C. van Lookeren Campagne

Research Engineer

R. Nicodemus

Research Engineer

Robert Bosch GmbH,
Postfach 300 240,
D-70442 Stuttgart, Germany

G. J. de Bruin'

Research Engineer

D. Lohse

Professor

A Method for Pressure Calculation
in Ball Valves Containing Bubbles

A method of analyzing bubbly flow in a ball valve in a hydraulic circuit is presented. The
dynamics of a single bubble can be well described by a quasi-static approximation of the
Rayleigh-Plesset equation. Hence the presence of bubbles in low volume fractions can be
modeled through an effective compressibility of the flow, which is easy to implement in
commercial CFD packages. In the sample valve, a volume fraction of 4% air bubbles
results in a mass flux reduction of up to 10%, as the bubbles expand due to the pressure
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the point in question. As the streamline is the result of the flow

1 Introduction f | ! > .
A common type of valve in mobile hydraulic systems is the balﬁé?] E(ealr;]%é:glé%ult%tig,lvseomg g?gg%lr%ated terative process would

valve (see Bosclil]). Basically,_it consists of a cone-s_haped seat, Determining the volume-averaged density is still not straight-

where a ball can be pressed into the seat by a spring or & Magyyard, because it should depend on the bubble size distribution.
netically actuated poppet, see Fig. 1. Applying a sufficiently larggye to the surface tension, the total volume occupied by the gas
pressure difference across the valve, the force holding the ballgnbbles is nonlinearly dependent on the pressure. Some knowl-
the seat will be overcome and the valve opens. edge of the number of bubbles present and the initial values of

A frequent design requirement is to maximize the mass flukeir radius seems necessary. However, it will be shown that, for
during the time the valve is open. Gas bubbles in the flow cahe size of bubble assumed to be present in the sample valve,
counteract this aim, because they expand when entering the Idifferent distributions of bubble size lead to almost the same re-
pressure regime and thus partially block the valve. sult. So one may choose the simplest.

The aim of the work presented in this paper was to investigate,Being now supplied with a well-justified pressure-density rela-
by analysis and simulation, how gas bubbles and liquid interaé@n for the bubbly flow in the valve, we perform, in Section 4, a
and affect the functioning of the valve. A number of simplificaftll numerical simulation of the flow through the sample valve
tions have been imposed. First, the bubbles are assumed to conf¥igt @ commercial CFD-Package. Conclusions will be contained
of air. Any vapor fraction in the bubbles is neglected. Second, t#& Section 5.
formation of new bubbles is not examined. I_Dissolution of air,_ due  calculations on a Single Bubble
to local temperature or pressure changes, is neglected. Third, no i ]
investigations were made into the size of the bubble nuclei enter-Ve first focus on a single bubble. It is assumed that the bubble
ing the valve. Bubbles with ambient radii between 20 and 260 travels along a streamline through the valve. The local pressure on

are assumed to be present in the valve. For the sample valvd'fj Pubble is used as input to determine the development of the
this article, the maximum bubble size is limited by the hydrauli Ubble radius.

circuit of which it is a part. A typical length scale of the valve is
1 mm. Further characteristics of this example problem are th-
high viscosity,..=0.27 kgm ' s™1, the surface tension at the in-
terface air-liquid,oc=0.035 Nm%, and a 4% volume fraction of Valve
air. The speed of sound in the liquid without bubblescis SQV
=1493 ms*! and the density ip,=1092 kg m 3.
The paper first examines how a single bubble reacts to th = =

X . . . . . Direction of flow
pressure field in the valve. In Section 3, a density function is 5
constructed which describes the density of the air-liquid mixture

Poppet

cause Section 2 shows the bubble dynamics to be of seconds
importance for the sample valve. If this were not the case, th:
density at a point in the flow field would depend on the pressure ¢
that pointandon the pressure history along the streamline througt
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% 10° Equation(1) takes the compressibility of the liquid into account to
a limited extent, through the last term in the equation. This term
represents the pressure associated with emitted sound waves.
. As stated in the Introduction, two possible processes of mass
transfer between fluid and bubble are neglected in the analysis:
. dissolution of air in/out the hydraulic liquid and evaporation/
condensation of the hydraulic liquid.
§ The influence of phase changes of the hydraulic liquid is ne-
glected, because the vapor pressure is much smaller than the pres-
j sure of air in the bubble. The values of the pressure before and
after the valve are know(55,000 Pa and 5000 Pa respectively for
the examplg Since the value of the vapor pressure is of the order
of several hundred Pa, it is reasonable to assume that the pressure
0 . . . . never drops below the vapor pressure. The influence of gas disso-
0 0.005 0.01 0.015 0.02 0.025 lutionis also neglected. The solubility is strongly dependent on

