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1. Introduction 

Our aim is to study a certain Lie algebra, named gl(A), and to show its relation 
to linear differential operators that leave the space l?n invariant. Here, I? n denotes 
the space of polynomials up to degree n. 

The name gl(A) is given to this Lie algebra by Feigin [4]. The reason for this 
is the following: if A E {2, 3,4, 5 , . . .} ,  then gl(A) contains an ideal, which we 
denote by I:~. The quotient gl(A)/1x is isomorphic to gl:~(C). 

It will turn out that gl(A) and gl(-A) are isomorphic. If one takes A E C, 
A ¢ {+2, +3, + 4 , . . . } ,  gl(A) has a one-dimensional center, denoted by (1), and 
sl(A) := gl(A)/0) is simple. In this sense, gl(A) and sl(A) are infinite-dimensional 
generalizations of gln(C ) and sin(C). 

The Lie algebra gl(A) can be defined in several ways. Here we will discuss 
three ways of doing it, but mostly we will work with the realization in terms of 
differential operators. The advantage of this approach is that it allows explicit 
calculations (notably the 2-cocycles d 2 and c~ defined below), whereas in the 
other two ways of defining gl(X), this is (even) more intricate. Moreover, the 
realization in terms of differential operators, can be used to construct solutions 
of the SchrOdinger equation ffJxx + V ( z ) ~  = Eke, see, for example, [11]. 

The algebra gl(A) appeared in the literature before. Dixmier [2] considered 
the structure of gl(A) as an associative algebra, and proved that gl(A) and gl(A') 
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are isomorphic if and only if A' = +A. In [1], the same (using Dixmier's work) 
is proved for gl(A) considered as Lie algebra. 

The organization of this paper is as follows. Section 2 gives the definition 
of gl(A) and some basic observations. Section 3 gives an equivalent definition 
(which is used in [2] and [1]). In Section 4, we take a closer look at gl(A); 
in particular we prove that sl(A) is simple for almost all A: In Section 5, we 
discuss the third way of defining gl(A), namely as a deformation of the Poisson 
algebra of even polynomials on the plane. Finally, in Section 6, we discuss the 
relation between gl(A) and the algebra of differential operators that preserve all 
polynomials up to a fixed degree. 

We include proofs as far as space permits. For more details, we refer the 
reader to [9]. 

2. Definition of gl(A) 

2.1. 

Let ~ denote the associative algebra of differential operators of the form 

n 

i=0  

We will write 0 i instead of di/dx ~. The algebra ~ has 2 structures which are 
very important for our considerations. The first structure is an increasing filtering, 
the order, which we denote by ord. We say that T = ~n=0 P/(x)O i has order n 
(assuming that Pn ¢ 0). 

The second structure is a grading, the degree, denoted by deg. We say that 
T E 2 has degree m if T(x  k) E (x k+m) for all k E N. Specifically, this means 
that T has the form T = ~ n  0 cixi+moi for some constants ci E C. The degree 
is an integer. If the degree is negative, say deg(T) = - m ,  m > 0, then the order 
of T is at least m. 

For two monomials xkO t and xiO j we say 

x~ O z >l xi O j i f I > j o r l = j a n d k / > i .  

If we write x~O l + . . .  it will mean that the dots will contain only multiples of 
smaller monomials. 

2 . 2 .  

Now we turn to the definition of gl(A). In ~ we consider the (associative) sub- 
algebra ~(A), generated by 1 and 

e = x 2 0 - ( A - 1 ) x ,  h = 2 x 0 - A + l  and f = - 0 .  
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It would be more accurate to write e~, hA and fx, but we will not do so. This 
algebra can be considered as a Lie algebra, by taking for the Lie product merely 
the commutator. The resulting Lie algebra is (by definition) gl(A). We note that 

[ e , f ] = h ,  [ h , e ] = 2 e  and [ h , f ] = - 2 f  

for all A E C, so (e, f ,  h} forms an sl2(C)-algebra. It means that polynomials in 
e, h and f can be expressed as a linear combination of eihJf  k, for i , j ,  k E N 
thanks to the Poincar6-Birkhoff-Witt theorem. Said differently, when looking for 
a linear basis of gl(A), we can restrict to the terms eihJf  k. Hence, the following 
lemma is easy to prove. 

LEMMA 2.1. The Lie algebra gl(A) has a basis of  the form xrO s + . . .  with 
s = O, 1 ,2 , . . .  and r <~ 2s. 

