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A Method for Pressure Calculation
in Ball Valves Containing Bubbles
A method of analyzing bubbly flow in a ball valve in a hydraulic circuit is presented.
dynamics of a single bubble can be well described by a quasi-static approximation o
Rayleigh-Plesset equation. Hence the presence of bubbles in low volume fractions c
modeled through an effective compressibility of the flow, which is easy to impleme
commercial CFD packages. In the sample valve, a volume fraction of 4% air bub
results in a mass flux reduction of up to 10%, as the bubbles expand due to the pre
drop in the valve and partly block it.@DOI: 10.1115/1.1486220#
r

c

a
r
a

i

f

u

e

ow
uld

ht-
tion.
gas
owl-
s of
for
lve,
re-

la-
a

ve
ed

ble
e on
the
1 Introduction

A common type of valve in mobile hydraulic systems is the b
valve ~see Bosch@1#!. Basically, it consists of a cone-shaped se
where a ball can be pressed into the seat by a spring or a m
netically actuated poppet, see Fig. 1. Applying a sufficiently la
pressure difference across the valve, the force holding the ba
the seat will be overcome and the valve opens.

A frequent design requirement is to maximize the mass fl
during the time the valve is open. Gas bubbles in the flow
counteract this aim, because they expand when entering the
pressure regime and thus partially block the valve.

The aim of the work presented in this paper was to investig
by analysis and simulation, how gas bubbles and liquid inte
and affect the functioning of the valve. A number of simplific
tions have been imposed. First, the bubbles are assumed to co
of air. Any vapor fraction in the bubbles is neglected. Second,
formation of new bubbles is not examined. Dissolution of air, d
to local temperature or pressure changes, is neglected. Third
investigations were made into the size of the bubble nuclei en
ing the valve. Bubbles with ambient radii between 20 and 200mm
are assumed to be present in the valve. For the sample valv
this article, the maximum bubble size is limited by the hydrau
circuit of which it is a part. A typical length scale of the valve
1 mm. Further characteristics of this example problem are
high viscosity,m50.27 kg m21 s21, the surface tension at the in
terface air-liquid,s50.035 N m21, and a 4% volume fraction o
air. The speed of sound in the liquid without bubbles iscl

51493 m s21 and the density isr l51092 kg m23.
The paper first examines how a single bubble reacts to

pressure field in the valve. In Section 3, a density function
constructed which describes the density of the air-liquid mixt
as a function of the pressure. This approach is possible only
cause Section 2 shows the bubble dynamics to be of secon
importance for the sample valve. If this were not the case,
density at a point in the flow field would depend on the pressur
that pointandon the pressure history along the streamline throu
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the point in question. As the streamline is the result of the fl
field being calculated, some complicated iterative process wo
then be needed to solve the problem.

Determining the volume-averaged density is still not straig
forward, because it should depend on the bubble size distribu
Due to the surface tension, the total volume occupied by the
bubbles is nonlinearly dependent on the pressure. Some kn
edge of the number of bubbles present and the initial value
their radius seems necessary. However, it will be shown that,
the size of bubble assumed to be present in the sample va
different distributions of bubble size lead to almost the same
sult. So one may choose the simplest.

Being now supplied with a well-justified pressure-density re
tion for the bubbly flow in the valve, we perform, in Section 4,
full numerical simulation of the flow through the sample val
with a commercial CFD-Package. Conclusions will be contain
in Section 5.

2 Calculations on a Single Bubble
We first focus on a single bubble. It is assumed that the bub

travels along a streamline through the valve. The local pressur
the bubble is used as input to determine the development of
bubble radius.

n
r: Y.

Fig. 1 Sketch of the main features of the ball valve
002 by ASME SEPTEMBER 2002, Vol. 124 Õ 765
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2.1 The Driving Pressure of the Bubble. For the sample
valve results of a 3D flow simulation were used to find the pr
sure along a streamline. The presence of the bubbles was
taken into account, but was based on a model for compress
flow.

Some examples of pressure development along stream
through the valve in the fully open position are given in Fig.
The pressure drop occurs in two stages. The fluid motion thro
the valve has swirl and is not strictly rotational symmetric. Also
sealing lip in the seat of the sample valve makes the geometry
the flow more complicated. This leads to a pressure reductio
two stages, instead of the more straightforward pressure reduc
one would get for a valve like the one in Fig. 1.

To be able to make some general statements, not limited to
present example, the bubble response is also calculated u
some conceived functions as input, having the advantage tha
rameters can be varied.

