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Abstract

This paper reports on a numerical study of fluidization behavior of Geldart A particles by use of a 2D soft-sphere discrete particle model

(DPM). Some typical features, including the homogeneous expansion, gross particle circulation in the absence of bubbles, and fast bubbles,

can be clearly displayed if the interparticle van der Waals forces are relatively weak. An anisotropy of the velocity fluctuation of particles is

found in both the homogeneous fluidization regime and the bubbling regime. The homogeneous fluidization is shown to represent a transition

phase resulting from the competition of three kinds of basic interactions: the fluid–particle interaction, the particle–particle collisions (and

particle–wall collisions) and the interparticle van der Waals forces. In the bubbling regime, however, the effect of the interparticle van der

Waals forces vanishes and the fluid–particle interaction becomes the dominant factor determining the fluidization behavior of Geldart A

particles. This is also evidenced by the comparisons of the particulate pressure with other theoretical and experimental results.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that the fluidization behavior of Geldart

A particles in gas-fluidized beds is quite different from that

of Geldart B particles [1]. Geldart B particles will bubble

immediately when the superficial gas velocity U0 exceeds

the minimum fluidization velocity Umf, whereas Geldart A

particles display an interval of non-bubbling expansion

(homogeneous fluidization) between Umf and the minimum

bubbling velocity, Umb. Despite many detailed phenome-

nological investigations [1–4], the mechanism behind the

homogeneous fluidization, however, has not yet been fully

understood.

From the purely theoretical viewpoint, the homogeneous

fluidization is closely related to the stability of continuum

field conservation equations that govern the solid–gas two-

phase flow inside a fluidized bed [5]. Jackson et al. [6,7] were

among the pioneers who tried to analyze this stability. They

found that in addition to the inertia and drag force, a new term
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similar to the gas pressure is required to describe the motion

of the particulate phase, otherwise the bed would be always

unstable [7]. This new term, which was found to be a function

of the porosity [8], has been considered as the particulate

pressure. Unlike the pressure of a liquid or a gas, the

particulate pressure is somewhat artificial since it has no

clear physical meaning. However, the importance of the

particulate pressure has been widely recognized and has

prompted an ongoing discussion about its physical origin.

Foscolo and Gibilaro [9], in the spirit of Verloop and

Heertjes [10], suggested that a shock wave due to the change

of porosity (i.e. when porosity wave rises faster than the

velocity of the so-called equilibrium disturbance) is the

dominant factor that causes the instability of the homoge-

neous fluidization regime. They related the origin of the

particulate pressure to the propagation of some kind of

elasticity wave and defined an elasticity modulus to account

for the stability of the bed. Although Foscolo and Gibilaro

were able to predict the minimum bubbling points in many

cases, not all phenomena associated with the homogeneous

fluidization in a gas fluidized-bed [11] can be explained. On

the other hand, Rietema et al. [4,12] proposed that the

interparticle forces should be responsible for the homoge-
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neous fluidization behavior of small particles, rejecting

Foscolo and Gibilaro’s purely hydrodynamic analysis. Rie-

tema et al. [4,12] argued that the concept of effective elastic

modulus could be related to some kind of mechanical

structure induced by the interparticle van der Waals forces.

Although the viewpoint of Rietema et al. [4,12] has a clear

physical basis, it proves difficult to find a quantitative relation

between the interparticle van der Waals forces and the

macroscopic physical quantities of the bed. The reasons are

twofold: Firstly, up to date there is no technique that can

measure the detailed microscopic structure inside a gas-

fluidized bed; Secondly, the interparticle van derWaals forces

are short-range forces and strongly depend on the shape and

surface properties of particles.

In this research, a 2D soft-sphere discrete particle model

(DPM) has been used to simulate the fluidization behavior

of Geldart A particles. One of the features of such models

is that the realistic particle–particle (and particle–wall)

interactions, such as the interparticle van der Waals forces

and particle–particle collisions, can be readily incorporat-

ed. Since this kind of models have been proved very useful

to study the complicated gas–solid flows in a gas-fluidized

bed [13–15] so far, it allows for investigating the physical

mechanism of the homogeneous fluidization. The drawback

of such a detailed description, however, is the small size of

the beds employed in the simulations. In this respect, the

model should be regarded as a ‘‘learning’’ model.

