
Discrete Optimization

Complexity and approximability results for slicing
floorplan designs

Vladimir G. De�ııneko a, Gerhard J. Woeginger b,c,*

a Warwick Business School, The University of Warwick, Coventry CV4 7AL, UK
b Department of Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

c Institut f€uur Mathematik, Technische Universit€aat Graz, Steyrergasse 30, A-8010 Graz, Austria

Received 16 January 2002; accepted 7 June 2002

Abstract

The first stage in hierarchical approaches to floorplan design determines certain topological relations between the

positions of indivisible cells on a VLSI chip. Various optimizations are then performed on this initial layout to minimize

certain cost measures such as the chip area. We consider optimization problems in fixing the orientations of the cells and

simultaneously fixing the directions of the cuts that are specified by a given slicing tree; the goal is to minimize the area

of the chip.

We prove that these problems are NP-hard in the ordinary sense, and we describe a pseudo-polynomial time

algorithm for them. We also present fully polynomial time approximation schemes for these problems.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Packing; Cutting; Floorplan design; VLSI design; Compaction; Computational complexity; Approximation; Combinatorial

optimization

1. Introduction

In hierarchical approaches to VLSI floorplan

design (see for instance [4–6,8]), the first stage of

the approach provides information on certain topo-
logical relations between the positions of cells and

groups of cells on a chip. Here a cell is an indivisible

rectangular entity on the chip that eventually will

accomodate a VLSI component. Since this VLSI

component possibly will be rotated, the exact di-

mensions of the cell are not fixed a priori. Instead,

two positive integers a and b are associated with the

cell that state the vertical and horizontal dimen-

sions of the VLSI component that must fit into the
cell. Then the final shape of that cell must either be

a rectangle with integral width at least a and inte-

gral height at least b (in case the component is ro-

tated) or a rectangle with integral width at least b

and integral height at least a (in case the compo-

nent is not rotated). We denote this set of com-

patible rectangular shapes for the cell by Rða; bÞ. A
layout of the chip is an enclosing rectangle that is
subdivided by horizontal and vertical line segments

into non-overlapping cells.

* Corresponding author. Tel.: +31-53-489-3462; fax: +31-53-

489-4858.

E-mail addresses: orsvd@wbs.warwick.ac.uk (V.G. De�ııneko),
g.j.woeginger@math.utwente.nl (G.J. Woeginger).

0377-2217/03/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0377-2217(02)00527-1

European Journal of Operational Research 149 (2003) 533–539

www.elsevier.com/locate/dsw

mail to: orsvd@wbs.warwick.ac.uk

A Guillotine cut in a layout is a straight line that
starts at one side of the rectangle, and then goes all

the way through the rectangle to its opposite side.

Throughout the paper, we will only consider non-

trivial Guillotine cuts that split the rectangle into

two non-empty pieces. In a general layout as de-

fined above, the horizontal and vertical subdivi-

ding lines that generate the cells may be completely

arbitrary. For instance, they may form a layout as
depicted in Fig. 1(a) in which the reader will not

find a single (non-trivial) Guillotine cut. A floor-

plan layout is a special type of layout that results

from a sequence of Guillotine cuts. The first

Guillotine cut splits the enclosing rectangle into

two pieces. The following Guillotine cuts then split

these pieces and their subpieces, and their sub-sub-

pieces, and so on. See Fig. 1(b) for an illustration.
Clearly, a floorplan is a particularly simple and

attractive type of layout [6].

One way of representing floorplan layouts is via

so-called slicing trees. A slicing tree (see Fig. 2 for

an illustration) is a rooted binary tree where every

interior vertex has exactly two children. Every leaf

of a slicing tree corresponds to a rectangular cell

for some VLSI component. Every interior vertex

of a slicing tree corresponds to a (horizontal or
vertical) Guillotine cut. The depth of a slicing tree

T is the length of the longest path from the root of

T to a leaf. We denote the number of leaves in T by

n ¼ nðT Þ, and the depth of T by d ¼ dðT Þ. With

every slicing tree T, the following family FðT Þ of

floorplan layouts is associated.

