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The structure of foam cells: Isotropic Plateau polyhedra
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Abstract. — A mean-field theory for the geometry and diffusive growth rate of soap bubbles in
dry 3D foams is presented. Idealized foam cells called isotropic Plateau polyhedra (IPPs), with
F identical spherical-cap faces, are introduced. The geometric properties (e.g., surface area .S,
curvature R, edge length L, volume V') and growth rate G of the cells are obtained as analytical
functions of F', the sole variable. IPPs accurately represent average foam bubble geometry for
arbitrary F' > 4, even though they are only constructible for F = 4,6,12. While R/V/3,
L/ V1/3 and G exhibit F1/2 behavior, the specific surface area S/ V23 s virtually independent
of F'. The results are contrasted with those for convex isotropic polyhedra with flat faces.

Dry soap foams (with liquid volume fraction < 1) are space-filling structures composed of
polyhedral cells (bubbles) with curved faces. Over short time scales, the bubbles change shape
under the influence of surface tension until the total surface area of the foam achieves a local
minimum. Over longer times, further area reduction results from gas diffusion between neigh-
boring cells with different internal pressures. Some cells shrink in the process and eventually
disappear, increasing the average bubble size. This diffusive coarsening [1] is paradigmatic for
other surface-minimizing evolution processes, such as grain growth in polycrystalline metals [2]
or domain dynamics in magnetic thin films [3] and lipid monolayers [4].

The statistics and dynamics of foam coarsening are not fully understood, largely because
it is hard to quantify the shape of 3D cells. A cell of volume V' grows or shrinks [5,6] as

VYV =-D V*1/3/ HdA=Dg, (1)

where D is an effective diffusion coefficient [7], and G is a dimensionless function of cell
shape only, proportional to the mean curvature H integrated over the surface. For semi-dilute
suspensions where the bubbles are spherical and G = —(487r2)1/ 3. a complete coarsening theory
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is available (e.g., in Ostwald ripening [5]). For ordered foams, such as the Kelvin and Weaire-
Phelan structures, it is easy to calculate cell shapes accurately [8], but not for generic (random,
disordered) foams, which contain an impressive variety of cells [9,10]. This letter presents a
mean-field theory for the geometry of a class of idealized foam cells, from which G and other
properties follow. These cells have the simplest possible shapes that satisfy local equilibrium.

A pure mean-field average over all cells in a foam of fixed total volume trivially yields
(V) = 0 in the absence of cell disappearance. Recent experiments [11], simulations, and
theory [12] found strong correlations between the coarsening rate of foam cells and the number
of faces, naturally dividing the foam into classes of F-faced bubbles. Our goal is to find
representative F-hedral foam cells whose shapes can be described analytically, just like the
spherical bubbles in Ostwald ripening.

Thermodynamically, random foams are far from equilibrium, prone to effects of jamming
and disorder, much like glasses [13]. It is known that in metallic glasses local dodecahedral
order competes with long-range disorder [14]. In the same way, we expect foam bubbles to
tend toward locally optimal shapes competing with randomness on a global scale.

What are these locally optimal shapes? We argue that bubbles approximate compact,
isotropic shapes, because i) highly distorted cells with large aspect ratios are energetically un-
favorable, as they tend to increase the specific surface area S/V?2/3, and ii) isotropic bubbles
are the most probable, in the following sense. During foam generation and evolution, cells
explore the space of possible shapes. In a random foam, we can assume, as a first approxi-
mation, that all partitions of the surface into F' faces have equal prior probability (mean-field
approach). A configurational entropy [15,16] can then be defined by

F
Q:wailogwi, Zwiil, (2)

where w; = Q; /47, and each face i on the bubble takes up a solid angle €; (as seen from the
bubble’s center of mass), so that > Q; = 4x. It is well known that @ is maximal when w; =
1/F for all i. By a similar argument, as every face is delineated by 7 edges, we find that the
most probable configuration is that of equal edge length, where the vertices are those of a regu-
lar polygon. Note that the energy of a single foam cell is minimized when F'—1 faces are vanish-
ingly small and the last face takes on spherical shape [17]. However, according to formula (2),
the probability of such a configuration in a random foam decreases rapidly for large F'.

