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Abstract

We consider the scheduling problem of minimizing the average weighted job completion time
on a single machine under precedence constraints. We show that this problem with arbitrary job
weights, the special case of the problem where all job weights are one, and several other special
cases of the problem all have the same approximability threshold with respect to polynomial time
approximation algorithms. Moreover, for the special case of interval order precedence constraints
and for the special case of convex bipartite precedence constraints, we give a polynomial time
approximation algorithm with worst case performance guarantee arbitrarily close to the golden
ratio 1

2 (1 +
√
5) ≈ 1:61803.
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1. Introduction

We consider the problem of scheduling n jobs on a single machine. Each job
Jj (j = 1; : : : ; n) is speci:ed by its length pj and its weight wj, where pj and wj are
non-negative integers. Each job Jj must be scheduled for pj units of time, and only one
job can be scheduled at any point in time. We only consider non-preemptive sched-
ules, in which all pj time units of job Jj must be scheduled consecutively. Precedence
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constraints are given by a partial order on the jobs; if Ji precedes Jj in the partial order
(denoted by Ji → Jj), then Ji must be processed before Jj can begin its processing. In
this situation, job Ji is called a predecessor of Jj, and Jj is called a successor of Ji. Our
goal is to :nd a schedule which minimizes the sum

∑n
j=1 wjCj where Cj is the time

at which job Jj completes in the given schedule. In the standard three-:eld scheduling
notation (see, e.g. [5,8]) this problem is denoted by 1 |prec | ∑ wjCj, and the special
case where wj ≡ 1 is denoted by 1 |prec | ∑ Cj. Both problems 1 |prec | ∑ wjCj
and 1 |prec | ∑ Cj are NP-hard in the strong sense [7,9].
A polynomial time 
-approximation algorithm is a polynomial time algorithm that

always returns a near-optimal solution with cost at most a factor 
 above the optimal
cost (where 
¿ 1 is some :xed real number). The value 
 is called the worst case
performance guarantee of the approximation algorithm. A family of polynomial time
(1 + �)-approximation algorithms over all �¿ 0 is called a polynomial time approx-
imation scheme (PTAS). The approximability threshold of a minimization problem
is the in:mum of all values 
 for which the problem possesses a polynomial time

-approximation algorithm. Hence, if a minimization problem has a PTAS then its
approximability threshold equals one.
There are several diJerent polynomial time 2-approximation algorithms known for

the problem 1 |prec | ∑ wjCj. Hall et al. [6] give such a 2-approximation algorithm
by using linear programming relaxations. Chudak and Hochbaum [2] design another
2-approximation algorithm that is based on a half integral linear programming relaxation
and on a minimum cut computation in an underlying network. Independently of each
other, Margot et al. [10] and Chekuri and Motwani [1] provide (identical) extremely
simple, combinatorial polynomial time 2-approximation algorithms. It is an outstanding
open problem to determine the exact approximability threshold of 1 |prec | ∑ wjCj;
see, e.g. [14]. According to the current state of the art, this threshold might be any
value between 1 (which would mean: the problem has a PTAS) and 2 (which would
mean: the currently known approximation algorithms are already best possible).
Interestingly, the special case 1 |prec | ∑ Cj seems to be no easier to approximate

than the general case 1 |prec | ∑ wjCj. The best approximation algorithms known
for 1 |prec | ∑ Cj have performance guarantee 2, i.e., exactly the same guarantee
as for the general case. Every constructive approach that works for the special case
seems to carry over to the general case. In this paper, we will show that the cumu-
lative experiences of the research community with these two problems are not just a
coincidence:

Theorem 1. The approximability thresholds of the following eight special cases of the
scheduling problem 1 |prec | ∑ wjCj all coincide:

(a) The approximability threshold �a of the general problem 1 |prec | ∑ wjCj.
(b) The approximability threshold �b of the special case where 16wj6 n2 and

16pj6 n2.
(c) The approximability threshold �c of the special case where wj ≡ 1.
(d) The approximability threshold �d of the special case where pj ≡ 1.
(e) The approximability threshold �e of the special case where wj ≡ 1 and pj ∈{0; 1}.



G.J. Woeginger /Discrete Applied Mathematics 131 (2003) 237–252 239

(f) The approximability threshold �f of the special case where wj ∈{0; 1} and pj ≡
1.

(g) The approximability threshold �g of the special case where every job has either
pj = 0 and wj = 1, or pj = 1 and wj = 0.

(h) The approximability threshold �h of the special case where every job has either
pj = 0 and wj = 1, or pj = 1 and wj = 0, and where the existence of a prece-
dence constraint Ji → Jj implies that pi = 1 and wi = 0, and that pj = 0 and
wj = 1.

Chekuri and Motwani [1] design instances of the restricted form (h) to show that
the integrality gap of a linear ordering relaxation of Potts [13] is 2. Our Theorem 1
gives some insight why even these highly restricted special cases yield worst possible
integrality gaps. Hall et al. [6] observe that the time-indexed linear programming for-
mulation of Dyer and Wolsey [3] has an integrality gap of at most 2. One problem
with this 2-relaxation is that its size is proportional to the overall job length, which
in general is not polynomially bounded in the input size. Hall et al. [6] :nd a way
around this problem by using an equivalent interval-indexed formulation. Theorem 1
oJers another way around this problem, since it shows that the thresholds for prob-
lems (a) and (b) are equivalent with respect to approximation, and in problem (b) the
overall job length is polynomially bounded in the input size.
Our second main result is that for the special case of interval order precedence

constraints and for the special case of convex bipartite precedence constraints, one can
get an improved performance guarantee that is arbitrarily close to the golden ratio 1

2 (1+√
5). For the exact de:nitions of these two special classes of precedence constraints

we refer the reader to the :rst paragraphs in sections 4.1 and 4.2, respectively.