• If the tree T consists of a single leaf that corre-
sponds to a cell with width and height para-

meters a and b, then FðT Þ ¼ Rða; bÞ.
• If the root of T has two children, then denote by

T‘ and Tr the subtrees rooted at the left and the

right child of the root, respectively. If the root is

labeled by an �h� (horizontal), then FðT Þ con-

sists of all layouts that can be constructed by

putting a layout from family FðT‘Þ below a lay-
out from family FðTrÞ and by separating them

via a horizontal Guillotine cut. If the root is la-

beled by a �v� (vertical), then FðT Þ consists of

all layouts that can be constructed by putting

a layout from family FðT‘Þ to the left of family

FðTrÞ and by separating them via a vertical

Guillotine cut.

The usual goal in chip design is to minimize the

area of the chip layout. Hence, the following basic

optimization problem arises: given a slicing tree T,

find a layout of smallest possible area in FðT Þ.
Since the orientations of the VLSI components in

the leaves and the orientations of the vertical/

horizontal Guillotine cuts in the interior vertices

both may either be a priori fixed or left unspeci-
fied, we arrive at the following four basic variants

of this optimization problem.Fig. 1. (a) Not a floorplan layout. (b) A floorplan layout.

Fig. 2. (a) A slicing tree. (b) A corresponding layout.

534 V.G. De�ııneko, G.J. Woeginger / European Journal of Operational Research 149 (2003) 533–539

(V1) The orientations of the cells are fixed, and

the orientations of the Guillotine cuts are

fixed. This problem is trivial, since there is

nothing left to optimize, and there is only

one candidate layout in FðT Þ.
(V2) The orientations of the cells are unspecified,

and the orientations of the Guillotine cuts

are fixed. Stockmeyer [7] presented a polyno-
mial time algorithm that finds the optimal

layout for the slicing tree T within OðndÞ
steps of computation.

(V3) The orientations of the cells are fixed, and

the orientations of the Guillotine cuts are un-

specified. To the best of our knowledge, this

problem has not been investigated before.

(V4) The orientations of the cells are unspecified,
and the orientations of the Guillotine cuts

are unspecified. Almeida et al. [1] present

an exact algorithm for this problem that

finds the optimal layout for the slicing tree

T with Oð2nÞ steps of computation in the

worst case. Computational experiments indi-

cate that the algorithm in [1] performs very

well in practice.

Results of this paper. In this paper, we will

completely settle the computational complexity

and the approximability of the floorplan layout

problem variants (V3) and (V4). As a first (nega-

tive) result, we will show that both variants are

NP-complete. On the one hand, this result explains

why Almeida et al. [1] were not able to find a
polynomial time algorithm for the problem variant

(V4). On the other hand, this result draws a clear

separating line between the hard variants (V3) and

(V4) with unspecified orientations of the Guillotine

cuts, and the easy variants (V1) and (V2) where the

orientations of the Guillotine cuts are fixed.

As positive results, we present pseudo-poly-

nomial time algorithms for both problem variants
(V3) and (V4), and then turn them into a fully

polynomial time approximation scheme (FPTAS,

for short). A standard way of dealing with NP-

hard problems is not to search for an optimal so-

lution, but to go for near-optimal solutions. An

algorithm that returns near-optimal solutions with

cost at most a factor q above the optimal cost

(where q > 1 is some fixed real number) is called a

q-approximation algorithm. A fully polynomial time

approximation scheme (FPTAS) is a family of

ð1þ eÞ-approximation algorithms over all e > 0

with running time polynomially bounded in the

input size and in 1=e (see also [2]). With respect to

relative performance guarantees, an FPTAS is the

strongest possible polynomial time approximation

result that we can derive for an NP-hard problem.