Proof. Clearly these elements are linearly independent. Now 

eihJ f k = (_l)k2Jx2i+Joi+J +k + . . .  

from which the lemma easily follows using the remark before. [] 

This linear basis is independent of ), only on top level (i.e. the term of highest 
order). 

2.3. 

Let us introduce the following notation. The set of elements T E ~ ,  such that 
T(I?~) C I?~, we denote by Inv(ll'n). It is obvious that if deg(T) = - m ,  m >/0, 
then T E Inv(IPn), since x k is mapped to x k-re. I f  ~ _  denotes the subalgebra 
of elements of degree 0 or less, then it is easy to see (using Lemma 2.1) that 
~ _  is generated by h and f for all A E C. Hence, ~ _  C gl(A). How about e? It 
is clear that deg(e) = 1, so e maps z n to a multiple of x n+l. I f  this multiple is 
zero, e leaves l?n invariant. So let us examine it. 

e(x n) = ( 5 2 0  - (/~ - 1)x)(x n) ~- (1~- (,,~- 1 ) ) z  n + l .  

It follows that e(x n) = 0 if and only if A = n + 1. Clearly, in this case all 
elements of gl(A) leave 1?n invariant. So we have the following result. 

PROPOSITION 2.2. For all n E N, there holds gl(n + 1) C Inv(IPn). 

Hence, for n = 0, 1 ,2 , . . . ,  we have a representation of gl(n + 1) on I?n. If 
n = 0, this representation is trivial, as it means that x20, xO and 0 annihilate the 
space (1), and only 1 E gl(A) is represented as a nonzero element. 

For n = 1 ,2 , . . .  the situation is the following: gl(n + 1) contains a nontrivial 
ideal being the kernel of this representation. Let us denote this ideal by In+l. All 
differential operators of order at most n act nontrivial on l?n. Again using Lemma 
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2.1 we see that dim(gl(n + 1)/in+l) = 1 + 3 + 5 + - . .  + (2n + 1) = (n + 1) 2 . 
So, comparing dimensions, we see that gl(n + 1)/i,~+, "~ gln+ 1 (C) and therefore 
sl(  + sl +l(c). 

3. gl(A) as Quotient Algebra of U(sI2(C)) 

Now we describe gl(A) as a quotient of U = U(sI2(C)), thereby providing 
a second description of gl(A), Here U is the universal enveloping algebra of 
sl2(C). The algebra gl(A) is generated by three elements, which span sl2(C). 
Therefore, by a universal property of U, we know that gl(A) is a quotient of U. 
We determine the ideal. 

PROPOSITION 3.1. Let J~ denote the ideal in the associative algebra U gen- 
erated by 

A - ( A  2 - 1 ) ,  w h e r e A = 2 e f + 2 f e + h  2. 

Considered as Lie algebras, U/j,\ ~- gl(A). 
Proof. By construction, gl(A) is a quotient of U, say gl(A) = U/O h . We need 

to prove that Q~ = J~. 
First, Q~ D J;~, since 

2ef  + 2fe  + h 2 = -2(x20  + (A + 1 )x )O-  20(x20+ 

+(A + 1 ) x ) +  ( 2 x 0 +  (A + 1)) 2 = A2_ 1. 

To prove Q;~ c J;~, one can compare dimensions using the natural filtering 
in U. Let dn denote the dimension of elements of filter n (but not n - 1). The 
Poincarr-Birkhoff-Witt theorem says that d n =  dim(Sn), where S n denotes the 
space of the n-fold symmetric tensors on 3 = dim(sl2(C)) elements. Hence, 

n + 2  dn = ( 2 ) Again by the Poincarr-Birkhoff-Witt theorem it follows that the 
elements of the form 

eihJfk(A - (A 2 -  1)), i , j , k  ) O. 

n + 2  _ form a basis for J;~. Hence U/j:, contains ( 2 ) (2) = 2n+  1 linear independent 
elements of filter n, just like gl(A). This completes the proof. [] 

From this proposition, we derive a useful corollary. 

COROLLARY 3.2. gl(A) -~ gl(-A) 
Proof. 

A - ( A  2 - 1 ) = A - ( ( - A )  2 - 1 ) ,  so J)~---J-:~. 
[] 

In his article [4], Feigin takes the following definition for gl(A): he takes a 
Casimir ~x (which he does not specify) and defines gl(A) to be the quotient of U 
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by (/X - A(A - 1)/2). Casimirs are unique up to scaling and shift by a scalar, so 
~x = c~A + fl for some c~, fl E C. However, we were not able to match Feigin's 
definition with ours. In [2] also U/(A_~) is considered. 