(G2 B

1L

Pressure/Pa
N W

=

Time/s temperature and weakly dependent on pressure. The temperature,
however, remains constant in the example. Dissolved air can be
Fig. 2 Pressure development along four different streamlines released from the liquid by diffusion. The diffusion length scale is
in the example valve given by:

| = J/mDALt. )

2.1 The Driving Pressure of the Bubble. For the sample For the problem examined as an exampl®~2.6
valve results of a 3D flow simulation were used to find the pres10-10 m2s~1. Using a characteristic time scale Af~3-10"*
sure along a streamline. The presence of the bubbles was fiftthe bubble dynamics, as calculated later on, the diffusion
taken into account, but was based on a model for compressipd@gth scale is 0.5um, much smaller than the bubble radius: the
flow. _influence of gas dissolution can therefore also be neglected.

Some examples of pressure development along streamlineshe behavior of the pressure of the gas in the bubble is poly-
through the valve in the fully open position are given in Fig. Zyopic. Because the Blet numbeiRR/U <1, the isothermal limit

The pressure drop occurs in two stages. The fluid motion througgbe Plesset and Prospergf) is considered:
the valve has swirl and is not strictly rotational symmetric. Also a

sealing lip in the seat of the sample valve makes the geometry and 20\ o .,
the flow more complicated. This leads to a pressure reduction in Pot R_o (Ro—h”)
two stages, instead of the more straightforward pressure reduction Pgas™ RP_1? ; 3)
one would get for a valve like the one in Fig. 1.
To be able to make some general statements, not limited to the R,/8.85 is the v.d. Waals’ hard core radius.

present example, the bubble response is also calculated us’rrp]% eigenfrequency of the bubble(Minnaert frequencyfollows

some conceived fun(_:tions as input, having the advantage that R8m linearizing the Rayleigh-Plesset equatisee Brenneiid)):
rameters can be varied.
3R, 20| (R3—h%  2¢

As model function a pressure drop is taken, which is suffi- 5
ciently smooth to pose no problems for the integration, see Fig. 3. w =—( Pot R W— TR
The pressures at the inlet and outlet of the ball valvepgrand P o/t Pt
p;1. This pressure drop occurs within a time intera| being the A characteristic time scale based on the Minnaert frequency
time it takes the bubble to traverse the valve. 7.=27/w will be needed later for comparison with other time

. . . . . scales, notably the time interval needed for the passage of the
2.2 Bubble Dynamics. Using the terminology in Hilgen- v pple througt):the v;lilve.l v P 9

feldt et al.[2], Leighton[3], and Brennen4] the following equa-  the important aim of this research is to investigate how the
tion will be referred to as the Rayleigh-Plesset equation: bubble responds to a pressure drop: will the bubble expand and
3. 4uR 20 R d c_ollapse violently(undesiredi or do_es it exhibit a delayed expan-
RR+ = Rz) =Pgas Pext— —5— — = + — =-Pgas: (1) SiON (favorable, since the expansion would take place behind the
2 R R ¢ dt valve)? It will turn out that the latter is the case and that it is even
possible to use a quasi-static approximation to describe the bubble
behavior. This approximation, see e.g., Hilgenfeldt ef 2. con-
sists of dropping all derivatives with respect to time in the
Rayleigh-Plesset equation

“

Pi

T
o

20\ [R3—h%\ 20
0= PoJFR—0 B1? _F_pext(t)r (52)

which is a simple fourth-order polynomial expression R{t).
Neglecting the hard core radiis<R,,R, it reduces to a third-
order polynomial

— Pexi(t) 20 20
A ———R%- —R?%+
«at - Po Po RoPo
. In this approximatiorR(t) can be given analytically in terms of
a pext(t)-
Time A concept used in the study of the acoustical behavior of
bubbles is the Blake radiutsee e.g., Hilgenfeldt et a[2] or

Fig. 3 Polynomial approximation of the pressure drop in the Leighton [3]). Bubbles smaller than the Blake radius display
ball valve quasi-harmonically oscillating behavior, larger ones exhibit rapid

Pressure

T
'_l

1+ R3=0. (%)
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Fig. 5 Bubble radius response for a slow drop in pressure.
At=1ms, 7.=28 us. (a) External pressure; (b) bubble radius
development; (c) difference between the solution of the full
Rayleigh-Plesset equation and the quasi-static approximation.
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Fig. 6 Bubble radius response for a relatively steep drop in
pressure. At=1pus, 7.=28 us. (a) External pressure; (b)
bubble radius development for a relatively small value of the
viscosity, m=0.17 m? s~; (¢) bubble radius development for a
higher value of the viscosity, ~—u=0.27 m? s™1.