Hence, our results demonstrate that both problem
variants (V3) and (V4) behave very well with re-

spect to polynomial time approximation algo-

rithms.

Organization of this paper. In Section 2 we will

show that both variants (V3) and (V4) are NP-

complete, in Section 3 we present pseudo-poly-

nomial time algorithms for them, and in Section 4

we construct FPTASs for them. Section 5 com-
pletes the paper with a brief conclusion.

2. The NP-completeness proof

In this section we prove that the problem vari-

ants (V3) and (V4) both are NP-complete in the

ordinary sense. Both problems clearly are con-
tained in the complexity class NP, and so we only

need to establish their NP-hardness. The NP-

hardness proof is done by a reduction from the

PARTITION problem that is known to be NP-

complete in the ordinary sense; see [2].

Problem: PARTITION.

Instance: A sequence q1; . . . ; qn of positive integers
such that

Pn
i¼1 qi ¼ 2Q.

Question: Does there exist a partition of the

numbers qi into two groups such that the elements
of each group add up to exactly Q?

Now consider an arbitrary instance I of the

PARTITION problem. Without loss of generality

we assume that qi 6Q holds for i ¼ 1; . . . ; n.
We construct the following slicing tree TI from

I: The backbone of the tree TI consists of a chain of

nþ 1 interior vertices k0; . . . ; kn. The first vertex k0
forms the root of TI . For i ¼ 0; . . . ; n� 1, the in-

terior vertex ki has the interior vertex kiþ1 as a right

child. The remaining nþ 2 vertices in TI are the

leaves ‘0; . . . ; ‘nþ1. The vertex ki (06 i6 n) has leaf

V.G. De�ııneko, G.J. Woeginger / European Journal of Operational Research 149 (2003) 533–539 535

‘i as a left child. Moreover, kn has leaf ‘nþ1 as a
right child. The cell corresponding to leaf ‘i (16
i6 n) has width and height parameters a ¼ b ¼ qi.
The cell corresponding to leaf ‘nþ1 has parameters

a ¼ b ¼ Q, and the cell corresponding to leaf ‘0
has parameters a ¼ b ¼ 2Q. This completes the

description of the slicing tree TI . Since in TI all the
VLSI components associated with the leaves are

squares, the orientations of cells become irrele-
vant. Therefore, the problem variants (V3) and

(V4) coincide for such an input tree TI , and our

reduction works for both variants.

Lemma 2.1. There exists a layout in FðTIÞ with
area at most 8Q2, if and only if the instance I of
PARTITION has answer YES.

Proof. Let us first consider the possible floorplan

layouts for the subtree T 0 that is rooted at vertex

k1, the interior vertex that is just below the root:

These layouts start from the basic Q� Q cell as-

sociated with the leaf ‘nþ1. While moving upwards

through the tree, the qi � qi cells for leaf ‘i are

added one by one to this basic cell. If the interior

vertex ki is fixed as a vertical Guillotine cut, then
this adds qi to the width of the floorplan but leaves

its height unchanged (since we assume qi 6Q).

And if the interior vertex ki is fixed as a horizontal

Guillotine cut, then this adds qi to the height of the

floorplan but leaves its width unchanged. For such

a floorplan layout for the subtree T 0, we denote by

J � f1; . . . ; ng the set of indices i for which vertex

ki is fixed as a vertical Guillotine cut. Then this
floorplan layout has width equal to Qþ

P
i2J qi,

and it has height equal to Qþ
P

i 62J qi. SinceP
i62J qi ¼ 2Q�

P
i2J qi, the width and height are

of the form Qþ x and 3Q� x with x ¼
P

i2J qi.
Now let us prove the statement in the lemma. If

the instance I of PARTITION has answer YES,

then there exists a subset J � f1; . . . ; ng such that

x ¼
P

i2J qi ¼ Q. For this J and x, the above
floorplan for T 0 forms a square with side length

2Q. This 2Q� 2Q square can be combined with

the 2Q� 2Q square in leaf ‘0 by either a vertical or

a horizontal subdivision in k0. The resulting layout

for TI is a 4Q� 2Q rectangle of area 8Q2.

