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Grant number GV-2000-51-1).
yCentER and Department of Econometrics, Tilburg University, P.O. Box 90153,
5000 LE Tilburg, The Netherlands.
zCorresponding author. Current address: Department of Applied Mathematics,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
(E-mail: timmer@math.utwente.nl.)

Manuscript received: February 2002/Final version received: September 2002

Abstract. In this paper we look at semi-infinite assignment problems. These
are situations where a finite set of agents of one type has to be assigned to an
infinite set of agents of another type. This has to be done in such a way that
the total profit arising from these assignments is as large as possible. An infi-
nite programming problem and its dual arise here, which we tackle with the
aid of finite approximations. We prove that there is no duality gap and we
show that the core of the corresponding game is nonempty. Finally, the exis-
tence of optimal assignments is discussed.
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1 Introduction

Since finite assignment games were introduced in Shapley and Shubik [12],
much work related to these games has been developed. We point out the book
of Roth and Sotomayor [9] as an important monograph on two-sided match-
ing. Curiel [2] provides a thorough analysis of assignment games. In their
work, Shapley and Shubik proved that the core of an assignment game is the
non-empty set of solutions of the dual problem corresponding to the assign-
ment problem. In [11], Sasaki gives axiomatic characterizations of the core of
assignment games.

In this paper, we look at semi-infinite assignment problems where the
number of one of the two types of agents involved is finite and the other is
countable infinite and we prove that semi-infinite bounded assignment games
are balanced. Fragnelli et al. [3], Tijs et al. [14] and Timmer et al. [15] have
studied some kinds of semi-infinite balanced games arising from di¤erent lin-
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ear programming situations, where one of the factors involved in the problem
is countable infinite but the number of players is finite. Here we tackle semi-
infinite assignment games with the aid of some tools that are related to Tijs
[13].

A more general problem is the transportation problem where demand for a
single good at several locations has to be met from several supply points. An
assignment problem is a transportation problem where all demands and sup-
plies equal one unit. In Kortanek and Yamasaki [6, 7] semi-infinite transpor-
tation problems are studied with a finite number of supply points and an infi-
nite number of demand locations. They assume that the total supply and the
total demand for the good are equal and finite. This implies that semi-infinite
assignment problems, as studied here with an infinite ‘total demand’, are not
covered by their analysis. Further, their focus is on programs while we include
a game-theoretic analysis.

This paper consists of four sections. In the next section we present the most
relevant definitions and results for the assignment problem with two finite sets
of agents. We extend these problems in section 3 to semi-infinite bounded
assignment problems where one of the sets of agents is countable infinite and
the set of values of matched pairs of agents is upper bounded. We show that
the corresponding primal and dual program have no duality gap and that
there exist optimal solutions to the dual program, which is equivalent to the
non-emptiness of the core of the corresponding game. In section 4 we intro-
duce the critical number and the existence of optimal assignments is discussed.
Section 5 concludes.

2 Finite assignment problems

An assignment problem describes a situation in which there are two types of
agents, for example, sellers and buyers or firms and workers. Denote by M
and W respectively these two finite and disjoint sets of agents. Let m be the
number of agents in M, i.e., m ¼ jMj, and n ¼ jW j. Assume without loss of
generality that m a n. When agent i A M is matched to agent j A W then this
gives the couple a value of aij b 0. An assignment problem is thus described
by the triple ðM;W ;AÞ with A ¼ ½aij �i AM; j AW . For ease of notation we denote
this assignment problem by A.