To confirm this, the bubble dynamics were determined by nu-
merically integrating the full ODE1) with the model pressure
function pe,(t) given in Fig. 3.

Three qualitative responses can occur, depending on the ratio of
At/ 7, and on the value of the viscosity. Figures 5 and 6 show the
response of a bubble with an initial radius of ath. The bubble
response is qualitatively independent of the initial bubble radius,
but depends on the ratio dft and 7. If At is of the same order
as 7, or smaller, then the response will not follow the pressure
closely. Figure 5 shows the bubble response for a pressure drop
that occurs on a time scale comparable to that found along a
streamline in the sample valve. The quasi-static approximation
(5b) introduces only a small error, see Figc)( The bubble
response to steep pressure drops is shown in Fig. 6. If the viscos-
ity is large, the bubble radius will lag behind the pressure, as in

collapses. In the latter case, a complete description of the bubBlg. 6(c). For lower values of the viscosity, the bubble radius will

behavior requires the use of the Rayleigh-Plesset(Ex.rather

than Eq.(5).

exhibit overshoot, as demonstrated in FigbhB(Figure 7 shows
the bubble response to the pressure development actually found in

The Blake radius as a function of the pressure amplitude canthe 3D simulation of the flow through the example valve. Larger

calculated from Eq(5b), see Eq.(3.4) in Hilgenfeldt et al.[6],

pressure drops however can initiate much more violent bubble

and is displayed in Fig. 4. From that figure it can be concludedollapses and the quasi-static approximation would break down.
that for the relatively small bubbles and small pressure amplitudeEgzamples are jet cavitatio(Cerutti et al.[7]), cloud cavitation
relevant to this study, the bubbles remain below the Blake thredlde Lange et al.8]), edge cavitatioriYoung[9]), or sonolumines-

old throughout.

Journal of Fluids Engineering

cence(Crum[10] and Brenner et al.11]).
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x 10° tion of initial bubble sizes. A general formula for the density of a
6 T T T mixture of bubbles and liquid, where the initial volume fraction of
air is x, is the following:

Po

p= Ro,max 4 '
ol i (1_X)+fR f(Ro)gﬂ'Rs(Ro,p?pofﬂ')dRo

9)

Pressure/Pa

0,min

. . . Here, the functionf(R,), describing the distribution of ambient
0.04 0.045 0.05 0.055 0.06 radii, is defined as:

Time/s Romax 4
X= f ' f(RO)§TrR8dR0. (10)

RO,min

The initial density of the mixture at pressysg is denoted apg.

The expression used fdr, is the quasi-static approximation of
Eqg. (5). When also surface tension is neglected, the density be-
comes independent of the ambient bubble radius distribution, and
the following expression is found for the density:

10r

R/m

5 ; - Po
: : : P I XFx polp’ (11)
0.04 0.045 0.05 0.055 0.06
Time/s However, going one step further and including the surface tension
) ) term, the relation betweep and p becomes dependent on the
Fig. 7 Bubble radius response to the pressure development bubble size distribution. Two bubble size distributions will be

in the example valve. (a) External pressure; (b) bubble radius  nsidered: a uniform distribution of bubble radii and a Gaussian
development. distribution

3.1 Uniform Distribution of Bubble Radii. For a uniform
bubble size distribution the properly normalized distribution func-
2.3 Shape and Shape Stability. The Rayleigh-Plesset tion is
equation, describing the bubble in terms of its radius, assumes a
spherical bubble. For the sample problem, some of the bubbles 4x 3
simply become too big to pass through the opened valve without f(Ro) = RE-RY Ax
deformation from the spherical shape. Another reason why the max: o.min
bubble might not be spherical is the pressure gradients in the seatl the density is described by the:
area of the valve, leading to a pressure difference across the

bubble, which might cause the bubble to lose its spherical shape. _ Po

To estimate whether this is likely, a comparison with bubbles in a p= 4% Ro,max 12)
gravitational field is made by replacing in the usual Morton num- 1-x+ WJ R3(Ry.,p;Po.0)dRy