Let us make some remarks. Suppose that we have a nontrivial representation 
of sl2(C) on a linear space V, so p: sl2(C) --+ gl(V), such that the Casimir 
A is represented by a scalar, say #. Such a representation can be considered 
as a representation for gl(A) if ,~2 _ 1 = #. So let A satisfy this equation. 
Then one can ask for the kernel of p. In the next section, we will prove that 
sl(A) is a simple Lie algebra if and only if A ~ {-t-2, 4-3, 4-4, . . .}.  Therefore for 
A ~g {4-2, 4-3, 4-4, . . .  } the kernel is {0}. In the other case, A E {4-2, 4-3, 4-4, . . .  }, 
the ideal I~ as described above is the only ideal in sl(A). Hence, the kernel of p 
is either {0} or I;~. This gives a description of the primitive ideals [3] of sl2(C), 
assuming that such an ideal contains (A - #) for some # E C. We remark that 
for infinite-dimensional representations p(A) is not always diagonalizable, not 
even for irreducible representations. 

For finite-dimensional irreducible representations, A acts automatically as a 
scalar thanks to Schur's lemma. For sl2(C) the situation is rather simple, namely 
sl2(C) has a unique irreducible representation Pn of dimension n = 2, 3 , . . . .  For 
the Casimir we have 

pn(A)  = n  2 -  l. 

So we see that for finite-dimensional representations, the Casimir can take only a 
discrete set of values. This explains why only for some discrete set of A's, there 
exist finite-dimensional modules for gl(A). This gives an algebraic explanation 
for the "quantization of cohomology" as discussed in [7], though it does not 
explain why only for A E {1,2, 3, 4 , . . . )  there is a module of smooth functions, 
namely I?n. 

4. The Structure of gl(A) 

In this section we return to considering gl(A) as space of differential operators. 

4.1. 

By construction, gl(A) contains sl2(C) as a subalgebra, sl2(C) being (e, h, f ) .  
Hence we can consider gl(A) as an slz(C)-module. Let gl(A) (n) denote all ele- 
ments of gl(A) up to order n. In particular, we have that gl(A) (I) is a Lie sub- 
algebra isomorphic to gl2(C ), and gl(A)(1)/gl(A) (°) is just sl2(C). More general, 
for all n E N, gl(A) ('~) is a finite-dimensional slz(C)-module. At first sight the 
order could be n + 1, but the commutator reduces one order. By Weyl's theorem, 
gl(k)(n) is completely reducible as an sl2(C)-module. We choose a basis, reflect- 
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ing this fact. This basis will contain the elements {piqJ}, i , j  E N, i + j  E 2N. If 
i = 0 (j  = 0), we just  write qJ (pi). We define {piqj} inductively by 

• • 1 

p2n = 2e n and p~qa _ i + 1 [O'pi+lqj-l]" 

A straightforward calculation yields the following form for p~qa, i + j = 2n. 

L E M M A  4.1. 

p i q j = ( - - 1 ) i { 2 x i O n + i ( n - A ) x i - l o n - l +  ( 2 ) 7 ( n ) x i - 2 0 n - 2 + . . . } ,  

where 
n - 1  

"y(n) -- {(72 -- 1)(n -- 2) q- ( 2n - -  3)(1 -- )~) q- (1 -- )~)2}. 
2n  1 

4 .2 .  

Now we consider the commutator  structure of gl(A). Till now it is not clear why 
we denoted the special basis by {piqj}, but the following proposition will clarify 
this. 

PROPOSITION 4.2. Let {p~qJ} denote the basis of  gl(A) as introduced above. 
Then 

o c  

~)i qj, pk ql] = (il -- jk)pi+k-l  q j+l- l + ~ cs (pi qj, pk ql), 
s=2 

where Cs: gl(A) x gl(A) --+ gl(A) maps gl(X) (m) x gl(A) (n) to gl(A) (m+n-s-~), 
and Cs is degree-preserving, meaning that 

deg(cs(pi qJ, pk qZ) ) = deg(pi q j) + deg(pkqZ). 