As model function a pressure drop is taken, which is su
ciently smooth to pose no problems for the integration, see Fig

The pressures at the inlet and outlet of the ball valve arep0 and
p1 . This pressure drop occurs within a time intervalDt, being the
time it takes the bubble to traverse the valve.

2.2 Bubble Dynamics. Using the terminology in Hilgen-
feldt et al.@2#, Leighton@3#, and Brennen@4# the following equa-
tion will be referred to as the Rayleigh-Plesset equation:

r l S RR̈1
3

2
Ṙ2D5pgas2pext2

4mṘ

R
2

2s

R
1

R

cl

d

dt
pgas. (1)

Fig. 2 Pressure development along four different streamlines
in the example valve

Fig. 3 Polynomial approximation of the pressure drop in the
ball valve
766 Õ Vol. 124, SEPTEMBER 2002
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Equation~1! takes the compressibility of the liquid into account
a limited extent, through the last term in the equation. This te
represents the pressure associated with emitted sound waves

As stated in the Introduction, two possible processes of m
transfer between fluid and bubble are neglected in the analy
dissolution of air in/out the hydraulic liquid and evaporatio
condensation of the hydraulic liquid.

The influence of phase changes of the hydraulic liquid is
glected, because the vapor pressure is much smaller than the
sure of air in the bubble. The values of the pressure before
after the valve are known~55,000 Pa and 5000 Pa respectively f
the example!. Since the value of the vapor pressure is of the or
of several hundred Pa, it is reasonable to assume that the pre
never drops below the vapor pressure. The influence of gas d
lution is also neglected. The solubility is strongly dependent
temperature and weakly dependent on pressure. The tempera
however, remains constant in the example. Dissolved air can
released from the liquid by diffusion. The diffusion length scale
given by:

l 5ApDDt. (2)

For the problem examined as an example,D;2.6
•10210 m2 s21. Using a characteristic time scale ofDt;3•1024

for the bubble dynamics, as calculated later on, the diffus
length scale is 0.5mm, much smaller than the bubble radius: th
influence of gas dissolution can therefore also be neglected.

The behavior of the pressure of the gas in the bubble is p
tropic. Because the Pe´clet numberRṘ/U !1, the isothermal limit
~see Plesset and Prosperetti@5#! is considered:

pgas5

S p01
2s

R0
D ~R0

32h3!

R32h3 ; (3)

h5R0/8.85 is the v.d. Waals’ hard core radius.

The eigenfrequencyv of the bubble~Minnaert frequency! follows
from linearizing the Rayleigh-Plesset equation~see Brennen@4#!:

v25
3R1

r l
S p01

2s

R0
D ~R0

32h3!

~R1
32h3!2 2

2s

r lR1
3 . (4)

A characteristic time scale based on the Minnaert freque
tc52p/v will be needed later for comparison with other tim
scales, notably the time interval needed for the passage of
bubble through the valve.

The important aim of this research is to investigate how
bubble responds to a pressure drop: will the bubble expand
collapse violently~undesired! or does it exhibit a delayed expan
sion ~favorable, since the expansion would take place behind
valve!? It will turn out that the latter is the case and that it is ev
possible to use a quasi-static approximation to describe the bu
behavior. This approximation, see e.g., Hilgenfeldt et al.@2#, con-
sists of dropping all derivatives with respect to time in t
Rayleigh-Plesset equation

05S p01
2s

R0
D S R0

32h3

R32h3D 2
2s

R
2pext~ t !, (5a)

which is a simple fourth-order polynomial expression forR(t).
Neglecting the hard core radiush!R0 ,R, it reduces to a third-

order polynomial

2pext~ t !

p0
R32

2s

p0
R21S 11

2s

R0p0
DR0

350. (5b)

In this approximationR(t) can be given analytically in terms o
pext(t).

A concept used in the study of the acoustical behavior
bubbles is the Blake radius~see e.g., Hilgenfeldt et al.@2# or
Leighton @3#!. Bubbles smaller than the Blake radius displ
quasi-harmonically oscillating behavior, larger ones exhibit ra
Transactions of the ASME
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collapses. In the latter case, a complete description of the bu
behavior requires the use of the Rayleigh-Plesset Eq.~1!, rather
than Eq.~5!.

The Blake radius as a function of the pressure amplitude can
calculated from Eq.~5b!, see Eq.~3.4! in Hilgenfeldt et al.@6#,
and is displayed in Fig. 4. From that figure it can be conclud
that for the relatively small bubbles and small pressure amplitu
relevant to this study, the bubbles remain below the Blake thre
old throughout.