When this paper was being prepared, we became aware of

the work by Kobayashi et al. [16] and Xu et al. [17].

Kobayashi et al. [16] studied the effect of both the lubrication

forces and the van der Waals forces on the homogeneous

fluidization by use of a discrete particle model. They also

observed an expansion of the bed in the absence of both the

lubrication forces and the van der Waals forces, which is in

agreement with the results reported in this paper. However,

Kobayashi et al. [16] did not give out a detailed analysis of

their results. Xu et al. [17] investigated the force structure in

the homogeneous fluidization regime with a discrete particle

model, in which they found that the van der Waals forces

acting on the particles are balanced by the contact forces. We

also found the same phenomenon in our simulations, and will

address it in the future publication.
2. Model description

The gas flow is modeled by the volume-averaged Navier–

Stokes equations [18]

BðeqgÞ
Bt

þ ðj � eqg u Þ ¼ 0 ð1Þ

BðeqguÞ
Bt

þ ðj � eqguuÞ ¼ �ejpþ Sp �j � ðes̄Þ þ eqgg

ð2Þ
where e is the porosity, and qg, u, s̄ and p are the density,

velocity, viscous stress tensor, and pressure of the gas phase,

respectively. The source term Sp is defined as

Sp ¼
1

V

Z XNpart

a¼0

bVa

1� e
ðu � vaÞdðr � raÞdV :

Note that V is the volume of the fluid cell, Va the volume of

particle, va the particle velocity, and Npart the number of

particles. The d-function ensures that the drag force acts as a

point force in the (central) position of a particle. To calculate

the interphase momentum exchange coefficient b, we

employed the well-known Ergun equation [19] for porosities

lower than 0.8 andWen and Yu correlation [20] for porosities

higher than 0.8.

The gas phase equations are solved numerically with a

finite differencing technique, in which a staggered grid was

employed to ensure numerical stability.

The porosity is calculated according to the method of

Hoomans et al. [14],

e ¼ 1� 2ffiffiffiffiffiffiffiffiffiffi
p

ffiffiffi
3

pp ð1� e2DÞ3=2 ð3Þ

where e2D is obtained from the positions of the particles.

The equations of motion of an arbitrary particle, a, follow

from Newton’s law

mad
2ra

dt2
¼ Fcont;a þ Fvdw;a þ

Vab
1� e

ðu � vaÞ � Vajp

þ mag
ð4Þ

IaXa ¼ Ia
dxa

dt
¼ Ta ð5Þ

where ma is the mass of the particle, Fcont,a the contact force,

Fvdw,a the van der Waals force, Ta the torque, Ia the moment

of inertia, Xa the rotational acceleration, and xa the rota-

tional velocity. Eqs. (4) and (5) are solved numerically using

a first-order time-integration scheme,

ra ¼ rð0Þa þ vaDt

va ¼ vð0Þa þ aaDt ð6Þ

xa ¼ xð0Þ
a þ XaDt

The contact force between two particles (or a particle and

a sidewall) is calculated by use of the soft-sphere model

developed by Cundall and Strack [21]. In that model, a

linear-spring and a dashpot are used to formulate the normal

contact force, while a linear-spring, a dashpot and a slider

are used to compute the tangential contact force, where the

tangential spring stiffness is two seventh of the normal



Fig. 1. The inlet conditions for the superficial gas velocity of the

simulations. Three different Hamaker constants have been used.
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spring stiffness [22]. Also, we employed two different

restitution coefficients. Thus a total of five parameters are

required in order to describe the contact force in our model:

the normal and the tangential spring stiffness, the normal

and the tangential restitution coefficient, and the friction

coefficient.