If the instance I of PARTITION has an-

swer NO, then for any subset J � f1; . . . ; ng we

have x ¼
P

i2J qi 6¼ Q with 06 x6 2Q. Consider a
floorplan layout for T 0 with width Qþ x and with

height 3Q� x. We distinguish two cases. In the

first case k0 is a vertical subdivision, and the re-

sulting floorplan for TI has width 2Qþ ðQþ xÞ ¼
3Qþ x and height maxf2Q; 3Q� xg. The resulting

area is

ð3Qþ xÞmaxf2Q; 3Q� xg
¼ maxf6Q2 þ 2Qx; 9Q2 � x2g > 8Q2: ð1Þ

Here the inequality follows, since for x < Q we
have 9Q2 � x2 > 8Q2, and for x > Q we have

6Q2 þ 2Qx > 8Q2, and x ¼ Q is impossible. In the

second case k0 is a horizontal subdivision, and the

resulting floorplan for TI has width maxf2Q;
Qþ xg and height 2Qþ ð3Q� xÞ ¼ 5Q� x. The

resulting area is

ð5Q� xÞmaxf2Q;Qþ xg

¼ maxf10Q2 � 2Qx; 5Q2 þ 4Qx� x2g > 8Q2:

ð2Þ

Here the inequality follows, since for x < Q we

have 10Q2 � 2Qx > 8Q2, and for Q < x6 2Q we
have 5Q2 þ 4Qx� x2 > 8Q2, and x ¼ Q is impossi-

ble. This completes the proof of the lemma. �

As an immediate consequence of Lemma 2.1

and of the fact that PARTITION is NP-complete

in the ordinary sense, we get the following theorem.

Theorem 2.2. The variants (V3) and (V4) of slicing
floorplan designs both are NP-complete in the or-
dinary sense.

Note that the above constructed slicing tree TI is
totally unbalanced and has depth HðnÞ. What

about balanced trees? In this case the problem

becomes much easier: one of the results in Almeida

et al. [1] yields that the optimal floorplan for
a slicing tree of depth d can be found in Oðd4dÞ
time. A perfectly balanced binary tree with n leaves

has depth log n, and hence by [1] the optimal

floorplan can be computed in polynomial time

Oðn2 log nÞ.

536 V.G. De�ııneko, G.J. Woeginger / European Journal of Operational Research 149 (2003) 533–539

3. The pseudo-polynomial time algorithm

In this section we derive a pseudo-polynomial

time algorithm for the two layout problems (V3)

and (V4) that is based on a dynamic programming

approach.

Let T be an arbitrary slicing tree. For a vertex

v 2 T , we denote by T ðvÞ the induced subtree of T
that consists of vertex v and all the vertices below

v. Hence, for the root r of T we have T ðrÞ ¼ T . Let

L denote the sum of all parameter values a and all

parameter values b in the leaves of T. Clearly, L is

pseudo-polynomially bounded in the input size.

Moreover, any reasonable floorplan for T will

have width and height at most L, and from now on

we will restrict our attention to such floorplans.

Definition 3.1. For a vertex v 2 T , we denote by

SðvÞ the set of all pairs ðw; hÞ of integers with

16w6 L and 16 h6 L such that there exists a

floorplan layout for the slicing tree T ðvÞ of width w
and of height h.

Our first goal is to determine all the sets SðvÞ
with v 2 T . This is done by moving bottom-up

through the tree T, starting in the leaves and

ending in the root. Whenever a vertex is handled,

its children already will have been handled. In the

initialization phase, we handle the leaves: for a leaf

v with width parameter a and height parameter b,
we have SðvÞ ¼ fðw; hÞ : wP a; hP bg in variant

(V3), and we have

SðvÞ ¼ fðw; hÞ : wP a; hP bg [fðw; hÞ : wP b;

hP ag ð3Þ
in variant (V4). The remaining steps in the dy-

namic program do not depend on rotations of

components or cells, and hence will be identical for

both variants (V3) and (V4).