The maximal total value of paired agents, where each agent i A M is
coupled to at most one agent j A W and vice versa, can be determined by the
following integer program

P:

max
X

i AM

X

j AW

aijxij

s:t:
X

i AM

xij a 1; for all j A W

X

j AW

xij a 1; for all i A M

xij A f0; 1g; for all i A M; j A W
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with value vpðAÞ. The assignment matrix X A f0; 1gM�W , X ¼ ½xij �i AM; j AW ,
corresponds to the situation in which the agents i A M and j A W are matched
if and only if xij ¼ 1. An assignment or matching is an injective function
p : M !W and such an assignment is optimal if

P
i AM aipðiÞb

P
i AM aip 0ðiÞ

for all assignments p 0.
Given an assignment problem A, the corresponding assignment game

ðN;wÞ is a game with player set N ¼M WW . Let S HN be a coalition of
players. Then the worth wðSÞ is defined to be the maximal value this coalition
can obtain by matching its members. Define MS ¼ S XM and WS ¼ S XW .
If MS ¼q or WS ¼q then wðSÞ ¼ 0 since no matchings can be made.
Otherwise, if MS 0q and WS 0q then wðSÞ ¼ vpðASÞ where AS refers to
the assignment problem ðMS;WS; ½aij�i AMS ; j AWS

Þ. It is obvious that AN ¼A.

The vector ðu; vÞ, u A RM
þ and v A RW

þ , is called a feasible payo¤ for the
assignment problem A if there is an assignment p such that

P
i AM ui þP

j AW vj ¼
P

i AM aipðiÞ. In this case, we say ððu; vÞ; pÞ is a feasible outcome
and it is stable if ðu; vÞ is an element of the core CðwÞ of the corresponding
assignment game, where

CðwÞ ¼ ðu; vÞ A RM
þ �RW

þ

X

i AMS

ui þ
X

j AWS

vj b wðSÞ;S HN;

X

i AM

ui þ
X

j AW

vj ¼ wðNÞ

���������

8
>>><

>>>:

9
>>>=

>>>;
:

If ðu; vÞ A CðwÞ is proposed as payo¤ to the players, then each coalition
S HN gets at least as much as it can obtain on its own since

P
i AMS

ui þP
j AWS

vj b wðSÞ. Thus no coalition has an incentive to break up with the
grand coalition N. The following lemma by Roth and Sotomayor [9] tells
something more about stable outcomes.

Lemma 2.1 (Roth and Sotomayor). Let ððu; vÞ; pÞ be a stable outcome for A.
Then

(a) ui þ vj ¼ aij if pðiÞ ¼ j
(b) ui ¼ 0 and vj ¼ 0 for all unassigned i and j.

This result implies that at a stable outcome, the only utility transfers occur
between agents in M and W who are matched to each other. It also shows that
those players who remain unmatched in some optimal solution receive a zero
payo¤.

In e.g. [1] it is shown that if the integer condition xij A f0; 1g in the primal
problem P is replaced by xij b 0 for all i A M, j A W , then all the optimal
solutions will still have xij A f0; 1g. Related to this problem is the following
dual problem with value vdðAÞ.

D:

min
X

i AM

ui þ
X

j AW

vj

s:t: ui þ vj b aij; for all i A M; j A W

ui; vj b 0; for all i A M; j A W
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Because the primal problem P has a solution, we know that also D must have
a solution and the fundamental duality theorem asserts that these programs
attain the same value.

By definition of wðSÞ it holds that if ðu; vÞ is an optimal solution of the dual
program then

P
i AMS

ui þ
P

j AWS
vj b wðSÞ for any coalition S, which ensures

that this coalition cannot improve by splitting o¤ from N when ðu; vÞ is pro-
posed as payo¤. The following theorem says that these conditions are exactly
the conditions that determine the core of an assignment game.

Theorem 2.2 (Shapley and Shubik). Let A be an assignment problem. Then the
core CðwÞ of the corresponding assignment game ðN;wÞ is the nonempty set of
optimal solutions of D.

Moreover, if p is an optimal assignment then ððu; vÞ; pÞ is a stable outcome
for all core-elements ðu; vÞ. Vice versa, if ððu; vÞ; pÞ is a stable outcome then p
is an optimal assignment (see [9] for the proofs). So, we can concentrate on the
payo¤s to the agents rather than on the underlying assignment.