ber M=gu*Ap/p?c® and the Etvos number Ee-gApd?/o the O.max 20,min J Ro min

buoyancy force per unit volumgAp simply by|Vp]. In addition integral cannot be evaluated analytically. One could numeri-
to M and Eo, of course the Reynolds number-ReU/u plays & 41y evaluate Eq(12), but within a CFD-program this would lead

role. to higher calculation times. Therefore we employ an approxima-

Clift et al. [12] give an overview which bubble shape to expec,n yhich allows for an analytical solution. We rewrite E§) as
for a given set of values of the dimensionless variables. For the

main flow area, away from the walls, pressure gradients in the Rf’, p 20 (R, Rg
sample valve are at most- 40’ Panil. For the bubbles small R o hRIR @)
enough to fit into the valve opening Ré& and the Morton number Po  PoRo

is of order 4000, putting those bubbles firmly in the sphericglnd linearize around the root of the right hand side. The expres-

range. - ) sion resulting forR is plugged into(12), which is then integrated
Finally, the stability of the bubble to shape perturbations iSumerically.

examined. This tests whether the bubble returns to a sphericabifferences between this method, the full numerical evaluation

shape after a distortion of this initial shape. Following the analysgs the density via(12), and the approximatioiil1), which ne-

of Hilgenfeldt et al.[2] or Prosperett{13], we find that decay glects surface tension, only arise for low values of the pressure.

times for the perturbation were found between 0.001 and 0.005t$¢ difference between the three functions describing the density
In this analysis, homogeneous conditions inside the bubble hg¥enowever, at most 0.5% for the sample problem.

been assumed, thus neglecting heat losses, which cause extra

damping, see Hao et all4] or Brenner et al[15]. The spherical 3.2 Gaussian Distribution of Bubble Radii. Next an ex-
shape of the bubble is therefore very stable. pression describing the density, when the bubble radius distribu-
tion is a Gaussian, was also developed. A narrow Gaussian would
correspond to a situation where all the bubbles have the same
. . . radius. It is opposite to the previous uniform distribution, where
3 Modeling the Density of a Bubbly Fluid all the radii ngur equally oft%n.

In the quasi-static approximation, the volume of a bubble at a For simplicity, it is assumed that all bubble radii frdRa down
certain point only depends on the pressatehat point One can to O can initially occur. The density depends on the parameters
therefore look for a function to describe the density of the mixturig., the radius b corresponding to the maximum of the Gaussian
of air and liquid in relation to the pressure. If we take surfacand\ is a parameter used to set the width of the Gaussian. The
tension into account, then the density will depend on the distribexpression for the density found in this way is:

(13)
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Po

P Re (Ro—b)ZIn\)| 47 _,
1-x+x- | A-ex “(R-b)Z ~?R (Ro,P;Po,0)dRy
C

0

(14)
whereA is defined as:
1
A= TRan . [(R—b)ZInx (15)
fo 3 RN TR )2

simulation we can use Ed11) as the pressure density relation,
and this is what is implemented in the commercial CFD code.

4 Flow Simulations for the Example Ball Valve

The flow simulations alluded to in previous sections, were car-
ried out using the commercially available CFD package AVL-Fire,
a finite volume method. It is fully implicit, all terms containing no
time derivatives are evaluated at the new time level. The spatial
discretisation is of the hybrid type, switching between central and
upstream differencing depending on the local cell Reynolds num-

The density as described by Ed4), was evaluated numerically ber. The velocity and pressure fields are linked by a SIMPLE
in order to compare it to the one found from Efjl) (the function (Semi-Implicit Method forPressureLinked Equations, see e.g.,
that neglects surface tensjorfror a broad Gaussian lying within Ferziger et al[16]). The resulting linear set of equations is solved
the range of bubble sizes expected for the example problem, di @ Conjugate Gradient method for the velocity field. For the
ferences between the two functions amount to at most 1%. Hoffessure a Gauss-Seidel method, combined with black-red SOR
ever, if all the bubbles are smaller than 20, then the difference (SuccessiveQver Relaxation, is used.

can be up to 10%. In the last case, one cannot get away withThe program can only carry out 3D flow simulations. It would
neglecting the surface tension. However, a broader distribution ltve been possible to set up a geometry for the flow calculations
larger bubbles is assumed in the valve and so for the numerié&@sed on the exact drawings of the valve. However, the geometry

Fig. 8 Pressure field for the example valve.
function; (b) without density function.