Now let us turn to an interior vertex v with left

child v‘ and right child vr. We simply combine all
possible floorplans described by the set Sðv‘Þ with

all possible floorplans described by the set SðvrÞ.
These combinations depend on whether v is fixed

as a vertical or as a horizontal Guillotine cut. If v is
fixed vertically, then the widths of the two layouts

for T ðv‘Þ and T ðvrÞ simply add up, and the new

height is the maximum of the heights of the two

layouts. If v is fixed horizontally, we are in a
symmetric situation with the roles of width and

height exchanged. Summarizing, this discussion

yields

SðvÞ ¼ ðw‘f þ wr;maxfh‘; hrgÞ : ðw‘; h‘Þ 2 Sðv‘Þ;
ðwr; hrÞ 2 SðvrÞg [ðmaxfw‘;wrg; h‘f þ hrÞ :
ðw‘; h‘Þ 2 Sðv‘Þ; ðwr; hrÞ 2 SðvrÞg:

This completes the description of the computation

of all sets SðvÞ with v 2 T . In order to find the

smallest possible floorplan area, we simply search

through the set SðrÞ associated with the root r to T,
and we output the minimium value wh with

ðw; hÞ 2 SðrÞ.
Since SðvÞ � f1; . . . ; Lg � f1; . . . ; Lg for all

v 2 T , we have jSðvÞj6 L2. Hence, every set SðvÞ
can be determined in OðL4Þ time, and the overall

running time is OðnL4Þ. Similarly as in [7], we can

speed-up this running time by disregarding the

dominated floorplans from the sets SðvÞ. We say

that a floorplan with dimensions ðw1; h1Þ is domi-
nated by another floorplan with dimensions ðw2; h2Þ,
if w1 Pw2 and h1 P h2 hold. In other words, a
dominated floorplan in both dimensions is no

better than the dominating floorplan. Clearly, if a

floorplan in SðvÞ is dominated by another floor-

plan in SðvÞ, then it can be removed without losing

anything towards the optimal solution.

This suggests the following modified dynamic

program. Whenever a set SðvÞ has been deter-

mined, then we clean it up and remove all domi-
nated solutions from it. The resulting set of

undominated floorplans is called USðvÞ. All fur-

ther computations are then done with this set

USðvÞ instead of set SðvÞ. Since USðvÞ contains at

most one pair ðw; hÞ for every fixed value h with

16 h6 L, we have jUSðvÞj6 L. The computation

of SðvÞ takes only OðL2Þ time, and also the clean-

ing up for USðvÞ can be done in OðL2Þ time.
Hence, the overall running time of this modified

approach is OðnL2Þ.

Theorem 3.2. The variants (V3) and (V4) of slicing
floorplan designs can be solved in pseudo-polynomial
time OðnL2Þ, where n denotes the number of leaves
and L denotes the sum of all parameter values a and
all values b in the leaves of T.

V.G. De�ııneko, G.J. Woeginger / European Journal of Operational Research 149 (2003) 533–539 537

The described algorithm computes the optimal
area. By storing appropriate auxiliary information

in the states of the dynamic program, one can

compute the structure of the corresponding opti-

mal layout within the same asymptotic time

bounds. Since these are standard techniques, we

do not elaborate on them.

4. The fully polynomial time approximation scheme

In this section we design a FPTAS for the two

layout problems (V3) and (V4). For doing this, we

will build on the pseudo-polynomial time algo-

rithm in Section 3, and transform it into an

FPTAS. This is done via the so-called approach of

trimming the state space of the dynamic program, a
standard approach in the area (see for instance

[3,9]). The main idea is to iteratively thin out the

state space of the dynamic program, to collapse

solutions that are �close� to each other, and to bring

the size of the state space down to polynomial.