We therefore propose that representative F-hedra have F' identical regular faces with n
vertices each; n = 6 —12/F because foams cells are trivalent (simple) polyhedra. Thus, 7 is an
integer only when F' = 4, 6, or 12(!), and the only physically realizable class representatives
have the symmetries of the regular tetrahedron, cube, and pentagonal dodecahedron (fig. 1a).
Like every foam cell in 3D, these bubbles must fulfill Plateau’s rules [1,18]: their faces are
constant mean-curvature surfaces meeting at dihedral angles of 120°, delineated by edges
that meet at the tetrahedral angle arccos(—1/3) ~ 109.47°. To emphasize the importance of
Plateau’s rules, we refer to the representative foam cells as isotropic Plateau polyhedra (IPPs).

We now show that all geometric properties of IPPs (referred to as Pr) are determined
exactly by their symmetry. A priori, one could imagine different faces of constant mean cur-
vature, but spatially varying principal curvatures. However, every IPP face can be decomposed
into 27 triangular symmetry units spanning points at A, £, and V in fig. 1b. The edges of this
triangle are contained in planes that meet the triangle at constant angles, namely /2 along
AE and AV (by symmetry) and /3 along EV (by Plateau’s rules). The capillary surface

(1)We shall discuss the non-regular cases F' = 2, 3, oo later.
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Fig. 1 — (a) Isotropic Plateau polyhedra Ps, Ps, Pi2 (top row), the “degenerate” polyhedra P>, Ps,
and a section of the “golf ball” P. (bottom row). (b) Left: two faces of Py, the flat-faced pentagonal
dodecahedron, indicating the angles v and x. Right: a spherical-cap face with center Cs and radius
R belonging to P2 has been constructed on one of the flat faces. The elementary symmetry unit of
the faces AVE is shown shaded.

theorems [19,20] then prove that IPPs with integer n have spherical-cap faces, so that their
geometric shape is known analytically. This statement is not true for general foam bubbles,
and spherical caps had to be taken as an explicit assumption in earlier work [12].

In the following, we derive cell properties by assuming that AVE is the elementary sym-
metry unit for arbitrary F' even though this is only true when F' = 4,6,12. We interpret
our results as approximations to the statistical, average properties of F-faced foam cells in
a random foam, and show that this approximation works extremely well. Isotropic Plateau
polyhedra are not the same as the “ideal average bubbles” discussed by Sire [21]. The latter
are semi-regular polyhedra with spherical faces of multiple types; their variability necessitates
various closure schemes. More obvious differences exist between the present work and foam
models that assume planar [22] or pentagonal faces [23]. Furthermore, the present work goes
beyond Hilgenfeldt et al. [12] in avoiding any geometric approximations. Equivalents to some
of the following formulas were reported by Glicksman [24].

To quantify the geometry of Pr, consider the analogous convex isotropic polyhedron P,
which has F' flat faces, unit edge length, and center at C. Figure 1b shows two adjacent faces
of PY. Each face is a regular 7-gon and has a fundamental triangle with angle v = 7/n at the
center Ag. The triangle has side lengths %, % / tany and % /sin~y. Three n-gons form each cor-
ner of P2 and determine the angle x between adjacent face normals, given by T2 = 4 sin?~y — 1,
where T' = tan(y/2). The flat polyhedra only satisfy the Plateau condition when x = 7/3,
which occurs for F' = FJ ~ 13.3973, a number well known from other foam theories [25].

To determine the spherical-cap radius R, notice that two identical spheres intersect at the
Plateau dihedral angle when each passes through the other’s center. The intersection is a
circle of radius r = Rv/3 /2; its curvature as a space curve is 1/r, and, because of the known
dihedral angle, its geodesic curvature as a curve on either sphere is kg = 1/2r. Consider a
typical vertex V as shown in fig. 1b, which lies in the plane that contains the face of PY; it
lies on the sphere of radius R around Cg; and it also lies in the plane through C' and the edge
of PY2. These conditions on V and the dihedral angle yield

3
R 2(\/§T7cos'y) ’ 3)
which is positive for F' < F (indicating convex faces), and negative for F' > FJ (concave
faces). When F = 4, the spherical cap has unit radius; P, is therefore a Reuleaux tetrahe-
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dron [26]. Experiments show that tetrahedral bubbles in real foams have shapes very close to
Reuleaux tetrahedra [27], stressing the relevance of the present theory to real systems.