Theorem 2. Let � = 1
2(1 +

√
5) ≈ 1:61803 be the positive real root of �2 = � + 1.

For any �¿ 0, there exists a polynomial time (� + �)-approximation algorithm for
problem 1 |prec | ∑ wjCj in case (a) the precedence constraints form an interval
order, and in case (b) the precedence constraints form a convex bipartite order.

The paper is organized as follows. In Section 2, we collect several useful de:nitions
and notations, and we also summarize important tools from the literature. In Section 3,
we show that the eight approximability thresholds stated in Theorem 1 are all equal. In
Section 4, we :rst show that a polynomial time algorithm for a certain auxiliary prob-
lem implies a polynomial time (�+ �)-approximation algorithm for 1 |prec | ∑ wjCj.
Then we show that for interval orders and for convex bipartite orders this auxiliary
problem indeed can be solved in polynomial time. This will prove Theorem 2. Finally,
Section 5 contains the conclusions.

2. De�nitions, propositions, and preliminaries

For any instance I of 1 |prec | ∑ wjCj, we denote its optimal objective value by
Opt(I), and we write p(I) =

∑n
j=1 pj and w(I) =

∑n
j=1 wj. For any subset S of jobs,
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let p(S) =
∑

Jj∈S pj and w(S) =
∑

Jj∈S wj. A subset S of jobs is called an initial set
if for every job Jj ∈ S also all the predecessors of Jj are in S.
Goemans and Williamson [4] provide a nice geometric way of looking at 1 |prec |∑
wjCj via a two-dimensional Gantt chart. The Gantt chart is a big rectangle with

its four corners at (0; 0), (0; w(I)), (p(I); 0), and (p(I); w(I)). The straight line from
corner (0; w(I)) to corner (p(I); 0) is called the diagonal of the Gantt chart. Each
job Jj is represented by a job rectangle of length pj and height wj. A schedule
J�(1); J�(2); : : : ; J�(n) is represented by the following placement of the job rectangles. The
rectangle for the :rst job J�(1) is placed such that its upper left corner lies in (0; w(I)).
For j=2; : : : ; n the rectangle for J�(i) is placed such that its upper left corner coincides
with the lower right corner of the rectangle for J�(i−1). Clearly, the rectangle for the
last job J�(n) then has its lower right corner in (p(I); 0). It can be seen [4] that the total
weighted completion time in the schedule J�(1); J�(2); : : : ; J�(n) equals the total area of
the job rectangles plus the total area that lies below these rectangles in the Gantt chart.
This total area (that equals the objective value) will be called the covered area of the
schedule.
Based on the decomposition results of Sidney [15] from 1975 and on the algorith-

mic results of Lawler [7] from 1978, Margot et al. [10] and Chekuri and Motwani
[1] show that within polynomial time, any instance I of 1 |prec | ∑ wjCj can be
split into k¿ 1 subinstances I1; : : : ; Ik such that the following two conditions are ful-
:lled. (i) In any subinstance Ii all initial sets S satisfy p(S)w(Ii)¿p(Ii)w(S). (ii)
If �i (i = 1; : : : ; k) is an arbitrary optimal schedule for instance Ii, then putting the
schedules �1; �2; : : : ; �k in series yields an optimal schedule for the original instance I .
With this, any 
-approximation algorithm for instances that satisfy condition (i) im-
mediately yields a 
-approximation algorithm for general instances; simply compute

-approximate solutions for the instances I1; : : : ; Ik and put them in series. Moreover,
condition (i) implies that in the Gantt chart of any feasible schedule for instance Ii,
the lower right corners of all job rectangles lie on or above the diagonal of the chart;
hence, the covered area of such a schedule is at least w(Ii)p(Ii)=2.

Proposition 3 (Margot et al. [10], Chekuri and Motwani [1]). With respect to appro-
ximation algorithms for 1 |prec | ∑ wjCj, we may restrict ourselves to instances I
that satisfy p(S)w(I)¿p(I)w(S) for any initial set S. Such instances I a priori
satisfy Opt(I)¿w(I)p(I)=2.

For any instance I of 1 |prec | ∑ wjCj, we denote by I # the instance that results
from I by replacing every job Jj in I by a new job J #j with w#

j = pj and p#
j = wj

and by introducing the precedence constraint J #j → J #i if and only if Ji → Jj is in
I . In other words, I # results from I by interchanging job weights and lengths and
by reversing the precedence constraints. Instance I # is called the reverse instance
of I . Chudak and Hochbaum [2] observe that in case J�(1); J�(2); : : : ; J�(n) is a fea-
sible schedule for instance I , then J #�(n); : : : ; J

#
�(2); J

#
�(1) is a feasible schedule for in-

stance I #. It is easily veri:ed that the objective values of these two schedules are the
same.
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Proposition 4 (Chudak and Hochbaum [2]). There is a polynomial time computable
one-to-one correspondence between feasible solutions of instances I and I # that pre-
serves objective values.