To calculate the interparticle van der Waals forces, we

adopt the Hamaker scheme [23,24]:

Fvdw;abðSÞ ¼
A

3

2r1r2ðS þ r1 þ r2Þ
½SðS þ 2r1 þ 2r2Þ	2


 SðS þ 2r1 þ 2r2Þ
ðS þ r1 þ r2Þ2 � ðr1 � r2Þ2

� 1

" #2

ð7Þ

where S is the intersurface distance between two spheres, A

the Hamaker constant, and r1 and r2 the radii of the two

spheres, respectively. However, Eq. (7) exhibits an apparent

numerical singularity that the van der Waals interaction

diverges if the distance between two particles approaches

zero. In reality, such a situation will never occur, because of

the short-range repulsion between particles. In the present

model, we have not included such a repulsion, however, we

can avoid the numerical singularity by defining a cut-off

(maximal) value of the van der Waals force between two

spheres. In practice, it is more convenient to use the

equivalent cut-off value for the intersurface distance, S0,

instead of the interparticle force.
3. Numerical simulation

3.1. Input parameters

We consider a system consisting of monodisperse

spheres with a diameter of 100 Am and a density of 900

kg/m3, which are typically group A particles according to
Table 1

Parameters used in the simulations

Particle diameter, dp 100 Am
Particle density, q 900 kg m� 3

Normal restitution coefficient, en 0.9

Tangential restitution coefficient, et 0.9

Friction coefficient,lf 0.3

Normal spring stiffness, kn 7 N�m
Tangential spring stiffness, kt 2 N�m
CFD time step 4.2
 10� 5 s

Particle time step, Dt 4.2
 10� 6 s

Hamaker constant, A 10� 22/10� 21/10� 20 J

Minimum interparticle distance, S0 0.4 nm

Channel height, H 12.5 mm

Channel width, L 5.5 mm

CFD grid height, Dy 250 Am
CFD grid width, Dx 250 Am
Shear viscosity of gas, l 1.8
 10� 5 Pa�s
Gas temperature, T 293 K
Geldart’s classification [1]. The input parameters used in

the simulations are shown in Table 1. The cut-off value of

the intersurface distance between two spheres, S0, should

be less than the intermolecular center-to-center distance

[24]. Here a commonly used value S0 = 0.4 nm is

employed [25,26]. Air is taken as the continuous phase.

3.2. Procedure and initial condition

In principle, the Hamaker constant A can be related to the

material properties such as the polarizability. In this research,

however, the primary goal is to investigate the effect of the

interparticle van der Waals forces on the homogeneous

fluidization. To this end, three simulations have been con-

ducted using three different levels of van der Waals forces,

where the Hamaker constants A equals 10� 20, 10� 21 and

10� 22 J, respectively. In each simulation, we follow the

approach adopted by Rhodes et al. [27], in which the

superficial gas velocity is increased from below the minimum

fluidization velocity Umf to above the minimum bubbling

velocity Umb step by step. If the interparticle van der Waals

forces are relatively weak (A= 10� 21 and 10� 22 J), the

simulation typically runs for 1 s in real time, for each velocity.

In case of the strong van der Waals force (A= 10� 20 J), the

simulation time for each velocity will be adjusted to ensure

that the particles and fluid have enough time to interact with

each other. Fig. 1 shows the superficial gas velocities and the

corresponding simulation time.

The initial packed bed has been generated as follows:

Firstly, the particles were placed at the sites of a SC lattice,

and the superficial gas velocity was set to a relatively large

value (0.04 m/s); When the bed bubbles, the superficial gas

velocity is switched to zero, which causes the particles to

drop. The initial state then has been defined as the state

where the pressure drop across the bed tends to zero and the

bed height becomes stable. The average porosity of this

initial state is 0.37.
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4. Results and discussion

4.1. Macroscopic phenomena: observed from the

simulations

4.1.1. Bed height and pressure drop

The bed height and pressure drop are two important

parameters in the investigation of the homogeneous fluid-

ization behavior. In this research, the bed height has been

defined in the following way: First, the fluidized bed is

divided into a number of narrow subregions along the x (i.e.

width) direction. The width of each subregion is limited to

two times the diameter of a single particle. Then the y

coordinate (i.e. height) of the highest particle in each

subregion is identified, which defines the height of this

subregion. The average height of all subregions has been

taken as the bed height.