Moreover 
, 2 c~ ~(X 1, ,, 

. = - -  - d ) C 2  

with 

and 

= k(k - 1)(k - 2 ) j ( j  - 1)(j - 2) - i ( i -  1 ) ( i -  2 ) / ( / -  1 ) ( / -  2) + 
+3ijk l ( l i  - j k  + k + j - i - l)pi+k-3 q j+l-3 

,, i j k z c~2(Piq j A pkq l) 
c2(Pq 'P q)  = (k + l -  1 ) ( i + j -  1 ) ( i + j  + k  + l - 3 )  

and for all s = 2 ,3 , . . .  

Cs (piqj p~qZ) = 0 for i + j <<. 2. 
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The proof of this proposition is straightforward (though tedious), using the explic- 
it form of piqj from Lemma 4.1. The last statement is a reformulation is the 
s12 (C)-structure, which motivated the choice of the {piqj }. From this proposi- 
tion one sees that gl(A) is a deformation of a Poisson subalgebra on the plane. 
This aspect will be discussed in Section 5. 

4.3. 

We will draw some conclusions from the foregoing. The next lemma shows how 
natural the choice of the {piqj} is. 

LEMMA 4.3. Let I C sl(A) be an ideal. Then either I = 0 or I contains all 
piqj with i + j ) 2n for some n E N. 

Proof. If I is nonzero, it contains an element, say x ¢ 0. We may assume 
that x is graded, since acting by h decomposes x. So suppose x has degree m 
and order n: 

n 

X = ~ ai pi+mqi-m 

i=0 
an 5 0 .  

By 72 - m times applying p2 to x, we see that p2n E I. By i times applying q2 
to p2~ (i = 1 , 2 , . . . ,  2n), we see that pZ•-iqi C I. Similarly, by applying p3q to 
pZn, it follows that also p2n+2 C I. Continuing this process, we see that all p i q j  

with i + j />  2n are in I. If I contains elements outside this linear space, we can 
continue till this is no longer the case. [] 

Now we are able to prove simplicity for almost all sl(A). 

PROPOSITION 4.4. sl(A) is simple if and only if A f{ {+2, ±3, +4 , . . . } .  
Proof. The only if-part we proved in Subsection 2.3. So we only need to 

prove that sl(A) is simple for A ¢ {+2,4-3,~-4, . . .} .  So take such a A, and 
suppose I is a nontrivial ideal. Let x be a minimal (in order) element in I, say 
ord(x) = n. If n = 1 then I = sl(A) (again by Lemma 4.3), so we may assume 
that n >/2. According to Lemma 4.3, I contains p2q2n-2. Now one can calculate 
the two leading terms in ~)4,pq2n-l] using Proposition 4.2: 

[p4, pq2n-l] = (872 -- 4)p g q 2n-2 + O~(/~ 2 -- n2)p2 q 2n-4 + . . . ,  

w h e r e  c~ ¢ 0. So  we  see, s i n c e  )k 2 - n 2 • 0 for  )k ~ { - t - 2 , - t - 3 , - 1 - 4 , . . . } ,  tha t  

pZq2n-4 -t- . . .  E 1. But this contradicts the minimality of x. [] 

5. gl(A) as Deformation of  a Poisson Algebra 

In the previous section, we noted that gl(A) is a deformation of some Poisson 
algebra. Here we will discuss this correspondence in more detail. 
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5 .1 .  

Let/4o denote the subalgebra of the Poisson algebra on the plane, consisting of 
even polynomials: a basis for H0 is {piqj}, with i , j  E N, i + j  C 2N, and the 
commutator is given by 

~giqj,pkql] = (il - j k )p  i+k- l q j+l -1 .  

As one sees from Proposition 4.2, the commutators of H0 and gl(.~) agree on 
top level. However in Ho there are no terms of lower order. Therefore the order 
is not only a filtering on H0, but even a grading*. 

In Feigin's paper [4], one of the central problems is to find all deformations 
of /4o. Here we take deformations to mean deformations which leave Ho on 
top-level unaltered. So a deformation will mean a Lie algebra with basis {piqj}, 
i + j even and Lie product [., "]t of the form 

~)iqJ,pkql]t  = (il - j k ) p i + k - l q  j + l - t  + 

÷ ~ tr+Sa(i , j ,k , l , r ,s)  pi+k-l-rqj+l- l -s .  
r+s~-2,4,... 