An important consequence of Proposition 4 is that any 
-approximation for instance
I trivially translates into a 
-approximation for the reverse instance I #. We will heavily
use this fact throughout the paper. Note that it immediately implies the equalities �c=�d
and �e = �f as claimed in Theorem 1.
We now introduce yet another transformation on instances of 1 |prec | ∑ wjCj. Let

I be an arbitrary instance of 1 |prec | ∑ wjCj. Then the instance I+ results from I by
splitting every job into several new jobs: For every job Jj with length pj and weight wj
in instance I , there is a corresponding job K+

j in I+ that has length pj and weight 0.
Moreover, there are wj other jobs corresponding to Jj that all have length 0 and weight
1; this whole group of wj jobs is denoted by G+

j . The precedence constraints in I+ are
de:ned as follows. K+

i → K+
j in I+ if and only if Ji → Jj in I . All jobs in G+

j have
job K+

j as their common predecessor. In any ‘reasonable’ schedule for I+, all jobs in
G+
j will be processed right after job K+

j and thus will form a contiguous block together
with job K+

j (otherwise, one could decrease the objective value by moving the jobs
in G+

j directly after job K+
j ). This yields a straightforward one-to-one correspondence

between feasible schedules for I and ‘reasonable’ feasible schedules for I+: Jobs Jj
in a schedule for I may be replaced by their corresponding blocks K+

j and G+
j , and

vice versa. Then in I there is one job of weight wj that completes at a certain time t,
whereas in I+ there are wj corresponding jobs of weight 1 that all complete at time t.

Proposition 5. There is a one-to-one correspondence between feasible solutions of
instances I and I+ that preserves objective values.

3. Equality of the eight approximability thresholds

In this section we will prove Theorem 1 in several steps. The statement of Lemma
6 in Section 3.1 yields �a6 �b. Lemmas 7 and 8 in Section 3.2, respectively, yield
�b6 �g and �g6 �h. Since problem (h) is a special case of problem (a), �h6 �a holds.
Summarizing, we have

�a6 �b6 �g6 �h6 �a :

Therefore, the thresholds for problems (a), (b), (g), and (h) all coincide. Lemma 9
in Section 3.3 yields �h6 �e. Since problem (e) is a special case of problem (c), and
since problem (c) in turn is a special case of problem (a), we get

�a = �h6 �e6 �c6 �a :

Therefore, the thresholds for problems (a), (c), (e), and (h) all coincide. Finally, the
discussion after Proposition 4 gives �c = �d and �e = �f .
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To summarize, the four statements in Lemmas 6–9 together indeed will be suPcient
to prove all the statements in Theorem 1.

3.1. How case (a) can be reduced to case (b)

Consider an arbitrary instance I of 1 |prec | ∑ wjCj with n¿ 16 jobs. To keep the
presentation simple, we will write W for w(I) and P for p(I). By Proposition 3 we
may assume without loss of generality that

Opt(I)¿WP=2: (1)

We de:ne another instance I ′ that results from I by scaling the weights: For every job
Jj in I there is a corresponding job J ′j in instance I ′ with the same length p′

j=pj and
with a new weight of

w′
j =max{	wjn2=W 
; 1}6 n2: (2)

Note that w′
j¿wjn2=W and that w′

j6wjn2=W +1. The precedence constraints in I and
I ′ are exactly the same, i.e., J ′i → J ′j in I ′ if and only if Ji → Jj in I . We now assume
that for some 
6 2 we have a 
-approximate schedule � for instance I ′ with objective
value A(I ′)6 
Opt(I ′) and with job completion times C′

�(1); : : : ; C
′
�(n). If we use � as

an approximate schedule for the unscaled instance I with objective value A(I), then
corresponding jobs in the two schedules have the same completion times. This yields

A(I ′) =
n∑
j=1

w′
�( j)C

′
�( j)¿

n2

W

n∑
j=1

w�( j)C′
�( j) =

n2

W
A(I): (3)

Next we claim that

Opt(I ′)¿ n log2 n · P: (4)

Suppose for the sake of contradiction that Opt(I ′)¡n log2 n · P. Then the inequality
in (3), the fact that A(I ′)6 
Opt(I ′), and the inequalities 
6 2 and n¿ 16 together
yield that

Opt(I)6A(I)6
W
n2
A(I ′)6

W
n2

Opt(I ′)¡

W
n2

n log2 n · P6WP=2: (5)

This blatantly contradicts (1) and thus proves (4). Next, we assume without loss of
generality that J1; J2; : : : ; Jn is an optimal schedule for instance I with job completion
times C1; : : : ; Cn. Then

Opt(I) =
n∑
j=1

wjCj¿
n∑
j=1

W (w′
j − 1)Cj=n2 =

W
n2


 n∑
j=1

w′
jCj −

n∑
j=1

Cj




¿
W
n2

(Opt(I ′)− nP)¿ W
n2

Opt(I ′)(1− 1=log2 n): (6)

Here we :rst used that w′
j6wjn2=W + 1, then that Cj6P, and :nally the

inequality in (4). By combining (3), (6), and A(I ′)6 
Opt(I ′) we conclude
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that

A(I)=Opt(I)6 (W · A(I ′)=n2)=(W ·Opt(I ′)(1− 1=log2 n)=n
2)

= A(I ′)=(Opt(I ′)(1− 1=log2 n))6 
=(1− 1=log2 n): (7)

Lemma 6. Assume that there is a polynomial time 
-approximation algorithm A for
the special case (b) of 1 |prec | ∑ wjCj where 16wj6 n2 and 16pj6 n2 holds for
all jobs Jj. Then for every �¿ 0 there exists a polynomial time (
+�)-approximation
algorithm for the general problem 1 |prec | ∑ wjCj.