The relative bed height H* and pressure drop p*, as a

function of superficial gas velocity, are shown in Fig. 2,

where H* and p* are defined as

H* ¼ H � H0

H0

ð8Þ

Dp* ¼ Dp

qpgH0ð1� e0Þ
ð9Þ

where H0 and e0 are, respectively, the height and porosity of

the initial packed bed.

4.1.2. Minimum fluidization velocity and minimum bubbling

velocity

From Fig. 2, it is clear that for all three levels of van der

Waals forces the minimum fluidization velocity is nearly

identical (Umf = 0.004 m/s), which indicates that the effect of

the van derWaals forces on the minimum fluidization point is

small. This value, however, is over-predicted compared to the

value calculated from the approximate relation ofWen andYu

( = 0.003 m/s) [28] with a porosity emf = 0.37.
Fig. 2. The dimensionless bed height and pressure drop of the fluidized bed.
It seems quite difficult to determine the minimum

bubbling points solely from the data plotted in Fig. 2. It

has been found by previous researchers that there could be

a decrease of the bed height near the minimum bubbling

point [29]. The mechanism underlying this collapse is not

well known. However, no such collapse has been observed

in our simulations. This may be due to the relatively large

particle size (dp = 100 Am) in our simulations. In a recent

paper of Menon and Durian [30], a collapse for particles

with a diameter of 49 Am was observed, but not for

particles with a diameter of 96 Am.

The minimum bubbling points, on the other hand, can

be determined from the observation of the macroscopic

motion of particles. Snapshots from the three simulations

are shown in Figs. 3–5. From Fig. 3 it is obvious that the

minimum bubbling velocity Umb is about 0.028 m/s when

the Hamaker constant A= 10� 22 J. In the case of A= 10� 21

J the first obvious bubble (see Fig. 4) appears at

Umb = 0.030 m/s, which is somewhat higher than that for

A= 10� 22 J. If the Hamaker constant becomes larger (i.e.

A= 10� 20 J), however, no obvious bubble appears even for

a superficial gas velocity U0 as high as 0.052 m/s (see Fig.

5). Instead, a chainlike network can be found. A close

check of the simulation results revealed that channels

existed near the two sidewalls at U0 = 0.04 m/s. It seems

that the gas flows try to escape from the bed by forming

channels, which is similar to the behavior of Geldart C

particles [1].

For the particles studied in this research, the minimum

bubbling velocity estimated from the empirical correlations

[28] is around 0.01 m/s, which is lower than the simulation

results. However, the experimental work by Donsi and

Massimilla [31] and simulation work by Xu et al. [17] seem

to support our results for this particle system. It is worthy

mentioning that, although Xu et al. employed a larger A

(2.1
10� 21 J) for the homogeneous fluidization, the gran-

ular Bond number Bo (the ratio of the interparticle van der

Waals force to the single particle weight) is in the same

range of ours [32].

4.1.3. Homogeneous expansion

In the case of relatively weak interparticle van der Waals

forces (A= 10� 22 and 10� 21 J), the homogeneous expan-

sion of the bed can be observed, as shown in Figs. 6 and 7.

It has been found by previous researchers that for Geldart

A particles the gross circulation of particles would prevail

in the absence of obvious bubbles [1]. In Figs. 8(a) and

(b), we show the typical velocity fields of particles,

corresponding to the central snapshots of Figs. 6 and 7,

respectively. It can be seen from Fig. 8 that the particles

near the bottom move upward from the middle zone while

particles near the top of the bed move downward along two

sidewalls. Such a circulation of particles eventually causes

the system to become well mixed. Obviously the gas flow

fed through the distributor and the friction between the

particles and sidewalls are the main causes of such a
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circulation. Besides this gross circulation, local small

circulations can also be observed.