Some deformations can, by a change of basis, be transformed to the original Lie 
algebra, i.e. after a change of basis we find fii(tJ such that 5(i, j, k, 1, r, s) = O. 
Such deformations are called trivial. Using the technique of inner gradings (see 
[4], § 1.5.2), one knows that any deformation of the form above can be put in the 
form 

(x) 

[piqJ,pkql]t = (il - jk)pi+k-iq j+l-I + ~ t2Scs(piqJ,pkql ) (5.1) 

8=2 

with cs(pi qJ,pk q l) = a( i, j, k, l, s ) p i + l - l - S q  j + l - l - s .  M o r e o v e r  o n e  can prove 
that any nontrivial deformation can be put in a form such that the first appear- 
ing nonvanishing Cs is nonzero in H~_s)(H0; H0), the second cohomology group 
of/4o with coefficients in the adjoint representation. Therefore, to find nontriv- 
ial deformations it is necessary to find H~_8)(H0; Ho). This calculation can be 

performed by computer using spectral sequences, and thanks to the fact that 
H2(H0) is known (see [8]). Here we only give the result. For s /> 1, we find 
H~_s)(Ho;Ho) = 0 unless s = 2, and a basis of H~_s)(Ho;Ho ) is {c~, c~ ~} as 

/ 
defined in Proposition 4.2. We note that c 2 can be extended to the full Poisson 
algebra, and is well-known there, see, for example, [6, Section 11]. Extension to 
the full Poisson algebra is impossible for c~ ~. 

5 .2 .  

Our problem was to find all deformations of H0 in the sense of the previous 
subsection. We know that for the first term we can take a linear combination 

* The degree being one less than the order, i.e the degree ofp~q j is (i + j ) /2  - 1. 
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of c~ and c~. This first term is called the infinitesimal deformation. Usually not 
all infinitesimal deformations can be extended to a deformation. In this case, 
however, the situation is different. This is not difficult to prove: going from 
a d  2 + flc~' to 7(ac~ + flc~) corresponds to rescaling t. Hence, effectively the 
(infinitesimal) deformations are parameterized by IP1 (C) instead of C 2. But for 
all elements (c~ • r )  E P1 (C) except (0 " 1) we have already a deformation, 

' • - ¼ ( A  2 1 ) )  = ( a  " /3), S o  all namely gl(A), where A is such that ( 48 
infinitesimal deformations ac~ +/3c~ can be extended to a deformation, except 
possibly c~'. But the extendible values (a,/3) form a closed set in C 2. So also c~ 
can be extended. We discuss this case in the next subsection. 

We close this subsection with a final remark. One can prove that all cs, s = 
1,2, 3 , . . .  in (5.1) can be chosen sl2(C)-invariant, i.e. 

[g, y)] = y) + [g, y]) 

for g E sl2(C) = (e, h, f ) .  However one can also prove that there are no sl2(C)- 
invariant coboundaries in B~_s)(Ho; Ho). Since the nonuniqueness in the cs is 

exactly the adding of an element of B~_~)(Ho; Ho), it follows that the series 

(cs) takes a unique form, if we require sl2(C)-invariance. For a more detailed 
discussion, see [9]. 

5.3. 

Here we discuss the deformation corresponding to " c 2 . We give an explicit descrip- 
tion of this algebra. It turns out that this algebra is the only one among the 
deformations, which can be realized linearly. By this we mean, that by tak- 
ing a suitable representative for l_,  g%, we find that for the series (cn) satisfies 

Cl = e3 • c4 . . . . .  0.  The deformation corresponding to ½dr is 

~)iqJ,pk ql]t = (il -- jk)p~+k-l q j+l-I + t 2 c2(piqJ,pkq l) 

where 

c2 (p2k+ I q2r+ 1, p21+ I q2S+ 1 ) = (ks - rl)p2k+2l- I q 2 r + 2 s -  1, 

C2 (p2k qar, p21+ I q2S+l  ) = ( Ig 8 -- rl )p2k + 21- 2 q 2r + 2s- 2, 

C2 (p2k q2r, p2I q2S ) = 0.  

By a direct calculation one can show that c2 = ~c~' modulo some coboundary. 
This coboundary is chosen such that the Massey square (see [5]) of c2 is 0. 
However, c2 is not sl2(C)-invariant any more. 

5.4. 

Finally some words about defining relations for gl(A). Thanks to [8], we know a 
set of defining relations for H0: if the commutators between the elements {piqj } 
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for i + j ~ 4 and {pkql} for k + l ~ 6 are given*, then the corresponding Lie 
algebra (i.e. the quotient of the free Lie algebra on the generators {p~qJ} for 
i + j ~< 6 modulo the ideal of relations) is isomorphic to H0. 