To evaluate the surface area of Pr, we use the Gauss-Bonnet theorem [28]. For any patch
D with boundary 9D on a 2D surface,

/DICdA:27r—/aDmgds—§v;¢i. (4)

In our case, the integral of Gaussian curvature K = 1/R? is evaluated over the cap surface, the
integral of kg =1/ R+/3 along the edges (circular arcs of unit chord length), and the “turning
angles” ¢; at each vertex on the boundary (Plateau’s rules require ¢; = § = arccos %) The
total surface area S is then

1
S:FR2<27r— (arcsin——i—é)), 5
U VG ()
while the total edge length L of Pr, which has 3F — 6 edges, is given by

L 1
— = ds =3 R arcsin .
3(F—-2)  Jop RV3
The volume of Pr is V' = 2nF'V,,, where V;, is the volume of the elementary pyramid defined
by C and the fundamental triangle within each face. Choosing C' as origin of a spherical r, 6,
¢ coordinate system, we find

(6)

1

¥ arctan ﬁ )
Vo=3 / de / Tmax(0)% sin 6 dé, (7)
0 0

where Tyax = 25 (V1 + T2 cosd + ((3 + cos? 0)T? — sin® 0)7) is obtained by using the law of
cosines for the triangle shown in fig. 1b. The total volume is
B nFR?

1% T(2\/§+487—575+33y—tamy), (8)

where y = arcsin(% cos 7). For comparison, the geometric quantities for the convex isotropic
polyhedra P2 (cf. [29,30]) are

So = % cot 7y, Ly =3(F — 2), W= i cot? . 9)
The characteristic length V1/3 is used to scale all geometric quantities. The sphere is the
ultimate surface area minimizer (S/V?/3 = (367)'/?3), so we define a reduced surface-to-volume
ratio 8 = S/(36wV?)1/3,
Figure 2a shows that ( is a monotonically decreasing function of F' for both types of
polyhedra. However, the asymptotic behavior for large F' is surprisingly different. The flat
polyhedra approximate a sphere,

Bo ~1+1.0077 F~1 +1.7310 F~2, (10)

and P2(F — oo) is locally equivalent to a plane tiled by flat hexagons. The curved polyhedra
tend to a state of larger surface area,

B~ Boo + 0.01743 F~1/2 4+ 0.00228 F~ 1, (11)
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Fig. 2 — (a) Normalized surface area 3 vs. F' for the isotropic Plateau polyhedra Pr and the convex
isotropic polyhedra P2, which have flat faces. (b) Non-dimensional edge length LV~Y3 us. F for Pr
and P2. The two curves in both (a) and (b) intersect at F = Fg. (c) Plot of LV Y3 ys. SV ~2/3
for monodisperse foams. Point clouds refer to numerical simulations [10]; polyhedra with the same
F (see legend) cluster in well-separated clouds. Large symbols indicate theoretical values from (11)
and (12). Deviations between simulation and theory are typically about 1 — 2% on both axes.

where B = 2(57 — 126)/v/3 ~ 1.0813. Locally, Pr(F — oo) is equivalent to a “golf ball”
covered by a hexagonal pattern of concave spherical dimples with Ry, = —/3 (fig. 1a). The
specific surface area of IPPs is virtually independent of topology: 1.0813 < 8 < 1.0933 for
F > 4, analogous to what is found for 2D foams [31].

The edge length, by contrast, is strongly dependent on topology. Figure 2b shows that the
large-F' behavior for both types of polyhedra is very similar:

LV=Y3 ~ A FY2 4£1.2313 4+ 2.0455 F~1/2,
LoV ~ A0 P2 4 29184 F-V/2, (12)

where A0 = 2°/637/1271/6 ~ 4.0930 and A\, = 3arcsin(1/3) A%, ~ 4.1728 (the curved edges of
the “golf ball” are slightly longer). To excellent accuracy, the edge length of Pr is proportional
to F'/2 over the entire range of F, but the PY deviate from power law behavior below Fy,
with a local minimum at F' ~ 4.8663.