Let A ¼ ðM;W ;AÞ be an assignment problem and let j A W . By Bið j;AÞ
we denote the set of agents in Wnf jg who are at least as good as j for agent
i A M,

Bið j;AÞ ¼ fk A W j k 0 j; aik b aijg:

The following proposition tells us that an agent j A W gets payo¤ zero in each
core-element if for each i A M there are at least m agents in W whom he finds
better than j.

Proposition 2.3. For each assignment problem A ¼ ðM;W ;AÞ and for each
j A W such that jBið j;AÞjb m for all i A M it holds that vj ¼ 0 for all
ðu; vÞ A CðwÞ.

Proof. Let A ¼ ðM;W ;AÞ be an assignment problem and let j A W be such
that jBið j;AÞjb m for all i A M. Let p be an optimal assignment for P. If
j B pðMÞ ¼ fpðiÞ j i A Mg then vj ¼ 0 by item (b) of lemma 2.1.

If j ¼ pði�Þ for some i� A M then since jBi � ð j;AÞjb m and jpðMnfi�gÞj ¼
m� 1 there exists a k A Bi � ð j;AÞnpðMnfi�gÞ. Since k is unassigned, k B pðMÞ,
vk ¼ 0 by lemma 2.1. Together with k A Bi � ð j;AÞ this gives

ui � ¼ ui � þ vk b ai �k b ai �j ¼ ui � þ vj

where the last equality follows from pði�Þ ¼ j and lemma 2.1. Thus vj a 0 and
because vj b 0 according to the dual problem D we conclude that vj ¼ 0. r

3 Semi-infinite bounded assignment problems

In this section we introduce semi-infinite bounded assignment problems
ðM;W ;AÞ, where M ¼ f1; 2; . . . ;mg, a finite set, W ¼ N ¼ f1; 2; . . .g, the
countable infinite set of natural numbers, and 0 a aij a b for some b A R, for
all i A M, j A W . The boundedness of the values aij is not a real restriction. It
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is clear that if the values aij would have no upper bound then the primal
problem

P:

sup
X

i AM

X

j AW

aijxij

s:t:
X

i AM

xij a 1; for all j A W

X

j AW

xij a 1; for all i A M

xij A f0; 1g; for all i A M; j A W

would have an infinite value, vpðAÞ ¼y, and no optimal solutions. We
analyze the corresponding semi-infinite bounded assignment games by
means of finite approximation problems An ¼ ðM; f1; . . . ; ng;AnÞ where An ¼
½aij �i AM; j¼1;2;...;n, and by means of the so-called hard-choice number of A, to be
introduced later.

We start by defining two types of agents in M. An agent i A M is of type 1
if this agent can choose one-by-one m best elements j A W with respect to the
largest reward aij . We denote by M1 the set of agents of type 1. The remaining
agents in M2 ¼MnM1 are of type 2.

The choice set Ci of an agent i of type 2 is the set of all his chosen best
elements in W. Since this agent cannot choose m best elements (otherwise he
is of type 1), we have 0 a jCij < m. The choice set Ci of an agent i A M1

consists of those m agents in W obtained in m steps by taking in each step that
agent j A W not yet chosen by him and which gives him the maximal value aij

over all non-chosen j A W . In case there are more agents j A W that give the
same maximal value aij then we choose that agent j with the smallest ranking
number. The following example illustrates these concepts.

Example 3.1. Let M ¼ f1; 2; 3g, W ¼ N and

A ¼

2

64
3 2 1 0 0 0 � � �
1
2 1 2

3
3
4

4
5

5
6 � � �

1 1 1 1 1 1 � � �

3

75:

Agent 1 A M attains his maximal value of 3 if he is assigned to agent 1 A W .
The second largest value he can obtain is a12 ¼ 2 and a13 ¼ 1 is the third
largest value he can get. This agent has no problems with choosing his three
best agents from W and therefore he is of type 1. His choice set thus equals
C1 ¼ f1; 2; 3g.

The largest value that agent 2 A M can attain is a22 ¼ 1. However, there is
no second largest value because a2n reaches the value 1 from below when n
goes to infinity. This agent can only choose one best agent from W and
therefore he is of type 2. His choice set equals C2 ¼ f2g.