4.1.4. Fast bubbles

In Fig. 9, the rise of a typical bubble has been visualized.

The rise velocity of this bubble can be estimated from a

detailed analysis of the snapshots, and amounts 0.055 m/s,

which is much higher than the interstitial velocity of gas

around this bubble (0.001–0.02 m/s). It is, therefore, a fast

bubble that can only be found in the fluidization of fine

particles [28]. In Fig. 10, the velocity field of the gas phase

around the bubble has been plotted. The circulation of gas

flow around the bubble is clearly demonstrated, which is

believed to be one of the most important features of fast

bubbles.

4.2. Analysis of the velocity fluctuation

An important property of the system with regard to the

understanding of the fluidization behavior is the granular
Fig. 4. Snapshots of simulation results f
temperature, which is defined as the mean squared velocity

fluctuation of particles. Since the velocity fluctuation is not

always isotropic [33], it is essential to separately consider

the mean square fluctuation of the x (defined perpendicular

to the sidewalls) and y (parallel to the sidewalls) component

of particle velocities. The velocity fluctuation is given by

Tx ¼ hv2x � hvxi2i; Ty ¼ hv2y � hvyi2i ð10Þ

where vx and vy are x and y component of the instantaneous

particle velocity, respectively. The brackets, h�i, denote an

ensemble average. The granular temperature in the 2D

fluidized beds is defined

T ¼ ð2Tx þ TyÞ=3 ð11Þ

in accordance with Koch and Sangani [33].

In this research, the following method has been used to

determine Tx and Ty from the simulation data: Firstly, for each

cell (CFD grid) the local velocity fluctuation of particles is

calculated by use of Eq. (10); From this, the total velocity
or Hamaker constant A= 10� 21 J.



Fig. 5. Snapshots of simulation results for Hamaker constant A= 10� 20 J.
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fluctuation of the particles inside the bed is calculated as the

volume fraction weighted time-average [34]

Tk;av ¼
1

Dt

Z tþDt

t

�X
Tkei

�X
ei

	
dt ðk ¼ x; yÞ

ð12Þ

4.2.1. Weak interparticle van der Waals force

In Fig. 11, we show the velocity fluctuation of particles

inside the bed. If the interparticle van der Waals forces are

relatively weak, i.e. A= 10� 22 and 10� 21 J, we note that there

exist three distinct regimes: (1) Regime I (U0 = 0.00f 0.004

m/s), where the particle velocity fluctuation is nearly isotro-

pic, i.e. Tx/Tyf1 as shown in Fig. 12. Moreover, the varia-

tions of both Tx and Ty are negligible and the granular

temperature can be approximately considered as a constant

T= 3.5
 10� 8 m2/s2. (2) Regime II (U0 = 0.006–0.03 m/s),

in which the velocity fluctuation of particles increases as the

superficial gas velocity increases. However, a rather large
Fig. 6. The homogeneous expansion of Geldart A particles insid
anisotropy in x direction and y direction is found. As shown in

Fig. 12, for both levels of van der Waals forces the ratio Tx/Ty
decreases from 0.6–0.7 to 0.3–0.4 and then increases to

about 0.5, showing a minimum value 0.3 at about U0 = 0.022

m/s. However, the velocity fluctuation in both x and y

directions are obviously different for A= 10� 22 and 10� 21

J), which means the van der Waals force could affect the

velocity fluctuation in this regime. (3) Regime III U0z 0.03

m/s). In this regime, the velocity fluctuation still increases

with superficial gas velocity U0, however the ratio Tx/Ty in

this regime is nearly constant, i.e. Tx/Tyf0.5. Moreover, the

velocity fluctuation in both directions are nearly equal for

A= 10� 22 and A= 10� 21 J. This can be understood from the

fact the van der Waals force is a short range interaction: the

porosity is higher in this regime, and as a result the mean

interparticle distance increases and the effect of van derWaals

force becomes extremely weak.