Figure 2¢ plots LV ~1/3 and SV ~2/3 against each other, both from the above theoretical
predictions (11), (12) and from simulations of thousands of polyhedra in random monodisperse
foams in [10] (point clouds). The predicted, almost constant value of SV ~2/3 is both a
very good approximation and an approximate lower bound to the actual values of individual
bubbles in a random monodisperse foam (fig. 2¢). The latter is expected, as disorder leads to
distortions from ideal isotropy [10], increasing the surface-to-volume ratio. The edge length
LV =13 however, is in very close agreement with the mean found in random foam bubbles.
This is explained by using the Gauss-Bonnet theorem, written for the whole IPP bubble Pg:

S L

2 + 3R 27 F — 6(F — 2)0. (13)
In monodisperse foams, all bubble faces are very weakly curved (R is large), so the first (sur-
face) term is much smaller than the second (edge) term. A real foam bubble can be interpreted
as a deformation, at fixed F', of an idealized IPP bubble. Its curvature (and therefore R) will
increase or decrease from the IPP value, which is compensated by changes in edge length,
giving rise to the spread around the mean observed in fig. 2c. By contrast, changing S can-
not compensate for arbitrary changes in curvature because the surface term in (13) is small.
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Fig. 3 — Dimensionless growth function G(F') from [12] (dashed line), the exact result (14) (solid line),
and the leading-order expansion (15) (dot-dashed line).

Recent Surface Evolver simulations of a larger class of quasi-regular bubbles [32] reveal values
for 3 and L/V'/3 very close to the IPP predictions, and show that earlier approximations [12]
led to significant discrepancies between theory and simulations for small F', which are resolved
by the present work.

The Surface Evolver was used to calculate Py, Ps, and Pjo (see fig. 1a). Simulations were
also performed for F' = 2 and 3, where 1 again is an integer, although bubbles with two or three
faces are not conventional foam cells. These degenerate cells are “small inclusions”, sitting in
the interior of a larger face (F' = 2) or on an edge shared by three adjacent faces (F' = 3).
Dihedral and trihedral bubbles have been observed in the laboratory [33], but neither can
exist as polyhedra with flat faces. All of the geometric quantities calculated with the Surface
Evolver, such as edge length, curvature and area, agree with the analytical solutions except
the dihedral bubble. The radius R according to (3) is a real-valued function for F' > 5/2 and
alternates between real and complex for F' < 5/2; R is singular at F' = 2 where 1 = 0.

Our results for bubble geometry apply to diffusive coarsening. From the definition of G,

we obtain IS
G(F)= “RVE (14)
The asymptotic behavior for F' — oo is given by
1/6
G~ 37/12 (g) Boo 2 _ a1, (15)

where 37/12(2)V/08,, ~ 2.2129 and g; ~ 7.7777 is known analytically. The growth function
G(F) from (14) and the asymptotic expansion (15) are shown in fig. 3, together with the
approximation Gy obtained in [12]. The new asymptote is a slightly more faithful (and more
uniform) approximation to the exact theory than Gp, although the relative error between G
and Gy remains very small throughout the whole range of F' (the error vanishes at F' = F{,
where G = Gy = 0).

To go beyond the present mean-field theory, deviations from the shape of isotropic Plateau
polyhedra need to be quantified. One way of doing this was shown in [12]: Using Minkowski’s
theorems [34], a distribution of non-isotropic cell shapes can be found and approximations
for their growth rates are obtained. Thus, the method developed in [12] remains useful for
describing disordered foams, until improved upon by a rigorous extension of the present work.

X K X

The main analytical results of this work were obtained while the authors attended a work-
shop on “Foams and Minimal Surfaces” at the Isaac Newton Institute for Mathematical Sci-
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ences, Cambridge, UK, from July 29 to August 23, 2002. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of
Energy’s National Nuclear Security Administration under contract #DE-AC04-94A185000.
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