Finally, agent 3 A M has an easy job, since for all j A W he gets the value
a3j ¼ 1. All agents in W are best elements for him. We will choose those three
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agents with the smallest ranking number, thus C3 ¼ f1; 2; 3g. This agent is of
type 1. We conclude that M1 ¼ f1; 3g and M2 ¼ f2g.

We will now introduce the hard-choice number.

Definition 3.2. The hard-choice number n�ðAÞ is the smallest number in
NW f0g such that 6m

i¼1
Ci H f1; 2; . . . ; n�ðAÞg.

Lemma 3.3. For each semi-infinite bounded assignment problem A ¼
ðM;W ;AÞ and for each j > n�ðAÞ, j A W, there is an agent nð jÞb j,
nð jÞ A W, such that jBið j;Anð jÞÞjb m for all i A M.

Proof. Let A ¼ ðM;W ;AÞ be a semi-infinite bounded assignment prob-
lem and let j > n�ðAÞ, j A W . Notice that j > n�ðAÞ implies j B Ci for all
i A M. If i A M1 then Bið j;AÞX f1; 2; . . . ; n�ðAÞgICi thus jBið j;AÞX
f1; 2; . . . ; n�ðAÞgjb jCij ¼ m and we define nið jÞ ¼ j. If i A M2 then jCij < m
and there are an infinite number of agents in Wnf1; 2; . . . ; n�ðAÞg strictly
better than j. So, for n su‰ciently large, say nið jÞb j, there are (at least) m
agents in f1; 2; . . . ; nið jÞg better than j. Take nð jÞ ¼ maxfnið jÞ j i A Mg. Then
jBið j;Anð jÞÞjb m for all i A M. r

Remark 3.4. From lemma 3.3 and from proposition 2.3 it follows that for all
j > n�ðAÞ and for all optimal dual solutions ðu; vÞ for An, n b nð jÞ, we have
vj ¼ 0.

The games corresponding to these semi-infinite bounded assignment prob-
lems are defined as follows. The player set N ¼M WW consists of an infinite
number of players. The value of coalition S, wðSÞ, equals 0 if S HM or
S HW and wðSÞ ¼ vpðASÞ, the value of the finite or infinite assignment
problem when restricted to coalition S, otherwise. Just as in the previous sec-
tion, the value wðNÞ ¼ vpðAÞ of the grand coalition N can be determined by
the program P. The following problem is the dual if he integer condition in the
primal problem P is replaced by nonnegativity (see [10]).

D:

inf
X

i AM

ui þ
X

j AW

vj

s:t: ui þ vj b aij ; for all i A M; j A W

ui; vj b 0; for all i A M; j A W :

Notice that both the primal and the dual program have an infinite number of
variables and an infinite number of restrictions. In general, y�y-programs
show a gap between the optimal primal and dual value. There is a large liter-
ature on the existence or absence of so-called duality gaps in (semi-)infinite
programs. See e.g. the books by Glasho¤ and Gustafson [4] and Goberna and
López [5]. Our goal is to prove that here the primal and the dual problem have
the same value and that there exist optimal solutions of the dual problem. We
achieve this result in some steps starting with a limit process in the finite space
Rm �Rn� , where for the sake of brevity we will write n� instead of n�ðAÞ in a
subscript or a superscript.
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We take for each n A N with n > n�ðAÞ, a pair ðun; vnÞ that is optimal
for DðAnÞ, the dual problem of An. Then we remove all coordinates of vn

with index larger than n�ðAÞ and obtain ðun; sn � ðvnÞÞ A RM �Rn � ; where
sn� : Rn ! Rn � is the map defined by sn � ðvn

1 ; . . . ; vn
n � ; . . . ; vn

n Þ ¼ ðvn
1 ; . . . ; vn

n� Þ,
for all n > n�ðAÞ. Note that fðun; sn � ðvnÞÞ j n A fn�ðAÞ þ 1; n�ðAÞ þ 2; . . .gg is
a bounded set in the finite dimensional space RM �Rn � since A is a bounded
matrix and ðun; vnÞ is optimal for DðAnÞ.

un
i a maxfaij j i A M; j A f1; 2; . . . ; ngga supfaij j i A M; j A Ng

and similarly vn
j a supfaij j i A M; j A Ng.