It should be mentioned that the occurrence of three

regimes observed from the variation of velocity fluctua-

tion (i.e. Figs. 11 and 12) agrees well with the analysis
e a gas-fluidized bed. The Hamaker constant A= 10� 22 J.



Fig. 7. The homogeneous expansion of Geldart A particles inside a gas-fluidized bed. The Hamaker constant A= 10� 21 J.
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based on the macroscopic motion of particles. In princi-

ple, there are three kinds of basic interactions in fluidized

beds that can cause velocity fluctuations of the particles.

The first one is the fluid–particle interaction, which is

believed to be the dominant factor causing a strong

fluctuation of particle velocity in y direction. The other

two are the particle–particle collisions (and particle–wall

collisions) and the interparticle van der Waals forces.

These two kinds of interactions, which have no direction-

al sensitivity, should contribute equally to the fluctuation

of particle velocity in both x and y directions. Regime I is

actually the fixed bed regime. In this regime, the super-

ficial gas velocity is relatively low and the fluid–particle

interaction is not important compared to the particle–
Fig. 8. The profile of particle velocity vector during the homogeneous

expansion. (a) A= 10� 22 J. The snapshot shown in the center graph of Fig.

6. (b) A= 10� 21 J. The snapshot shown in the center graph of Fig. 7.
particle interactions (including the particle–particle colli-

sions and the interparticle van der waals forces). As a

result, the bed of particles act like a solid, with no

obvious anisotropy of velocity fluctuation. Regime II

corresponds to the homogeneous fluidization regime. In

this regime the fluid–particle interaction starts to play an

important role, however the particle–particle interaction is

still relatively strong. Therefore, this represents a transient

phase where all three kinds of interactions, i.e. the fluid–

particle interaction, the particle–particle collisions (and

particle–wall collisions), and the interparticle van der

Waals forces, are believed to be the prime sources of

the velocity fluctuation of the particles in this regime.

Regime III is the bubbling regime. In this regime, the

fluid–particle interaction becomes dominant over the

particle–particle collisions while the effect of the inter-

particle van der Waals forces is significantly diminished.

On the other hand, the constant ratio Tx/Ty = 0.5 probably

indicates there exists a dynamic equilibrium between the

fluid–particle interaction and the particle–particle colli-

sions (and particle–wall collisions) as far as the contri-

bution to the velocity fluctuation of particles is concerned.

4.2.2. Strong interparticle van der Waals force

When the interparticle van der Waals force is strong

(A= 10� 20 J), quite different fluidization behavior is

observed. As shown in Fig. 5, we find a chain-like

network and this relative strong mechanical structure is

expected to be responsible for the fluidization behavior in

this case. The bed of particles behave like a solid during

a relatively long interval of U0 = 0.0–0.044 m/s. Obvi-

ously the interparticle van der Waals forces are the

dominate sources of the velocity fluctuation of particles.

In this case, as shown in Figs. 11 and 12, the ratio Tx/Ty
is nearly 1.0, which reflects the isotropy of the velocity

fluctuation of particles. But if the superficial gas velocity

becomes sufficient high (U0z 0.04 m/s), the fluid-like

behavior can also be found. As mentioned above, how-



Fig. 9. The rise of a bubble inside the fluidized bed for a superficial gas velocity U0 = 0.040 m/s. The Hamaker constant A= 10� 21 J.
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ever, no obvious bubble arises. Also, no breakdown of

the chainlike network has been observed. This means that

in the case of the strong interparticle van der waals forces

the Geldart A particles can display the fluidization be-

havior of Geldart C particles.

4.2.3. The role of interparticle van der Waals forces

From the above analysis, it seems that the instability of the

homogenous fluidization of Geldart A particles is mainly

induced by the strong fluid–particle interaction, which leads

to a much stronger velocity fluctuation of particles in the y

(vertical) direction than that in the x (horizontal) direction.