Proof. Consider an arbitrary instance I of 1 |prec | ∑ wjCj with n jobs. If n¡ 24
=�,
then the problem is of constant size and we may solve it in constant time by complete
enumeration. Otherwise, n¿ 24
=� and 
=(1 − 1=log2 n)

26 
 + �. Let I ′ result from I
by scaling the job weights as described above; then by (2) 16wj6 n2 holds for all
jobs in I ′. Let I ′# be the reverse instance of I ′; then 16pj6 n2 holds for all jobs
in I ′#. Let I ′#′ result from I ′# by scaling the job weights as described above; then
16wj6 n2 and 16pj6 n2 hold for all jobs in I ′#′. Note that the three instances I ′,
I ′#, and I ′#′ can be determined in polynomial time.
We apply the polynomial time 
-approximation algorithm A to instance I ′#′, and

interpret the resulting approximate schedule �′#′ as a schedule for I ′#. By (7) this
yields an approximate schedule �′# for I ′# with objective value at most 
=(1−1=log2 n)
above Opt(I ′#). By Proposition 4, the approximate schedule �′# can be translated
into an approximate schedule �′ of the same approximation quality for instance I ′.
Finally, we interpret the approximate schedule �′ as a schedule for I . By applying
once again (7), we get that the resulting approximate objective value for I is at most

=(1− 1=log2 n)

26 
+ � above Opt(I). This yields the desired polynomial time (
+
�)-approximation algorithm for the general problem 1 |prec | ∑ wjCj.

3.2. How case (b) can be reduced to cases (g) and (h)

In Lemma 7, we will reduce case (b) with polynomially bounded job lengths and
polynomially bounded job weights to case (g). In Lemma 8, we will then reduce
case (g) to the most restricted and most primitive case (h) with bipartite precedence
constraints.

Lemma 7. Assume that there is a polynomial time 
-approximation algorithm A for
the special case (g) of 1 |prec | ∑ wjCj where every job has either pj=0 and wj=1,
or pj=1 and wj=0. Then there also exists a polynomial time 
-approximation algo-
rithm for the special case (b) of 1 |prec | ∑ wjCj where 16wj6 n2 and 16pj6 n2

holds for all jobs Jj.

Proof. Consider an arbitrary instance I of 1 |prec | ∑ wjCj with n jobs where 16wj6
n2 and 16pj6 n2 holds for all jobs. Let I+ result from I by splitting the jobs as
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described in Section 2 just before Proposition 5. Then I+ contains only jobs of two
types: Firstly, jobs with positive length and weight 0, and secondly, jobs with length
0 and weight 1. Since the weights in instance I are polynomially bounded, I+ can
be computed in polynomial time. Next let I+# be the reverse instance of I+. Then
I+# contains only jobs of two types: First, jobs with positive weight and length 0,
and secondly, jobs with weight 0 and length 1. Finally, let I+#+ result from I+# by
splitting the jobs. Then I+#+ contains only jobs of three types: Jobs with length 0 and
weight 0, jobs with length 0 and weight 1, and jobs with length 1 and weight 0. Jobs
of length 0 and weight 0 may be disregarded. Note that I+, I+#, and I+#+ all have
the same optimal objective value and all can be determined in polynomial time.
We apply the polynomial time 
-approximation algorithm A to instance I+#+. We

interpret the resulting approximate schedule as a schedule for I+# by applying Propo-
sition 5, translate it into an approximate schedule for I+ by applying Proposition 4,
and interpret the resulting schedule as an approximate schedule for I by once again
applying Proposition 5. As all these translations do not change the objective value, this
yields a 
-approximation for I .

Lemma 8. Assume that there is a polynomial time 
-approximation algorithm A for
the special case (h) of 1 |prec | ∑ wjCj where every job has either pj=0 and wj=1,
or pj=1 and wj=0, and where the existence of a precedence constraint Ji → Jj implies
that pi=1 and wi=0, and that pj=0 and wj=1. Then there also exists a polynomial
time 
-approximation algorithm for the special case (g) of 1 |prec | ∑ wjCj where
every job has either pj = 0 and wj = 1, or pj = 1 and wj = 0.