Without loss of generality, assume that limn!yðun; sn � ðvnÞÞ exists (other-
wise take a subsequence) and denote this limit by ðu; vÞ A RM �Rn � . With the
aid of ðu; vÞ we construct the vector ðûu; v̂vÞ A RM �RW by taking ûu ¼ u and
v̂v ¼ an � ðvÞ, where ak : Rk ! RW is the map defined by akðxÞ ¼ ðx1; . . . ; xk;
0; 0 . . .Þ for all k A N and x A Rk. So, v̂v is obtained from v by adding an infinite
number of zeros. Later we will see that ðûu; v̂vÞ is a core-element of the corre-
sponding semi-infinite bounded assignment game but we start with showing
that ðûu; v̂vÞ is feasible for the dual problem.

Lemma 3.5. Let A ¼ ðM;W ;AÞ be a semi-infinite bounded assignment prob-
lem and let ðûu; v̂vÞ be as defined above. Then ðûu; v̂vÞ is a feasible solution for D.

Proof. By definition of ðûu; v̂vÞ it holds that all its coordinates are nonnega-
tive. Furthermore, ûui þ v̂vj b aij for all i A M, j A f1; 2; . . . ; n�ðAÞg since
un

i þ vn
j b aij for all i A M, j A f1; 2; . . . ; n�ðAÞg. For i A M, j > n�ðAÞ, we

know from remark 3.4 that lim
n!y

vn
j ¼ 0: Together with un

i þ vn
j b aij for all

j A f1; 2; . . . ; ng it follows by taking the limit for n!y that ûui þ v̂vj b aij . So
ðûu; v̂vÞ is a feasible solution of the dual problem. r

The next lemmas deal with the relations between the values of the finite
subproblems and the infinite problems.

Lemma 3.6. vdðAÞa lim
n!y

vdðAnÞ

Proof. For n > n�ðAÞ and ðun; vnÞ optimal for DðAnÞ we have
Pm

i¼1 un
i þPn

j¼1 vn
j ¼ vdðAnÞ. We construct ðûu; v̂vÞ as we did before and so,

Pm
i¼1 ûui þPn

j¼1 v̂vj ¼ lim
n!y

vdðAnÞ: Then, from lemma 3.5 vdðAÞa
Pm

i¼1 ûui þ
Py

j¼1 v̂vj ¼
lim

n!y
vdðAnÞ. r

Lemma 3.7. vpðAÞ ¼ lim
n!y

vpðAnÞ

Proof. Clearly for n b m we have vpðAnÞa vpðAÞ because each matching
p : M ! f1; 2; . . . ; ng in the finite problem is also feasible in the infinite
problem. Furthermore, fvpðAnÞ j n b mg is an increasing sequence. So,
lim

n!y
vpðAnÞ exists and lim

n!y
vpðAnÞa vpðAÞ:

For the converse inequality, take e > 0 and a matching pe : M ! N such
that

Pm
i¼1 aipeðiÞb vpðAÞ � e. Let k A N be such that fpeðiÞ j i A MgH
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f1; 2; . . . ; kg. Then for all n b k : vpðAnÞb
Pm

i¼1 aip eðiÞb vpðAÞ � e: This
implies that lim

n!y
vpðAnÞb vpðAÞ. r

Now we formulate the main result in this section, which tells us that there
is no duality gap and that there exists optimal solutions for D.

Theorem 3.8. Let A ¼ ðM;W ;AÞ be a semi-infinite bounded assignment prob-
lem. Then vpðAÞ ¼ vdðAÞ and there exist optimal solutions for D.