Fig. 5 Bubble radius response for a slow drop in pressure.
DtÄ1 ms, tcÄ28 ms. „a… External pressure; „b… bubble radius
development; „c… difference between the solution of the full
Rayleigh-Plesset equation and the quasi-static approximation.

Fig. 4 Blake radius for different combinations of final and ini-
tial pressure
Journal of Fluids Engineering
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To confirm this, the bubble dynamics were determined by
merically integrating the full ODE~1! with the model pressure
function pext(t) given in Fig. 3.

Three qualitative responses can occur, depending on the rat
Dt/tc and on the value of the viscosity. Figures 5 and 6 show
response of a bubble with an initial radius of 50mm. The bubble
response is qualitatively independent of the initial bubble rad
but depends on the ratio ofDt andtc . If Dt is of the same order
as tc or smaller, then the response will not follow the pressu
closely. Figure 5 shows the bubble response for a pressure
that occurs on a time scale comparable to that found alon
streamline in the sample valve. The quasi-static approxima
(5b) introduces only a small error, see Fig 5(c). The bubble
response to steep pressure drops is shown in Fig. 6. If the vis
ity is large, the bubble radius will lag behind the pressure, as
Fig. 6(c). For lower values of the viscosity, the bubble radius w
exhibit overshoot, as demonstrated in Fig. 6(b). Figure 7 shows
the bubble response to the pressure development actually fou
the 3D simulation of the flow through the example valve. Larg
pressure drops however can initiate much more violent bub
collapses and the quasi-static approximation would break do
Examples are jet cavitation~Cerutti et al.@7#!, cloud cavitation
~de Lange et al.@8#!, edge cavitation~Young@9#!, or sonolumines-
cence~Crum @10# and Brenner et al.@11#!.

Fig. 6 Bubble radius response for a relatively steep drop in
pressure. DtÄ1 ms, tcÄ28 ms. „a… External pressure; „b…
bubble radius development for a relatively small value of the
viscosity, mÄ0.17 m2 sÀ1; „c… bubble radius development for a
higher value of the viscosity, mÄ0.27 m2 sÀ1.
SEPTEMBER 2002, Vol. 124 Õ 767



t
e
b

a
n
m

l
r
c

r

u

b

a
of

t

f
be-
and

ion
e
e
ian

c-

eri-

a-

res-

ion

ure.
sity

ibu-
ould
ame
re

ters
ian
The
2.3 Shape and Shape Stability. The Rayleigh-Plesse
equation, describing the bubble in terms of its radius, assum
spherical bubble. For the sample problem, some of the bub
simply become too big to pass through the opened valve with
deformation from the spherical shape. Another reason why
bubble might not be spherical is the pressure gradients in the
area of the valve, leading to a pressure difference across
bubble, which might cause the bubble to lose its spherical sh
To estimate whether this is likely, a comparison with bubbles i
gravitational field is made by replacing in the usual Morton nu
ber M5gm4Dr/r2s3 and the Eo¨tvös number Eo5gDrd2/s the
buoyancy force per unit volumegDr simply by u¹pu. In addition
to M and Eo, of course the Reynolds number Re5rdU/m plays a
role.

Clift et al. @12# give an overview which bubble shape to expe
for a given set of values of the dimensionless variables. For
main flow area, away from the walls, pressure gradients in
sample valve are at most 4•107 Pa m21. For the bubbles smal
enough to fit into the valve opening Re,1 and the Morton numbe
is of order 4000, putting those bubbles firmly in the spheri
range.

Finally, the stability of the bubble to shape perturbations
examined. This tests whether the bubble returns to a sphe
shape after a distortion of this initial shape. Following the analy
of Hilgenfeldt et al.@2# or Prosperetti@13#, we find that decay
times for the perturbation were found between 0.001 and 0.00
In this analysis, homogeneous conditions inside the bubble h
been assumed, thus neglecting heat losses, which cause
damping, see Hao et al.@14# or Brenner et al.@15#. The spherical
shape of the bubble is therefore very stable.

