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Temperature dependence of the step free energy
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We have derived an expression for the step free energy that includes the usual thermally induced step
meandering term and a vibrational entropy term related to the step edge atoms. The latter term results from the
reduced local coordination of the step atoms with respect to the terrace atoms and was introduced recently by
Frenken and Stoltze as well as by Bonzel and Emundts. Additionally, we have added third and fourth terms that
deal with the vibrational entropy contribution of the thermally generated step and kink atoms. At elevated
temperatures the two latter vibrational entropy terms are of the same order of magnitude. Incorporation of these
vibrational entropy terms results in a faster decrease of the step free energy with increasing temperature than
anticipated previously. This enhanced temperature dependence of the step free energy results in a lower thermal
roughening temperature of the facet.
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The surface free energy of a surface of a solid is an im- As a model system we consider t@01) surface of a
portant parameter that is needed for a proper understandirgimple cubic latticdKossel crystal with lattice parametea.
of many surface processes such as crystal growth, facetingurthermore, we take only an isotropic nearest-neighbor
and etching. Experimental determination of the surface freénteraction energy¢ into account and we consider only
energy is, however, far from trivial and only a very limited steps running along the high-symmetf10] direction.
data set exists. The surface free enegfw,T) of a vicinal ~ The formation of kinks allows the step to wander, increasing
surface, misoriented with respect to a low-index orientatiorthe entropy and thus decreasing the free energy for step
by an anglex at a temperaturd, is usually expanded &s formation. At zero temperature the step free energy
becomes equal to the step edge formation energy. If we
f(T) 3 assume that the creation of a kink with unit lengtltosts
Y@, T)=y(0T)+ ——[tanal+q(T)|tanal®, (1)  energye(=¢/2), a double kink costs energy 2etc., and
the step edge formation energy per unit len@threquires an
where y(0,T) refers to the surface free energy per unit areaenergy¢/2, then the step free energy can be calculated using
for the low-index Miller index surfaced is the step height, the partition functiorz:
f(T) is the step free energy per unit lend#) for forming a
step of heighd, and finallyq(T)| tana|® corresponds to the
energy cost per unit area due to step-step interactions. The
average spacing between the stefds=sd/ tana. Since steps

f(T)=—kTInZ=—kTIn[ e #/kT

1_'_22 ena/kT):|
n=1

are not allowed to cross, there is a temperature-dependent kTl 1+e o/kT
entropic repulsion between them, falling off s2. In gen- =&—kTln 1—e ¢/kT|’ @

eral, the energetic step-step interaction exhibits a similar be-
havior, i.e.,~L 2. Here we focus our attention on only one Wherek is Boltzmann's constant. Frenken and Stoltzs
of the parameters from Eql), namely, the step free energy Well as Bonzel and Emundtgointed out that thermal vibra-
f(T). The step free energy itself is an important quantity too tions of the step atoms form another source of entropy that
For example, the thermal roughening transition of the facehould be included in Eq2). The reduced coordination of
can be extracted from the temperature dependence of the stl}$ step atoms versus the normal terrace atoms lowers the
free energy[by requiring thatf(T)=0]. At the roughening typical wbraélon frequency of the step atoms versus the ter-
temperature T,) steps are spontaneously generated on théace atoms ~and therefore lowers the step edge free energy.
facet because there is no additional free energy required for0 account for this effect, both groujssadded an additional
their formation. term to Eq.(2). They both assumed that the step and terrace
It is the aim of the present paper to show that the step fre@0ms are harmonic_, isotropically vibrating Einstein oscil_la-
energy exhibits a faster decrease with increasing temperatuf@rs, i-€., only one single mode was considered. Determi-
than anticipated previously. As well as including step meanhation of the density of staté(w) reveals that this assump-
dering and the vibrational entropy of the step atdthsye  tion is reasonable for several materiafs’ The vibration
have also included the vibrational entropy of ixtrastep  frequency of the step atomss is lower than that of the
and kink atoms that are thermally generated at elevated tenflormal terrace atoms,, due to the reduced local coordina-
peratures. We will show that at elevated temperatures botHon (four nearest neighbors for the step atom versus five
vibrational entropy terms are of the same order of magninearest neighbors for the terrace atare approximate re-
tude. Incorporation of both vibrational entropy terms resultgationship is
in a significant lower thermal roughening temperature of the

facet. W= \/§ Wi - 3
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The free energy of an isotropic Einstein oscillator is given byHowever, it is more appropriate to discriminate between kink
and step atoms, because kink atoms have an even lower co-
ordination than step atoms$in our case three nearest-
neighbor bonds versus four nearest-neighbor bpntlke
corresponding Einstein temperature of the kink atom@,is

=3fw+3kTIn(1—e KT, (4 =\[z6,. The probability of finding a kink site in the step
The factor of 3 in Eq(4) accounts for the three orthogonal €dge,P(k), and the probability of finding no kink in the step

directions of vibration. The additional vibrational free energyedge,P(0), are, respectively,
of a step atom versus a terrace atom is then

o

f=—3kTInZ=—-3kT In{ > e”’“‘”kTeﬁ“”ZkT}
n=0

* zefslkT
—hwg /KT — —
—e fos P(k)=22, P(n)=———t, (9)
Af(T):fs—ft=3kT|n(W)+Eﬁ(a)s—a)t). n=1 1+e
5 1— kT
Substitutingk 6, ;=fiw, s, where 6, s is the Einstein tem- P(0)=1-P(k)= T g=em- (10
perature of the terracestep atom, yields for the total step
free energ§ Furthermore, the increase in the number of step ataiig)
kT ot due to the thermal generation of kinks with an absolute
f(T)=e—KTI +e 3T 1-e ' length of 2 or more is given by
(M=e N —gekT N @
A * A Ze—Zs/kT
3 B — I
+ 5 k(05— 6y) (6) ANs ( a)zn; (n=1)P(n) ( a)(l—ezg”ﬁ)'