Proof. First, we prove that there is no duality gap using the fact that finite
problems have no duality gap. From lemmas 3.6 and 3.7 follows,

vdðAÞa lim
n!y

vdðAnÞ ¼ lim
n!y

vpðAnÞ ¼ vpðAÞ:

Conversely, weak duality, vpðAÞa vdðAÞ, holds. So vpðAÞ ¼ vdðAÞ ¼
limn!y vdðAnÞ.

Second, we prove that ðûu; v̂vÞ is optimal for D. From the proof of lemma 3.6
and from the first part of this proof

Pm
i¼1 ûui þ

Py
j¼1 v̂vj ¼ limn!y vdðAnÞ ¼

vdðAÞ. Furthermore, by lemma 3.5, ðûu; v̂vÞ is feasible for D. So, ðûu; v̂vÞ is opti-
mal for D. r

Since Llorca [8, page 34] shows that the core of the corresponding assign-
ment game is equivalent to the set of optimal solutions for D, it follows from
theorem 3.8 that all semi-infinite bounded assignment games have a nonempty
core.

4 The critical number and related concepts

In this section, we present the critical number of a semi-infinite bounded
assignment game. It turns out to be a key concept because, as we will show, it
is related to the hard-choice number, introduced in section 3, and to the finite
approximation problems.

Definition 4.1. The critical number cðAÞ equals minfn A N j vpðAnÞ ¼ vpðAÞg,
if there exists an n A N with vpðAnÞ ¼ vpðAÞ. Otherwise, cðAÞ ¼y.

First, we present some results for finite critical numbers. The next prop-
osition shows a relation between the hard-choice number and the critical
number.

Proposition 4.2. Let A ¼ ðM;W ;AÞ be a semi-infinite bounded assignment
problem. Then cðAÞ <y if and only if P has optimal solutions, and
cðAÞa n�ðAÞ if cðAÞ <y.

Proof. Let A ¼ ðM;W ;AÞ be a semi-infinite bounded assignment problem.
The first statement follows immediately from the definition of the critical
number.

To prove the second statement, let p be an optimal assignment for P. If
pðiÞ B Ci for some i A M1, then since the size of the set pðM1Þ is smaller than
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the size of Ci, there is a j A Ci such that j B pðM1Þ. If we redefine pðiÞ ¼ j
then the assignment p remains optimal for P and agent i restricts his choice
to Ci.

For i A M2 there is no optimal matching p with pðiÞ B Ci since any such a
matching can be improved using a di¤erent value of pðiÞ. We conclude that
there exists an optimal matching p for P that is also optimal for PðAn � Þ, the
primal problem of An� . Thus cðAÞa n�ðAÞ. r

As the next example shows, an optimal assignment can use agents j A W
for which j > n�ðAÞ.

Example 4.3. Let M ¼ f1; 2; 3g, W ¼ N, and

A ¼

2
64

3 2 1 0 0 0 � � �
1
2 1 2

3
3
4

4
5

5
6 � � �

1 1 1 1 1 1 � � �

3
75:

We have seen in example 3.1 that C1 ¼ f1; 2; 3g, C2 ¼ f2g, C3 ¼ f1; 2; 3g,
M1 ¼ f1; 3g and M2 ¼ f2g. Also, n�ðAÞ ¼ 3, vpðAÞ ¼ 5 and each pk, with
k b 3, defined by pkð1Þ ¼ 1, pkð2Þ ¼ 2, pkð3Þ ¼ k, is optimal. For k > 3 we
have optimal matchings with pkð3Þ B C3, but the assignment p3 is optimal and
uses only elements in An� . So, cðAÞ ¼ n�ðAÞ ¼ 3.

In the theorem below we characterize the structure of the sets of optimal
primal and dual solutions when the critical number is finite. Recall that PðAnÞ
and DðAnÞ are the primal and dual problem of the finite assignment problem
An ¼ ðM; f1; . . . ; ng;AnÞ, respectively.