Journal of Fluids Engineering

Flow: Aba_Frass | Pa)

Fl ow: &bs_Fress [ Fa]

(a) With density

was simplified to a rotationally symmetrical valve. Only the flow
in a 5 deg section was simulated. The program cannot switch to
cylindrical coordinates, so the simplification could not really be
exploited to the full extent. Indeed, taking such a small section
creates a singularity at the valve axis, so the grid has to stop just
short of the axis.

Although the flow field of interest is stationary, the flow simu-
lation is that of a transient flow field. This has the advantage that
the boundary conditions can be imposed gradually, to avoid sharp
pressure gradients from occurring during the simulation. The final
distribution of the pressure, resulting from the simulations for
compressible two-phase flow, is given in FigaB As pressure-
density relation Eq(11) was used, as justified in Sections 2 and 3.
The pressure distribution in the incompressible monophase flow is
given in Fig. 80).

In the compressible case, the mass flux is reduced by up to
10%, as shown in Fig. 9. This is a considerable amount for various
applications. The reason is, of course, that incompressible flow
can only respond to a pressure increase at the entrance of the
valve by pushing the fluid through the valve, whereas compress-
ible flow can also respond through compression, the bubbles being
the origin of the effective compressibility here. This different be-
havior of compressible and incompressible flow can also be seen
in the corresponding velocity fields in Fig. 10. The effect is most
visible in the narrowest part of the valve, where a fluid particle
experiences a pressure decrease and therefore expands in the com-
pressible case, thus blocking the pathway and leading to a reduc-
tion of the velocity and the mass flow.

~J

[e)}

&)

o~

w

[\S)

2 3 4 5
Pressure Difference /PaX 10°

Mass flow difference /%
=

Fig. 9 Relative difference in the mass flow through the sample
valve between the compressible and the incompressible calcu-
lation
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estimate, whether the geometry of the valve may lead to bubble
deformations, as it obviously does, when the bubble gets too large
to fit through the opened valve.

The next step is to specify the pressure drop over the valve,
leading to the bubble expansion. The pressure experienced by the
bubble as a function of time, is obtained by integrating the pres-
sure along a streamline with a 3D code.

With that function describing the development of pressure in
time, one can determine the development of the bubble radius in
time. This was done for a number of model functions and for the
pressure development extracted from the flow data. To determine
the response of the bubble, the Rayleigh-Plesset equation was
integrated.

For each bubble radius, a characteristic time scale can be cal-
culated. The response of the bubble to the pressure drop depends
on the ratio of the characteristic time scale and the time interval
over which the pressure drops. For a fast pressure drop, the bubble
can exhibit overshoot and will oscillate toward a final radius, if
the viscosity is low. Alternatively, if the viscosity is high, the
bubble can increase in size toward the final value, but lagging
behind the pressure drop in time. If the pressure drop is not very
steep, then the bubble response can be regarded as quasi-static.
This is the case for the valve examined as an example. The time
derivatives in the Rayleigh-Plesset equation can then be dropped,
and one can employ the quasi-static approximat®nwhere the
presence of bubbles can be taken into account through a pressure-
dependent density function.

The next step in the analysis is to find this expression for such
a density function. We have shown that the distribution in initial
bubble radius sizes has relatively little influence on the density
function. If not all the bubbles are very small, surface tension can
be neglected and one can use the simplest possible function to
describe the density. It is a volume average over the liquid and the
gas, neglecting the surface tension altogether. Such a description
of the density of the hydraulic liquid with bubbles in it, is easy to
implement in commercially available CFD codes like the AVL-
Fire code used here.

For the sample valve the presence of bubbles in the flow, caus-
ing the effective compressibility, has a considerable blocking ef-
fect, reducing the mass flux by up to 10%. The reason is that the

: Fiow: Yelazity |[ma) bubbles expand when experiencing the decrease of pressure in the
valve and thus partly block the flow through the narrowest part of
In summary, one can see that the combination of parameters in
] ot 1banas 2 ARWR

the example valve is very favorable. It has turned out that one can
take account of the presence of bubbles in a very simple way. In
retrospect, splitting the problem into two parts, namely looking at
Fig. 10 Velocity vector field within the example valve.  (a) With  the influence of bubbles on the flow and that of the flow on the
density function;  (b) without density function. bubbles separately, could have been avoided. Such a split has,
however, been necessary just to prove this very fact.
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