Proof. Consider an arbitrary instance I of 1 |prec | ∑ wjCj of type (g) where every
job has either pj=0 and wj=1 (such a job will be called a 0-job), or pj=1 and wj=0
(such a job will be called a 1-job). We recall that the precedence constraints form a
partial order, and hence are transitive. We construct a new instance that results from I
by removing all the precedence constraints (i) between 0-jobs, (ii) between 1-jobs, and
(iii) from 0-jobs to 1-jobs. The resulting instance I b has bipartite precedence constraints
where the 0-jobs form one class and the 1-jobs form the other class of the bipartition.
Therefore, instance I b is of the type (h).
We will now prove that every feasible schedule for the bipartite instance I b can be

transformed into a feasible schedule for the original instance I without increasing the
objective value. Clearly, the statement in the lemma will follow from this.
Hence, consider a feasible schedule for I b. Renumber the jobs such that this schedule

processes the jobs in the ordering J1; J2; : : : ; Jn with job completion times C1; C2; : : : ; Cn.
We interpret this schedule as a schedule for the original instance I , and we call a pair
of jobs Ji and Jj a violated pair, if Ji → Jj in I and if i¿ j. Consider a violated
pair Ji and Jj with the diJerence i − j as small as possible. Consider an intermediate
job Jk with j¡k ¡ i. If Jk was a predecessor of Ji in I , then Jk → Ji → Jj, and
if Jk was a predecessor of Jj in I , then Jk → Jj. In either case, the jobs Jk and Jj
would form another violated pair with k − j¡ i − j. If Jk was a successor of Jj in
I , then Ji → Jj → Jk , and if Jk was a successor of Ji in I , then Ji → Jk . In either
case, the jobs Ji and Jk would form another violated pair with i − k ¡ i − j. Hence,
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all intermediate jobs between Jj and Ji are neither predecessors nor successors of Ji
and Jj. We distinguish two cases.
(i) Ji is a 0-job. We remove Ji from the schedule and reinsert it immediately before

Jj. By moving this 0-job to an earlier point in time, we will not increase the objective
value of the schedule.
(ii) Ji is a 1-job. Since the considered schedule is feasible for I b, in this case also Jj

must be a 1-job. We remove Jj from the schedule and reinsert it immediately after Ji.
This increases the completion time of Jj from Cj to Ci, and it decreases the completion
time of the i − j jobs Jj+1; : : : ; Ji all by 1. Note that i − j¿Ci − Cj since there must
be Ci − Cj 1-jobs among Jj+1; : : : ; Ji. Hence, by moving Jj we will not increase the
objective value of the schedule.
To summarize, in both cases we resolve the violated pair Ji and Jj, we do not

create any new violated pairs, and we end up with another feasible schedule for I b.
By repeating this procedure over and over again, we will eventually get rid of all
violated pairs without ever increasing the objective value. The resulting schedule will
be feasible for the original instance I , exactly as we desired.

3.3. How case (h) can be reduced to case (e)

In this section, we will mainly recycle ideas and constructions from Sections 3.1
and 3.2. Consider an instance I of type (h) with n jobs where every job has either
pj = 1 and wj = 0, or pj = 0 and wj = 1, and where the precedence constraints only
go from jobs of the :rst type to jobs of the second type. Note that w(I) + p(I) = n.
From instance I we construct another instance I ′ by modifying the weights exactly as
described at the beginning of Section 3.1. The processing times and the precedence
constraints remain unchanged, and the weights are computed according to Eq. (2). We
de:ne

Q = 	n2=W 
6 n2:

The resulting instance I ′ only has two types of jobs: Jobs with p′
j = 1 and w′

j = 1,
and jobs with p′

j = 0 and w′
j = Q. All precedence constraints only go from jobs of

the :rst type to jobs of the second type. By arguments analogous to those used in
Lemma 6, any polynomial time 
-approximation algorithm for instances I ′ translates
into a polynomial time (
+ �)-approximation algorithm for instances I .
Next, we split every job J ′j with p′

j = 0 and w′
j = Q in I ′ into Q new jobs that all

have length 0 and weight 1. These Q new jobs have exactly the same predecessors as
job J ′j in instance I ′. The jobs with p′

j=1 and w′
j=1 remain unchanged. The resulting

instance I ′′ can be found in polynomial time. Instance I ′′ only has two types of jobs:
Jobs with p′′

j = 1 and w′′
j = 1, and jobs with p′′

j = 0 and w′′
j = 1. Therefore, instance

I ′′ is of the type (e). By arguments very similar to those used at the end of Section
2 for instances I+, one can show that there is a one-to-one correspondence between
feasible solutions of instances I ′ and I ′′ that preserves objective values.

Lemma 9. Assume that there is a polynomial time 
-approximation algorithm A for
the special case (e) of 1 |prec | ∑ wjCj where wj ≡ 1 and pj ∈{0; 1}. Then for every
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�¿ 0 there exists a polynomial time (
+ �)-approximation algorithm for the special
case (h) of 1 |prec | ∑ wjCj where every job has either pj=0 and wj=1, or pj=1
and wj = 0, and where the existence of a precedence constraint Ji → Jj implies that
pi = 1 and wi = 0, and that pj = 0 and wj = 1.

4. Approximation algorithms for nice precedence constraints

In this section, we will derive a polynomial time (�+ �)-approximation for 1 |prec |∑
wjCj for certain ‘nice’ classes of precedence constraints that include interval orders

and convex bipartite orders. This approximation algorithm is based on exact algorithms
for the following auxiliary problem.

Problem. Good Initial Set

Instance. An instance I of 1 |prec | ∑ wjCj, i.e., a set of precedence constrained
jobs Jj (j = 1; : : : ; n) with non-negative integer lengths pj and non-negative integer
weights wj. A real number ! with 0¡!6 1=2.
Question. Does there exist an initial set T that simultaneously satis:es p(T )6 (1=2+

!)p(I) and (1=2− !)w(I)6w(T )?