Theorem 4.4. Let A ¼ ðM;W ;AÞ be a semi-infinite bounded assignment prob-
lem. If cðAÞ <y then

(i) an assignment p is optimal for P if and only if it is optimal for PðAnÞ for
some n b n�ðAÞ,

(ii) for each pair ðu; vÞ that is optimal for D, vj ¼ 0 for j > n�ðAÞ,
(iii) a pair ðu; vÞ is optimal for D if and only if ðu; snðvÞÞ is optimal for DðAnÞ

for all n b n�ðAÞ.

Proof. Let A ¼ ðM;W ;AÞ be a semi-infinite bounded assignment problem
with cðAÞ <y.

(i) First, let n b n�ðAÞb cðAÞ and let p be an optimal assignment for
PðAnÞ. Then

Pm
i¼1 aipðiÞ ¼ vpðAnÞ ¼ vpðAÞ and p is also optimal for P. Sec-

ond, let p be an optimal assignment for P and let n b n�ðAÞ be such that
pðMÞH f1; . . . ; ng. Then p is feasible for PðAnÞ and

Pm
i¼1 aipðiÞ ¼ vpðAÞ ¼

vpðAnÞ. So, p is optimal for PðAnÞ.
(ii) Let ðu; vÞ be optimal for D. According to theorem 3.8

vpðAÞ ¼ vdðAÞ

¼
X

i AM

ui þ
X

j AW

vj
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b
X

i AM

ui þ
Xn �

j¼1

vj

b min
X

i AM

u 0i þ
Xn�

j¼1

v 0j j u 0i þ v 0j b aij ; u
0
i ; v
0
j b 0

( )

¼ vpðAn � Þ ¼ vdðAn� Þ ¼ vpðAÞ

where the last equality follows from n�ðAÞb cðAÞ. Thus

X

i AM

ui þ
X

j AW

vj ¼
X

i AM

ui þ
Xn �

j¼1

vj

or, equivalently,
Py

j¼n�þ1 vj ¼ 0. Because ðu; vÞ is optimal for D, vj b 0 for all
j. We conclude that vj ¼ 0 for all j > n�ðAÞ.

(iii) Let ðu; vÞ be optimal for D. By part (ii) vj ¼ 0 for j > n�ðAÞ. This
means that ðu; snðvÞÞ is optimal for DðAnÞ for n b n�ðAÞ. Conversely,
let ðu; snðvÞÞ be optimal for DðAnÞ where n b n�ðAÞ and vj ¼ 0 for j > n. If
p is an optimal assignment for PðAnÞ then p is also optimal for P since
vpðAÞ ¼ vpðAnÞ. Hence, vpðAÞ ¼

Pm
i¼1 aipðiÞ ¼

Pm
i¼1 ui þ

Pn
j¼1 vj ¼

Pm
i¼1 ui þPy

j¼1 vj and so ðu; vÞ is optimal for D. r

In case cðAÞ ¼y, there are no optimal solutions for P, we construct
an auxiliary problem H ¼ ðM; f1; . . . ; n�ðAÞ þ jM2jg;HÞ corresponding to
A. With the help of H we can find e-optimal assignments for A, that is,
assignments p such that

P
i AM aipðiÞb vpðAÞ � e. The matrix H is defined

by H ¼ ½An � T � where for each i A M2 we have a column tie
i in T with

ti ¼ supfaij j j A NnCig, the largest value outside player i ’s choice set. The
vector ei is the ith unit vector in Rm defined by ei

k ¼ 1 if k ¼ i and ei
k ¼ 0

otherwise. We illustrate these concepts in the next example.