Let T be an arbitrary slicing tree with n leaves.

Exactly as in the preceding Section 3, let L denote

the sum of all parameter values a and all para-
meter values b in the leaves of T. Let e > 0 be a

small real number (that will be precision of ap-

proximation). Next, we introduce several concepts

that we will use in constructing the FPTAS. We

define the so-called trimming parameter D as

D ¼ 1þ e
8n

: ð4Þ

Furthermore, we define

k ¼ dlogD ðLÞe; ð5Þ

where logD ð�Þ denotes the base D logarithm.

We partition the interval ½0; L� into k intervals

I1; . . . ;Ik. For i ¼ 1; . . . ; k � 1 there is the half-

open interval Ii ¼ ½Di�1;DiÞ. Moreover, there is

the closed interval Ik ¼ ½Dk�1; L�. Note that every

integer in the range ½0; L� is contained in precisely

one of these intervals. Note furthermore that the

left and the right endpoint of each interval are at
most a factor of D away from each other. Finally,

we define a partition of the integer points in

f1; . . . ; Lg � f1; . . . ; Lg into k2 orthogonal, axes-

parallel boxes: every such box is the product of

some interval Ii in the width coordinate with

some interval Ij in the height coordinate. These

boxes will be called the D-boxes.
Now let us turn to the FPTAS. We will essen-

tially follow the dynamic programming algorithm

from Section 3, but we will modify and shrink the

sets SðvÞ such that their cardinalities become

polynomial in the input size. We will not care
about dominated and undominated solutions, but

we will simply follow the very primitive first ap-

proach where the sets SðvÞ encode all feasible so-

lutions for the tree T ðvÞ. Whenever a set SðvÞ has

been determined for a vertex v, then we clean it up

in the following way and produce a so-called

trimmed set S#ðvÞ: from every D-box B, we keep at

most one (arbitrary) solution for S#ðvÞ. More
precisely, SðvÞ \B 6¼ ; holds if and only if

jS#ðvÞ \Bj ¼ 1. All further computations are then

done with this set S#ðvÞ instead of set SðvÞ. The

intuition for this lies in the fact that in a D-box, the

width-coordinates of all points are at most a factor

D away from each other, and also their height-

coordinates are at most a factor D away from each

other. Since D is very close to one, all the points in
B are fairly close to each other. Hence, we do not

lose a lot if we throw away most of these points,

and only keep one of them as a representative of

the whole D-box B.

In the rest of this section, we will make this

intuition mathematically precise. We will show

that the area of the delivered solution is at most

a factor of 1þ e above the area of the optimal
solution for the instance T, and that the modified

dynamic program has a polynomial running

time.

Lemma 4.1. The area of the solution found by the
modified dynamic program is at most a factor of
1þ e above the (optimal) area found by the original
dynamic program.

Proof. Whenever we clean up a solution set and

generate a set S#ðvÞ, we introduce a multiplicative

error of at most D in the width-coordinate, and a
multiplicative error of at most D in the height-

coordinate. This yields a multiplicative error of at

most D2 in the area. Since a binary tree with n
leaves has exactly n� 1 interior vertices, we gen-

538 V.G. De�ııneko, G.J. Woeginger / European Journal of Operational Research 149 (2003) 533–539

erate less than 2n trimmed solution sets. Hence,

the overall introduced error is bounded by

D4n ¼ 1
�

þ e
8n

�4n
6 1þ e: ð6Þ

Here we have used that for any 06 x6 1 and for

any mP 1, the inequality ð1þ x=mÞm 6 1þ 2x
holds. This can be seen as follows: the left-hand

side ð1þ x=mÞm is a convex function in x, and the
right-hand side 1þ 2x is a linear function in x.
Moreover, the claimed inequality holds at x ¼ 0

and x ¼ 1. This completes the proof of the

lemma. �

Lemma 4.2. The running time of the modified dy-
namic program is polynomially bounded in n, in
lnðLÞ, and in 1=e.