Theorem 10. Let C be a class of precedence constraints such that the restriction of
the Good Initial Set problem to precedence constraints from class C is solvable in
polynomial time. Then for any �¿ 0, the restriction of problem 1 |prec | ∑ wjCj to
precedence constraints from class C has a polynomial time (� + �)-approximation
algorithm.

Proof. Consider an instance I of 1 |prec | ∑ wjCj with precedence constraints from
class C. We will write W short for w(I), and P short for p(I). By Proposition
3 we may assume that p(S)W ¿w(S)P holds for any initial set S in I , and that
Opt(I)¿WP=2. Take an arbitrary real � with 0¡�¡ 1=4 and de:ne ‘= 	2�=�
. For
this choice of ‘, the following inequalities are satis:ed for all ! with 0¡!6 1=2:

1
2
+ 2

(
!− 1

2‘

)2

¿ !¿
2�
�‘
!− �

2�‘2
= 2

�
�

(
!
‘
− 1

4‘2

)
:

Here the :rst inequality follows from !6 1=2 and the second inequality follows from
2�6 �‘. Rewriting this inequality yields

1
2
+ 2

(
!− 1

2‘

)2

¿
(
1
2
+ 2!2

)
=(1 + �=�): (8)

We call the polynomial time algorithm for problem Good Initial Set on the inputs I
and !k=k=2‘ for k=1; 2; : : : ; ‘ until we detect a value !=!k that yields a YES-instance.
Let T be the corresponding initial set of jobs, and let U be the set of remaining jobs
that are not contained in T . We construct an approximate solution for the scheduling
instance I that :rst runs all the jobs in T in any feasible order, and then runs all the
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jobs in U in any feasible order. We denote the objective value of this approximate
solution by A(I). Clearly, this approximate solution can be determined in polynomial
time.
Now consider the two-dimensional Gantt chart for the approximate schedule (see the

discussion in Section 2). Since p(T )6 (1=2+!)P, all rectangles for jobs in T lie to the
left of the line x=(1=2+!)P. Moreover, w(T )¿ (1=2−!)W implies w(U )6 (1=2+!)W ,
and thus all rectangles for jobs in U lie below the line y=(1=2+ !)W . To summarize,
not a single job rectangle protrudes into the ‘forbidden’ region that lies to the right of
the line x=(1=2+!)P and above the line y=(1=2+!)W . Since the area of this forbidden
region equals (1=2 − !)2WP, the remaining area in the chart that may contribute to
the objective value of the approximate schedule is at most WP − (1=2− !)2WP. This
yields

A(I)6 (3=4 + !− !2)WP: (9)

Now consider the two-dimensional Gantt chart for an optimal schedule for instance I .
Since we assumed by Proposition 3 that p(S)W ¿w(S)P holds for any initial set S,
in this Gantt chart the whole region below the diagonal must belong to the covered
area. Moreover, we claim that the covered area in the Gantt chart must include the
rectangular region R that lies to the left of the vertical line x=(1=2+ !− 1=2‘)P, and
below the horizontal line y=(1=2+!−1=2‘)W . If !=1=2‘ holds then R lies below the
diagonal of the Gantt chart, and our claim trivially holds. Therefore, we may assume
!¿ 1=‘, in which case the instance of Good Initial Set for the value ! − 1=2‘ was a
NO-instance. If the region R did not belong to the covered area, then for some job Jz
the lower right corner of its rectangle would lie inside of R. But then the initial set that
consists of the :rst job up to job Jz in the optimal schedule would constitute a good
initial set for the value ! − 1=2‘. This contradiction proves the claim. To summarize,
the covered area in the Gantt chart for the optimal schedule includes the region below
the diagonal together with the region R. This yields

Opt(I)¿WP=2 + 2(!− 1=2‘)2WP¿ (1=2 + 2!2)WP=(1 + �=�): (10)

Here the :rst inequality follows from the area estimation, and the second inequality
follows from (8). By combining (9) and (10), we conclude that

A(I)
Opt(I)

6 (1 + �=�)
3=4 + !− !2
1=2 + 2!2

6 (1 + �=�)�= �+ �: (11)

The :nal inequality follows by elementary calculus: On the interval (0; 1=2], the func-
tion f(!) = (3=4+ !− !2)=(1=2+ 2!2) takes its maximum value at != 1

2(
√
5− 2), and

this maximum value equals �= 1
2(1 +

√
5). The proof is complete.

4.1. Interval order precedence constraints

An interval order (see, e.g. [12]) on the jobs J1; : : : ; Jn is speci:ed by a set of n
intervals I1; : : : ;In along the real line. Then Ji → Jj holds if and only if interval Ii

lies completely to the left of interval Ij. Without loss of generality we assume that
all intervals have non-zero length, and that the n intervals have 2n pairwise distinct
left and right endpoints. Our goal in this subsection is to prove Theorem 2(a).
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Lemma 11. Consider the subset of instances I of 1 |prec | ∑ wjCj with n jobs for
which wj6 n2 and pj6 n2 holds for all jobs and for which the precedence constraints
form an interval order. The restriction of the Good Initial Set problem to instances
(I; !) where I is from this subset is solvable in polynomial time.