Now all gl(A) have H0 as the associated graded Lie algebra. From this fact it 
is not difficult to prove, that in this case the commutators of {piqj} for i + j  ~< 4 
and {pkqZ} for k + l ~< 6 are also defining relations. 

6. Relation Between gl(n + 1) and Inv(I?n) 

6.1. 

In this section, we discuss the relation between gl(n + 1) and Inv(IPn). A part of 
this relation was already discussed in Proposition 2.2. Here we recall a theorem 

from [11]. 

THEOREM 6. I. Let T be a differential operator of  order less than n + 1, and 
suppose that T E Inv(I?n). Then T E gl(A) with A = n + 1. 

Note that terms czlO k for k /> n + 1 annihilate lPn, so such terms are in 
Inv(I?,~). So the algebra Inv(IPn) consists more or less of two (intersecting) parts: 

gl(A) and differential operators T of the form T = ~'0 n+l. Our purpose is to 
show how these parts can be united. 

6 ,2 .  

Suppose that T has degree m. If deg(T) ~< 0 then automatically T C Inv(I?n), 
but also T C gl(n + 1), see Subsection 2.3. So let us assume that m > 0. It is 
clear that in this case T should annihilate x n, X n - 1  , x n - 2 , . . . ,  Z n - m + l  . Here we 

see the reason for the "break" at n + l : if m > n + 1, then n - m + 1 < 0, and in 
the series above the last terms disappear. So it seems that the following number 

should be important: 

p(m) ~ I{i ~ {0, 1 , 2 , . . . , n )  ] i + m > n) l .  

To prove the main proposition, we need the following remarkable result from 

[12]. 

LEMMA 6.2. For all n = O, 1 ,2 , . . .  there holds 

(0220 - -  7~X) n + l  ~___ 3 7 2 n + 2 0 n + l  " 

* Which means that we consider {p~qJ} for i + j = 8 as formal elements; the first time such 
an element appears, can be considered as the definition of it, all next times are relations. 
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Proof. It is clear that (x20 - nx)  n+l = x 2 n + 2 o n + l  + . . . .  However, ( 2 : 2 0  - -  

nx) n+l annihilates I?~. Therefore the dots vanish, since otherwise IPn is not 
annihilated. [] 

The number p(m) occurs in the following proposition: 

PROPOSITION 6.3. Suppose T has degree m, e = x20 - nx  (E gl(n + 1)) and 

T E Inv(~n). Then there exists a differential operator T such that 

T = Te p(m). (1) 

Proof. If m <~ 0, there is nothing to prove. We assume that T has order k, so 
that we have T = o~xm+ko k + . . . ,  ol 7£ O. 

(1) First we consider the case that m > k. Since Inv(It'n) is an algebra, [e, T] -- 
(m - k)xm+k+tOk + . . .  E Inv(I?n) and continuing we find that Inv(l?7~) would 
contain an element 2P = x n + l + k o k  -b ' '  ". If, however k ~< n this is impossible, 
since then 2~ does not annihilate I?r~. So there are no elements T in Inv(I?n) 
with deg(T) > ord(T), if ord(T) ~< n. On the other hand, if T = xm+kOk with 
k >1 n +  1, m >>. k, one can find T E ~ such that T = Tz2'~+20 n+l. But 
( X 2 0  -- nx) n+l = x 2 n + 2 0  n+ l  (Lemma 6.2), so indeed T = Te n+l = r e  p(m). 

(2) To prove (6.1) for all m, k we apply induction with respect to k, keeping 
m fixed. From the previous (1) we know that (6.1) is true for m > k, so 
for small k our hypothesis is true. So assume now that T = o~xm+ko k + . . . .  
If k < m there is nothing to prove, according to (1). So assume k ~> m. Now 
o z x k - m o k - m e  m = olxm+kOk +" . ". Clearly olxk-P(m)ok-p(rn)eP(m) C Inv(]?~), so 

also T - o ~ x  k-p(m)O k-p(m) e p(m) E Inv (IPn). But, due to our induction hypothesis, 
we have that the last expression is a left multiple of e p(m). So also T itself. This 
completes the proof. [] 

It is not difficult to match Theorem 6.1 and Proposition 6.3. One other point is 
worth mentioning. Similar results as in Proposition 6.3 for I?n can be generalized 
to Inv(V) for V = (x i', x i2 , . . . ,  xi"), see [10]. 
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