11)

=./2
where fs= \/;at_' _ _ Averaged per original step edge siteTat 0 K one finds a
Equation(6) is precisely the result obtained by Bonzel faction of 26~ 2¢/KT/1— e~ 2¢/KT additional step atoms.

and Emur.ldté.l?r.enken and StoltZdound an expressionthat  ginally we arrive at the following expression for the step
is similar in spirit to Eq.(6). Rather than assuming different ¢.oq energy:

vibration frequencies for step and terrace atoms, respectively,
they assumed that the vibration amplitude of step edge atom<
(o) is higher than that of the terrace atoms)( resulting in

an entropy difference per step atom &BIn(os/0y). We will ot g

use Eq.(6) as a starting point and consider additional contri- %g% j%uuur
butions to the step free energy as well. The main contributior *‘@ﬁc DE”%ED
that we add to Eq(6) stems from the fact that, with increas- :

ing temperature the total step edge length increases. Due 1 05

this increase in the total step edge length, the total number c i Eg'z ( Bonzel & Emundts)
step atoms increase with increasifiglf \, is the total step =% —ﬁ'—Eq:IZ (This work)

edge length at zero temperature then the total step edg =
length\(T) is given by )

= 0.0

AMT)=MNo

*© 2efs/kT
1+22 nP(n))=)\0(1+mk—T),
n=1 -

()

1— e elkT 00 02 04 06 08 10

P(n)=we ) T/T

m

wheren is the kink length measured in units afand P(n)

the probability of finding a kink with lengtim.*” The factor tive temperaturd/T,, for Egs.(2), (6), and(12). Equation(2) in-

of 2in Eq. (7) orginates from the fact that both positive and cludes only thermally induced step meandering, ®yrefers to the

negative kinks can occur in a step. The total step free energy. free enerav as determined by Frenken and Stékeé 3 and
(per unit length of the step at=0 K) thus becomes P 9y y (Fee 3

Bonzel and EmundtéRef. 4 and includes the vibrational entropy

FIG. 1. Plot of the relative step free enerf\kT,, versus rela-

4 elkT A 0T of the step atoms as well. Finally, E(L2) includes thermally in-
f(T)=e—kTIn e + 3kTIn(ﬁ—) duced step meandering and the vibrational entropy term from Eq.
1—e ®/kT 1-e %7 (6) as well as the vibrational entropy of the additional step and kink

atoms which are thermally generated at elevated temperatures. We
have assumed a kink energy kT,, and an Einstein temperature of
a terrace aton®=0.15T,.

3 e*s/kT
+§k(05_0t) (1+mﬁ)- (8)
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e e/kT 1—e 0s/T tional vibrational entropy contribution of the kink and extra
H(T)=e—kTIn| 3—g=amr| +| 3KTIn| T— =777 step edge atoms that are thermally generated at elevated tem-

peratures cannot be neglected.

1—e &/kT 2 2e/kT The importance of our analysis is evident since the step

1+GSIKT) +( ) free energy is a key parameter in many equilibrium surface
processese.g., faceting and thermal rougheniras well as

3
+ Ek( 05— 6) 1—e Ze/KT

~ 0517 2ge/kT nonequilibrium processe®.g., crystal growth and etching
X 3kTIn(WT + Ek( O0s— 6;) |+ 1+—_S,k—T) For example, incorporation of vibrational entropy terms in
—€ € the step free energy results in a thermal roughening tempera-
1—e O/T\ 3 ture of the corresponding facet that is much lower than an-
X 3kTIn(W)+§k( 0= 6)|. (12 ticipated before. Moreover, the importance of considering

vibrational entropy contributions extends beyond steps. Re-
The difference between this equation and E).is quite  cently, Bonzel and Emundt$iave shown explicitly that for
small, indicating that the main effect stems from the creatiorih€ surface free energy of low-index facets vibrational en-

of additional step edge length at elevated temperatures rathBPPY cannot be ignored. _ _
than an increase in the total number of kinks. In conclusion, we have shown that the incorporation of

In order to visualize the effect of the additional vibrational the vibrational entropy of additional step and kink atoms _that
entropy contribution of the kinks atoms and the additional®™® generated at elevated temperatures results in a significant

step edge atoms we have plotted E(, (6), and(12) in reduction of the step free energy.

Fig. 1. Equation(2) includes only step meandering, whereas  The idea of writing this paper stemmed from a presenta-
Eg. (6) refers to the equation derived by Bonzel andtion given by Professor Hans Bonzel dealing with the deter-
Emundts’ In order to obtain a plot of/kT,,, versusT/T,,we  mination of the absolute values of surface and step free en-
have assumed that=kT,, and #=0.15T,, (T, is the melt-  ergies from equilibrium crystal shapes. The authors thank
ing point of the crystal and refers to the Einstein tempera- Professor Hans Bonzel for his encouragement to publish this
ture of a terrace atonAs is evident from our plot the addi- work and his helpful suggestions and comments.
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