Proof. Consider such an instance I and a real number ! with 0¡!6 1=2. Now any
initial set T for an interval order can be decomposed into three parts: The :rst part
is the interval in T with the rightmost left endpoint; this interval is called the head
h(T ) of T . The second part consists of all predecessors of h(T ) in I ; note that this
part is fully speci:ed as soon as the head h(T ) is speci:ed. The third part consists of
the remaining intervals in T . All these remaining intervals contain the left endpoint of
h(T ) in their interior, and thus are pairwise incomparable as well as incomparable to
h(T ).
We divide the problem of :nding a good initial set T into n subproblems depending

on the head h(T ) of T . For every :xed head h(T ), the good initial set problem can
be solved in polynomial time as follows. We de:ne P∗ to be (1=2+ !)p(I) minus the
length of h(T ) minus the overall length of all predecessors of h(T ). We de:ne W ∗ to
be (1=2−!)w(I) minus the weight of h(T ) minus the overall weight of all predecessors
of h(T ). Then the existence of a good initial set with head h(T ) boils down to deciding
whether there exists a subset U of (pairwise incomparable) intervals that all contain the
left endpoint of h(T ) in their interior, such that p(U )6P∗ and w(U )¿W ∗. But that
is just a standard two-dimensional knapsack problem where the weights and lengths
of the elements are polynomially bounded! This special case of the knapsack problem
can be solved in polynomial time by the standard dynamic programming approaches
(cf., e.g. [11]).

Proof of Theorem 2(a). By Theorem 10 and Lemma 11, there exists a polynomial time
(�+�)-approximation algorithm for the special case of 1 |prec | ∑ wjCj where wj6 n2

and pj6 n2 and where the precedence constraints form an interval order. By Lemma
6, this approximability result carries over to the special case of 1 |prec | ∑ wjCj un-
der interval order precedence constraints with arbitrary job lengths and job weights.
Lemma 6 can be applied, since its proof only reverses the precedence constraints, and
since the reverse of an interval order is again an interval order.

We stress that we cannot apply Lemmas 9 and 7 in the above proof of Theorem
2(a). When we split jobs in an interval order as we need to do in the proofs of
these two Lemmas, then the resulting order will not necessarily be again an interval
order. We also note that the statement in Lemma 11 does not generalize to arbitrary
job weights and job lengths unless P = NP: In this general case the Good Initial Set
problem for interval orders is NP-complete (this can be proved by a reduction from
the NP-complete Partition problem). For series-parallel precedence constraints, the sit-
uation looks much better: Reversing series-parallel precedence constraints yields again
series-parallel precedence constraints, and the splitting of jobs translates series-parallel
precedence constraints into new series-parallel precedence constraints. Hence, Theo-
rem 1 yields that approximating 1 |prec | ∑ wjCj under series-parallel precedence
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constraints is equivalent to approximating 1 |prec | ∑ wjCj under series-parallel prece-
dence constraints when, e.g. wj ≡ 1 and pj ∈{0; 1}. For this special case the Good
Initial Set problem is polynomially solvable, and thus Theorem 10 yields the existence
of a polynomial time (� + �)-approximation algorithm for 1 |prec | ∑ wjCj under
series-parallel precedence constraints. However, this statement is neither surprising nor
interesting, since Lawler [7] has shown that 1 |prec | ∑ wjCj under series-parallel can
even be solved in polynomial time.

4.2. Convex bipartite precedence constraints

Our goal in this subsection is to prove Theorem 2(b). A bipartite order (see [12])
on a set of jobs is de:ned as follows. The jobs are classi:ed into two types. The
minus-jobs J−1 ; : : : ; J

−
a do not have any predecessors, and the plus-jobs J+1 ; : : : ; J

+
b do

not have any successors. The only precedence constraints are of the type J−i → J+j ,
that is from minus-jobs to plus-jobs. In this section we are interested in the class
of convex bipartite orders. This class forms a proper subset of the class of general
bipartite orders, and it is a proper superset of the class of strong bipartite orders (see
[12,16] for more information). A bipartite order is a convex bipartite order if for
every j = 1; : : : ; b there exist two indices ‘(j) and r(j) such that J−i → J+j holds
if and only if ‘(j)6 i6 r(j). In other words, the predecessor set of every plus-job
forms an interval within the minus-jobs.

Lemma 12. Consider the subset of instances I of 1 |prec | ∑ wjCj with n jobs for
which wj6 n2 and pj6 n2 holds for all jobs and for which the precedence constraints
form a convex bipartite order. The restriction of the Good Initial Set problem to
instances (I; !) where I is from this subset is solvable in polynomial time.

Proof. Consider such an instance I . Without loss of generality we assume that every
plus-job J+j has at least one predecessor and thus satis:es ‘(j)6 r(j). Moreover, we
will assume that the plus-jobs are ordered in such a way that r(j)6 r(j + 1) holds
for 16 j6 b− 1. Finally, we assume that the :rst plus-job J+1 has J−1 as its unique
predecessor and that this :rst minus-job J−1 has J+1 as its unique successor. The length
and the weight of these two jobs are all zero. The jobs J−1 and J+1 serve as dummy
jobs that help us to avoid special treatment of certain boundary cases. We will write
p−
i and w−

i for the length and the weight of job J−i , and p+
j and w+

j for the length
and the weight of job J+j .
We will now design a polynomial time algorithm for the Good Initial Set problem.

