression for c,, viz., if one writes

s

1\?

W =30 (o) 1T 4 A =) T+ 3= 3m0) -
a=1

X (T +3(1 = (2p — Dng))eaa,
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where T = 13/3t, then using results from [KRa] one finds that

(= 1+Pzz(na—21+l)(na—21+l_1) ("a_—é%lf_l_p), 0

7. A geometrical interpretation of the string equation on the Sato Grassmannian

7.1. It is well-known that every 7-function of the 1-component KP hierarchy corre-
sponds to a point of the Sato Grassmannian Gr (see e.g. [S]). Let H be the space of
formal Laurent series Y a,t" such that a, = 0 for n >> 0. The points of Gr are those
linear subspaces V C H for which the natural projection 7, of V into H, = {3 a,t" €
H | a, = 0 for all n < 0} is a Fredholm operator. The big cell Gr® of Gr consists of
those V for which 7, is an isomorphism.

The connection between Gr and the semi-infinite wedge space is made as follows.
Identify v_s_y/2 = t*. Let V be a point of Gr and wo(t),w_;(?),... be a basis of V;
then we associate to V the following element in the semi-infinite wedge space:

wo() Aw_1(t) Aw_a(E) A---.

If 7 is a 7-function of the nth KdV hierarchy, then 7 corresponds to a point of Gr that
satisfies 1"V C V (see e.g. [SW, KS]).

In the case of the s-component KP hierarchy and its [n,n,,...,n;]-reduction we
find it convenient to represent the Sato Grassmannian in a slightly different way. Let
now H be the space of formal Laurent series Y ant" such that a, € C* and a, = 0 for
n > 0. The points Gr are those linear subspaces V C H for which the projection 77,
of Vinto Hy = {3 ast" € H| a, =0 for all n < 0} is a Fredholm operator. Again, the
big cell Gr° of Gr consists of those V for which 77, is an isomorphism. The connection
with the semi-infinite wedge space is of course given in a similar way via (2.1.1):

) ( ) —naj+p—1
Unj—Na=p+1/2=Vy i pr172 = =1 €a;

where e;, 1 < a < s, is an orthonormal basis of C*.
It is obvious that 7-functions of the [n;,na,...,n;]th reduced s-component KP hier-
archy correspond to those subspaces V for which

(Z t"“Eaa> vcv (7.1.1)

a=1

7.2.  The proof that there exists a 7-function of the [n;,n;,...n,]th reduced KP hier-
archy that satisfies the string equation is in great detail similar to the proof of Kac and
Schwarz [KS] in the principal case, i.e., the nth KdV case.

Recall the string equation L_;7 = H_17 = 0. Now modify the origin by replacing
Xn.+1 by x,,+1 — 1 for all 1 < a < 5. Then the string equation transforms to
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s
ng+1 2
(L-I—Z e W)"

a=!

or equivalently

s
ng+1 4 _
<H_. - ax§“>) 7=0.

a=1

In terms of elements of D this is

F(-A)T=0, (7.2.1)
where
- - _!__ l—n,i_l —na
A= ; -~ ((ha+ e 6772 — 4o = Dt ) Eaa (722)

Hence for V € Gr, this corresponds to
AV CYV. (7.2.3)

Now we will prove that there exists a subspace V satisfying (7.1.1) and (7.2.3). We
will first start by assuming that m =n; =ny = - - - = n; (this is the case that L(a)™ is a
differential operator). For this case we will show that there exists a unique point in the
big cell Gr° that satisfies both (7.1.1) and (7.2.3). So assume that V € Gr° and that V
satisfies these two conditions. Since the projection 7, on H, is an isomorphism, there
exist ¢, € V, 1 < a < s, of the form ¢, = e+, , Ciat ™, With ci g = P c,ff,) e, € C5.
Now AP¢, = tPe,+lower degree terms; hence these functions for p >0and 1 <a<s
form a basis of V. Therefore, ™, is a linear combination of A?¢y; it is easy to observe

that A™¢, = constant ™¢,. Using this we find a recurrent relation for the c,‘f,) ’s:

m+1 m—1 ) . om=1
( m ) w’g’? = Z d'"’i-ectgf)f(m+l),a; (7.24)
£=1

here the dp, ;¢ are coefficients depending on m, i, ¢, which can be calculated explicitly
using (7.2.2). Since c§’) = 8, and ¢{% =0 for i < 0 one deduces from (7.2.4) that

pe
c?=0ifb#aandc? =0ifi # (m+ 1)k withk € Z. Sothe ¢, for 1 <a <s
can be determined uniquely. More explicitly, all ¢, are of the form ¢, = ¢(™ e,, with

o
g™ = 3 pm =m0 (7.2.5)

i=1

where the b; do not depend on a and satisfy

m+1 m—1 ) m—1
(—m—) i(m+1)b™ = Z i tb").
£=1

Thus the space V € Gr° is spanned by t*"A¢, with 1 <a<s,k€Z;,0<f<m.
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Notice that in the case that all n, = 1 we find that V = H,, meaning that the only
solution of (7.1.1) and (7.2.3) in Gr0 is 7 = constant €°, corresponding to the vacuum
vector |0).

If not all n, are the same, then it is obvious that there still is a V € Gr° satisfying
(7.1.1) and (7.2.3), viz., V spanned by t*=Abgp("de, with 1 < a < s, k € Z,,
0 < ¢, < ng, where ¢‘™) is the unique solution determined by (7.2.5). However, at the
present moment we do not know if this V € Gr? is still unique in Gr°.
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