Proof. First observe that there are only k2 different

D-boxes, and that every trimmed set S#ðvÞ contains
at most one point from every box. Therefore,

jS#ðvÞj6 k2 holds for every v 2 T . Whenever the

solution sets for the children v‘ and vr are com-

bined to give the solution set for vertex v, this costs
OðjS#ðv‘ÞjjS#ðvrÞjÞ time. As a consequence, every
trimmed set S#ðvÞ can be determined in Oðk4Þ time,

and the overall running time of the modified dy-

namic program is Oðk4nÞ.
Now let us get an upper bound on the value

k ¼ dlogD ðLÞe where D is defined as in (4). We use

the well-known inequality ln xP ðx� 1Þ=x for

xP 1 (this inequality can be easily derived from

the Taylor expansion of ln x). We get

k ¼ lnðLÞ
lnðDÞ

� �
6 lnðLÞ D

D � 1

� �

¼ lnðLÞ 1

��
þ 8n

e

��
: ð7Þ

Hence, k is polynomially bounded in n, lnðLÞ, and
1=e, and so is the running time of the modified

dynamic program. �

Note that the number of bits in the specification

of the input is at least log2 ðLÞ. With this, Lemma

4.2 states that the running time of the modified
dynamic program is polynomially bounded in the

input size n and log2 ðLÞ, and in the reciprocal value

of the precision e. That is all we need for an FPTAS.

Theorem 4.3. The variants (V3) and (V4) of slicing
floorplan designs both possess a FPTAS.

5. Conclusion

In this paper, we have performed a complete

analysis of the complexity and the approximability
of two slicing floorplan layout problems. These

problems are NP-hard in the ordinary sense, they

are solvable in pseudo-polynomial time, and they

possess a FPTAS.

Acknowledgement

Supported by the START program Y43-MAT of

the Austrian Ministry of Science.

References

[1] A.M.C. Almeida, E.Q.V. Martins, R.D. Rodrigues, Optimal

cutting directions and rectangle orientation algorithm,

European Journal of Operational Research 109 (1998)

660–671.

[2] M.R. Garey, D.S. Johnson, Computers and Intractability: A

Guide to the Theory of NP-Completeness, Freeman, San

Francisco, 1979.

[3] O. Ibarra, C.E. Kim, Fast approximation algorithms for the

knapsack and sum of subset problems, Journal of the ACM

22 (1975) 463–468.

[4] U. Lauther, A min-cut placement algorithm for general cell

assemblies based on a graph representation, Journal of

Digital Systems 4 (1980) 21–34.

[5] R.H.J.M. Otten, Automatic floorplan design, in: Proceed-

ings of the 19th ACM IEEE Design and Automation

Conference, 1982, pp. 261–267.

[6] R.H.J.M. Otten, What is a floorplan? in: Proceedings of the

International Symposium on Physical Design (ISPD�00),
2000, pp. 201–206.

[7] L. Stockmeyer, Optimal orientations of cells in slicing

floorplan designs, Information and Control 57 (1983) 91–

101.

[8] T. Wang, D.F. Wong, Optimal floorplan area optimization,

IEEE Transactions on Computer-Aided Design 11 (1992)

992–1002.

[9] G.J. Woeginger, When does a dynamic programming

formulation guarantee the existence of a fully polynomial

time approximation scheme (FPTAS)? INFORMS Journal

on Computing 12 (2000) 57–75.

V.G. De�ııneko, G.J. Woeginger / European Journal of Operational Research 149 (2003) 533–539 539

	Complexity and approximability results for slicing floorplan designs
	Introduction
	The NP-completeness proof
	The pseudo-polynomial time algorithm
	The fully polynomial time approximation scheme
	Conclusion
	Acknowledgements
	References