This algorithm is based on a Boolean predicate A[h; i; j; p; w] where 16 h6 i6 a,
16 j6 b such that r(j)6 i, and 06p6p(I) and 06w6w(I). Since we assumed
wj6 n2 and pj6 n2, we have w(I)6 n3 and p(I)6 n3, and thus the total number of
these values A[h; i; j; p; w] is polynomially bounded in n. The predicate A[h; i; j; p; w] is
true if and only if there exists an initial set T that ful:lls the following four conditions.
• T only contains jobs from J−1 ; : : : ; J

−
i and from J+1 ; : : : ; J

+
j .

• T contains all i − h+ 1 jobs J−h ; : : : ; J
−
i .
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• If h¿ 2, then T does not contain the job J−h−1.
• p(T ) = p and w(T ) = w.
Such a set T will be called a witness for A[h; i; j; p; w]. Clearly, every non-empty initial
set T is a witness to some A[h; i; j; p(T ); w(T )]. Now consider an initial set T that is
a witness for A[h; i; j; p; w] with i¿ 2 and j¿ 2.
• If T does not contain the job J+j , then T is also a witness for A[h; i; j − 1; p; w].

Any witness for A[h; i; j − 1; p; w] is also a witness for A[h; i; j; p; w].
• If T does contain the job J+j , if r(j)¡i, and if h¡ i, then T − {J−i } is a witness

for A[h; i− 1; j; p−p−
i ; w−w−

i ]. Any witness for A[h; i− 1; j; p−p−
i ; w−w−

i ] can
be extended to a witness for A[h; i; j; p; w] by adding the job J−i to it.

• If T does contain the job J+j , if r(j)¡i, and if h= i, then T − {J−i } is a witness
for A[h′; i′; j; p − p−

i ; w − w−
i ] for some indices h′ and i′ with 16 h′6 i′6 i − 2.

Any witness for A[h′; i′; j; p−p−
i ; w−w−

i ] with 16 h′6 i′6 i−2 can be extended
to a witness for A[h; i; j; p; w] by adding the job J−i to it.

• If T does contain the job J+j , and if r(j) = i, then the inequality h6 ‘(j) must
be satis:ed. In this case, T − {J+j } is a witness for A[h; i; j − 1; p − p+

j ; w − w+
j ].

Moreover, any witness for A[h; i; j−1; p−p+
j ; w−w+

j ] can be extended to a witness
for A[h; i; j; p; w] by adding the job J+j to it.

Clearly, these four cases cover all possibilities for a witness T for A[h; i; j; p; w] with
26 j and 26 i. The cases A[h; i; j; p; w] for i= 1, and for j = 1 and i= 2 are trivial,
since the dummy jobs J−1 and J+1 restrict their structure; e.g., the only de:ned case
with i= 1 is A[1; 1; 1; 0; 0]. It remains to discuss witnesses T for the case where j= 1
and i¿ 3. Since J+1 is a dummy job, we may assume without loss of generality that
T only contains minus-jobs in this case.
• If h¡ i, then T −{J−i } is a witness for A[h; i− 1; 1; p−p−

i ; w−w−
i ]. Any witness

for A[h; i− 1; 1; p−p−
i ; w−w−

i ] can be extended to a witness for A[h; i; 1; p; w] by
adding the job J−i to it.

• If h = i, then T − {J−i } is a witness for A[h′; i′; 1; p − p−
i ; w − w−

i ] for some h′

and i′ with 16 h′6 i′6 i − 2. Any witness for A[h′; i′; 1; p − p−
i ; w − w−

i ] with
16 h′6 i′6 i−2 can be extended to a witness for A[h; i; 1; p; w] by adding the job
J−i to it.

It is straightforward to use the above cases to compute all values A[h; i; j; p; w] by going
through them in increasing order of i and j, and by storing all computed values in a
table. The overall time needed to compute all values is polynomially bounded in the
size of the table. Finally, in order to solve the Good Initial Set problem we only need
to scan through the table and look for a true entry A[h; i; j; p; w] with p6 (1=2+!)p(I)
and (1=2− !)w(I)6w.

Proof of Theorem 2(b). The argument is almost identical to the proof of Theorem
2(a) in the preceding subsection. Theorem 10 and Lemma 12 yield the existence of a
polynomial time (� + �)-approximation algorithm for the special case where wj6 n2

and pj6 n2, and Lemma 6 can be used to carry this over to 1 |prec | ∑ wjCj under
convex bipartite precedence constraints with arbitrary job lengths and arbitrary job
weights. (A small technical problem arises, since the proof of Lemma 6 reverses the
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precedence constraints, and the reverse of a convex bipartite order is not necessarily
again a convex bipartite order. This can be repaired by Proposition 4.)

5. Conclusions

In this paper, we have done a further step in the exploration of the approximability
behavior of the scheduling problem 1 |prec | ∑ wjCj. We have shown that the most
general version of this problem has the same approximability threshold (with respect
to polynomial time approximation algorithms) as some fairly innocent looking special
cases of the problem. Moreover, we have shown that for the special cases of inter-
val order precedence constraints and of convex bipartite precedence constraints, the
approximability threshold is at most the golden ratio � ≈ 1:61803.
However, it remains an outstanding open problem to :nd a polynomial time approx-

imation algorithm with worst case performance guarantee strictly better than 2 for the
general problem 1 |prec | ∑ wjCj.
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