3 Modeling the Density of a Bubbly Fluid
In the quasi-static approximation, the volume of a bubble a

certain point only depends on the pressureat that point. One can
therefore look for a function to describe the density of the mixt
of air and liquid in relation to the pressure. If we take surfa
tension into account, then the density will depend on the distri

Fig. 7 Bubble radius response to the pressure development
in the example valve. „a… External pressure; „b… bubble radius
development.
768 Õ Vol. 124, SEPTEMBER 2002
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tion of initial bubble sizes. A general formula for the density of
mixture of bubbles and liquid, where the initial volume fraction
air is x, is the following:

r5
r0

~12x!1E
R0,min

R0,max

f ~R0!
4

3
pR3~R0 ,p;p0 ,s!dR0

. (9)

Here, the functionf (R0), describing the distribution of ambien
radii, is defined as:

x5E
R0,min

R0,max

f ~R0!
4

3
pR0

3dR0 . (10)

The initial density of the mixture at pressurep0 is denoted asr0 .
The expression used forR, is the quasi-static approximation o
Eq. ~5!. When also surface tension is neglected, the density
comes independent of the ambient bubble radius distribution,
the following expression is found for the density:

r5
r0

12x1x•p0 /p
. (11)

However, going one step further and including the surface tens
term, the relation betweenp and r becomes dependent on th
bubble size distribution. Two bubble size distributions will b
considered; a uniform distribution of bubble radii and a Gauss
distribution.

3.1 Uniform Distribution of Bubble Radii. For a uniform
bubble size distribution the properly normalized distribution fun
tion is

f ~R0!5
4x

Rmax
4 2R0,min

4

3

4p

and the density is described by the:

r5
r0

12x1
4x

R0,max
4 2R0,min

4 E
R0,min

R0,max

R3~R0 ,p;p0 ,s!dR0

(12)

The integral cannot be evaluated analytically. One could num
cally evaluate Eq.~12!, but within a CFD-program this would lead
to higher calculation times. Therefore we employ an approxim
tion which allows for an analytical solution. We rewrite Eq.~5! as

R0
3

R3 2
p

p0
5

2s

p0R0
S R0

R
2

R0
3

R3D . (13)

and linearize around the root of the right hand side. The exp
sion resulting forR is plugged into~12!, which is then integrated
numerically.

Differences between this method, the full numerical evaluat
of the density via~12!, and the approximation~11!, which ne-
glects surface tension, only arise for low values of the press
The difference between the three functions describing the den
is, however, at most 0.5% for the sample problem.

3.2 Gaussian Distribution of Bubble Radii. Next an ex-
pression describing the density, when the bubble radius distr
tion is a Gaussian, was also developed. A narrow Gaussian w
correspond to a situation where all the bubbles have the s
radius. It is opposite to the previous uniform distribution, whe
all the radii occur equally often.

For simplicity, it is assumed that all bubble radii fromRc down
to 0 can initially occur. The density depends on the parame
Rc , the radius b corresponding to the maximum of the Gauss
and l is a parameter used to set the width of the Gaussian.
expression for the density found in this way is:
Transactions of the ASME
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r5
r0

12x1x•E
0

Rc

A•expS ~R02b!2 ln l

~Rc2b!2 D •4p

3
R3~R0,p;p0,s!dR0

,

(14)

whereA is defined as:

A5
1

E
0

Rc 4p

3
R0

3 expS ~R02b!2 ln l

~Rc2b!2 DdR0

. (15)

The density as described by Eq.~14!, was evaluated numerically
in order to compare it to the one found from Eq.~11! ~the function
that neglects surface tension!. For a broad Gaussian lying within
the range of bubble sizes expected for the example problem,
ferences between the two functions amount to at most 1%. H
ever, if all the bubbles are smaller than 20mm, then the difference
can be up to 10%. In the last case, one cannot get away
neglecting the surface tension. However, a broader distributio
larger bubbles is assumed in the valve and so for the nume

Fig. 8 Pressure field for the example valve. „a… With density
function; „b… without density function.
Journal of Fluids Engineering
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simulation we can use Eq.~11! as the pressure density relation
and this is what is implemented in the commercial CFD code.

4 Flow Simulations for the Example Ball Valve
The flow simulations alluded to in previous sections, were c

ried out using the commercially available CFD package AVL-Fir
a finite volume method. It is fully implicit, all terms containing n
time derivatives are evaluated at the new time level. The spa
discretisation is of the hybrid type, switching between central a
upstream differencing depending on the local cell Reynolds nu
ber. The velocity and pressure fields are linked by a SIMP
(SI emi-IImplicit MI ethod forPI ressureLI inked EI quations, see e.g.
Ferziger et al.@16#!. The resulting linear set of equations is solve
by a Conjugate Gradient method for the velocity field. For t
pressure a Gauss-Seidel method, combined with black-red S
(SI uccessiveOI ver RI elaxation!, is used.

The program can only carry out 3D flow simulations. It wou
have been possible to set up a geometry for the flow calculati
based on the exact drawings of the valve. However, the geom
was simplified to a rotationally symmetrical valve. Only the flo
in a 5 deg section was simulated. The program cannot switch
cylindrical coordinates, so the simplification could not really b
exploited to the full extent. Indeed, taking such a small sect
creates a singularity at the valve axis, so the grid has to stop
short of the axis.