Example 4.5. Let M ¼ f1; 2; 3g, W ¼ N and

A ¼
3 2 1 0 0 0 � � �
1 1

2
2
3

3
4

4
5

5
6 � � �

0 2 12
3 13

4 14
5 15

6 � � �

2
64

3
75:

Then C1 ¼ f1; 2; 3g, C2 ¼ f1g, C3 ¼ f2g, M1 ¼ f1g, M2 ¼ f2; 3g and
n�ðAÞ ¼ 3. The feasible matching p with pð1Þ ¼ 3, pð2Þ ¼ 1, pð3Þ ¼ 2 has the
property pðiÞ A Ci for each i A M. But this assignment is not optimal sincePm

i¼1 aipðiÞ ¼ 4 < 6 ¼ vpðAÞ. In this example cðAÞ ¼y, no optimal assign-
ment exists. Using the auxiliary problem H with

H ¼
3 2 1 0 0

1 1
2

2
3 1 0

0 2 12
3 0 2

2

64

3

75;

results in vpðHÞ ¼ 6 and the matching p 0, with p 0ð1Þ ¼ 1, p 0ð2Þ ¼ n ðn b 3Þ,
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p 0ð3Þ ¼ 2, is an 1
n
-optimal assignment for A, that is,

P
i AM aip 0ðiÞ ¼

vpðAÞ � 1=n.

Theorem 4.6. Let A ¼ ðM;W ;AÞ be a semi-infinite bounded assignment prob-
lem with cðAÞ ¼y and let H be the corresponding auxiliary problem. Then

(i) vpðAÞ ¼ vpðHÞ
(ii) For each p that is optimal for PðHÞ and each e > 0 there is a matching pe

optimal for P such that peðiÞ ¼ pðiÞ for all i A M1 and peðiÞ A fn�ðAÞ þ 1;
n�ðAÞ þ 2; . . .g such that aip eðiÞb ti � e=m, for i A M2.

Proof. To prove (i) and (ii) it is su‰cient to show that vpðHÞb vpðAÞ and
vpðAÞb vpðHÞ � e for all e > 0.

First we show that vpðHÞb vpðAÞ. Let p be a feasible matching for P.
Construct a feasible assignment p� for PðHÞ as follows. Let i A M. If pðiÞ A Ci

then p�ðiÞ ¼ pðiÞ. If pðiÞ B Ci and i A M1 then we can choose a partner p�ðiÞ ¼
j � A Ci because Ci is large enough. (See the proof of proposition 4.2.) If
pðiÞ B Ci and i A M2 then define p�ðiÞ ¼ j �, where j � corresponds to column
tie

i in T. Thus for all i A M we have hip �ðiÞb aipðiÞ, so, vpðHÞb vpðAÞ:
Second, we show that vpðAÞb vpðHÞ � e for all e > 0. Let e > 0 and let

p be feasible for PðHÞ. We will construct a matching pe that is feasible for
PðAÞ as follows. Take one-by-one elements i A M. Note that pðiÞ B f1; 2; . . . ;
n�ðAÞgnCi since otherwise player i can improve by choosing ti. If pðiÞ B T
then define peðiÞ ¼ pðiÞ. If pðiÞ A T then take j � > n�ðAÞ such that aij � b

ti � e=m and j �0 pði 0Þ for all i 00 i and define peðiÞ ¼ j �. This can be done
such that all i A M are matched to m di¤erent elements in W. Then

X

i AM

aip eðiÞ ¼
X

i AM:p eðiÞ ACi

aip eðiÞ þ
X

i AM:peðiÞ BCi

aip eðiÞ

b
X

i AM:pðiÞ ACi

hipðiÞ þ
X

i AM:pðiÞ AT

ðti � e=mÞ

b
X

i AM

hipðiÞ � e;

where the last inequality holds because jfi A M j pðiÞ A Tgja m. Thus
vpðAÞb vpðHÞ � e. r

5 Concluding remarks

In this paper we analysed semi-infinite assignment problems from a game-
theoretic viewpoint. We started by showing that semi-infinite assignment
problems have no duality gap and that there always exists an optimal solution
for the dual problem. Consequently, the corresponding semi-infinite assign-
ment games have a nonempty core, that is, they are balanced. Further, if there
does not exist an optimal solution for the primal problem then an auxiliary
assignment problem H can be used to derive e-optimal assignments which are
close to the optimum.
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Future directions for research include extending these results to infinite
assignment problems, where the two sets of agents are infinite, and to infinite
transportation problems, which are generalizations of assignment problems.
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