Although the flow field of interest is stationary, the flow simu
lation is that of a transient flow field. This has the advantage t
the boundary conditions can be imposed gradually, to avoid sh
pressure gradients from occurring during the simulation. The fi
distribution of the pressure, resulting from the simulations f
compressible two-phase flow, is given in Fig. 8~a!. As pressure-
density relation Eq.~11! was used, as justified in Sections 2 and
The pressure distribution in the incompressible monophase flo
given in Fig. 8(b).

In the compressible case, the mass flux is reduced by up
10%, as shown in Fig. 9. This is a considerable amount for vari
applications. The reason is, of course, that incompressible fl
can only respond to a pressure increase at the entrance o
valve by pushing the fluid through the valve, whereas compre
ible flow can also respond through compression, the bubbles b
the origin of the effective compressibility here. This different b
havior of compressible and incompressible flow can also be s
in the corresponding velocity fields in Fig. 10. The effect is mo
visible in the narrowest part of the valve, where a fluid partic
experiences a pressure decrease and therefore expands in the
pressible case, thus blocking the pathway and leading to a re
tion of the velocity and the mass flow.

Fig. 9 Relative difference in the mass flow through the sample
valve between the compressible and the incompressible calcu-
lation
SEPTEMBER 2002, Vol. 124 Õ 769
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5 Conclusions
In this work, the focus has been laid on calculations for

sample valve. In addition, some general conclusions concern
the procedure can be drawn, that are applicable to other
valves as well.

First, one needs to have an idea of the properties of the bubb
The content of the bubble was assumed to be air and a neglig
amount of vapor. The size of these bubbles was determined by
dimensions of other elements in the hydraulic circuit. The amo
of bubbles was determined from the measured volume fraction
air present.

The bubbles were assumed to be spherical, to be checke
retrospect. A means of doing this is to use perturbation analysi
investigate shape stability. Whether pressure gradients can lea
distortion, can be estimated by calculating the Reynolds num
and the analogue of the Morton or Eo¨tvös number. One should

Fig. 10 Velocity vector field within the example valve. „a… With
density function; „b… without density function.
770 Õ Vol. 124, SEPTEMBER 2002
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estimate, whether the geometry of the valve may lead to bub
deformations, as it obviously does, when the bubble gets too la
to fit through the opened valve.

The next step is to specify the pressure drop over the va
leading to the bubble expansion. The pressure experienced b
bubble as a function of time, is obtained by integrating the pr
sure along a streamline with a 3D code.

With that function describing the development of pressure
time, one can determine the development of the bubble radiu
time. This was done for a number of model functions and for
pressure development extracted from the flow data. To determ
the response of the bubble, the Rayleigh-Plesset equation
integrated.

For each bubble radius, a characteristic time scale can be
culated. The response of the bubble to the pressure drop dep
on the ratio of the characteristic time scale and the time inte
over which the pressure drops. For a fast pressure drop, the bu
can exhibit overshoot and will oscillate toward a final radius,
the viscosity is low. Alternatively, if the viscosity is high, th
bubble can increase in size toward the final value, but lagg
behind the pressure drop in time. If the pressure drop is not v
steep, then the bubble response can be regarded as quasi-
This is the case for the valve examined as an example. The
derivatives in the Rayleigh-Plesset equation can then be drop
and one can employ the quasi-static approximation~5!, where the
presence of bubbles can be taken into account through a pres
dependent density function.

The next step in the analysis is to find this expression for s
a density function. We have shown that the distribution in init
bubble radius sizes has relatively little influence on the den
function. If not all the bubbles are very small, surface tension
be neglected and one can use the simplest possible functio
describe the density. It is a volume average over the liquid and
gas, neglecting the surface tension altogether. Such a descri
of the density of the hydraulic liquid with bubbles in it, is easy
implement in commercially available CFD codes like the AV
Fire code used here.

For the sample valve the presence of bubbles in the flow, ca
ing the effective compressibility, has a considerable blocking
fect, reducing the mass flux by up to 10%. The reason is that
bubbles expand when experiencing the decrease of pressure
valve and thus partly block the flow through the narrowest par
the valve.

In summary, one can see that the combination of paramete
the example valve is very favorable. It has turned out that one
take account of the presence of bubbles in a very simple way
retrospect, splitting the problem into two parts, namely looking
the influence of bubbles on the flow and that of the flow on
bubbles separately, could have been avoided. Such a split
however, been necessary just to prove this very fact.
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