The presence of the particle–particle collisions and the

interparticle van der Waals forces can prevent, or reduce,

such an instability since they contribute equally to the
Fig. 10. The gas flow around a single bubble. Left: The instantaneous

velocity field of gas phase of the bed. Right: The instantaneous velocity

flied of gas flow around a single bubble. The snapshot is shown in the far

right graph of Fig. 9.
velocity fluctuation in both x and y directions. This can be

evidenced by the presence of Geldart C fluidization behavior

of Geldart A particles when the interparticle van der Waals

forces are strong, as discussed above. As the interparticle van

der Waals forces are always present for the true Geldart A

particles, it is essential to consider their effect on the homog-

enous fluidization behavior.

4.3. Particulate pressure: comparison with other work

Like in the dense gas, the particulate pressure can be

defined as

pp ¼ qpð1� eÞT : ð13Þ

On the other hand, Koch and Sangani [33] proposed a

different expression for the particulate pressure by assuming

that the velocity fluctuation of particles is anisotropic:

pp ¼ ½ð/ þ 8B=5ÞTy þ ð12=5ÞBT 	qpUt; ð14Þ

where B is a function of the particle concentration / = 1� e
[33]. Eq. (14) is slightly different from Eq. (39) in Ref. [33]
Fig. 11. The time-averaged velocity fluctuation of particles in both the x and

y directions.



Fig. 12. The ratio of the time-averaged velocity fluctuation of particles

between the x and y directions.

Fig. 14. The instantaneous particle pressure distribution of the bubbling

fluidized bed. The snapshots shown in the far right graph of Fig. 9. The unit

of the particulate pressure is kg/m�s2.
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since the latter one is normalized by qpUt where Ut is the

particle terminal velocity.

The results for Pp based on both Eqs. (14) and (13) are

shown in Fig. 13. Clearly, the difference between these

two sets of results is more pronounced in dense regime

(i.e. homogeneous fluidization regime) than that in dilute

regime (bubbling regime). Since Koch and Sangani [33]

did not consider the effect of the interparticle van der

Waals forces, this is not surprising because in homoge-

neous fluidization regime the interparticle van der Waals

forces have a direct impact on the velocity fluctuation of

particles.

The local particle pressure inside the bed can be

obtained by using Eq. (13). Fig. 14 shows the distribution

of particle pressure inside a bubbling fluidized bed,

corresponding to the snapshot shown in the far right picture

of Fig. 9. From Fig. 14, we found that the particle pressure

is larger in the bottom and at sides of a bubble. Above the

bubble, the particle pressure is relatively small. This is in
Fig. 13. The time-averaged particle pressure of the fluidized bed. The unit

of the particulate pressure is kg/m�s2.
agreement with the recent experimental results by Rahman

and Campbell [35].
5. Conclusions

In this paper, we reported on the simulation results of

the fluidization behavior of Geldart A particles by using a

2D soft-sphere based discrete particle model. Some typical

features of fluidization behavior of Geldart A particles have

been observed. If the interparticle van der Waals forces are

not too strong, an interval of homogeneous fluidization can

be displayed between the minimum fluidization point and

the minimum bubbling point, where the gross circulation of

particles in the absence of bubbles is found. In the bubbling

regime a detailed check suggests that the bubbles are

typically fast bubbles, and the circulation of gas flow

around the bubble is also clearly demonstrated. It proves

that, by use of a discrete particle model, the important

features of homogeneous fluidization can be qualitatively

described.

An analysis of the velocity fluctuation of particles has

been carried out. It is shown that an anisotropy of the

velocity fluctuation of particles exists in both the homoge-

neous fluidization regime and the bubbling regime. At least

three basic interactions, i.e. the fluid–particle interaction,

the particle–particle collisions (and the particle–wall colli-
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sions), and the interparticle van der Waals forces, can be

identified as the main sources of velocity fluctuations of

particles. The homogeneous fluidization is actually a tran-

sition phase resulting from the competition of these three

interactions. In the bubbling regime, however, the effect of

the interparticle van der Waals forces vanishes and the

fluid–particle interaction becomes the dominant factor

determining the fluidization behavior of Geldart A par-

ticles. Additionally, we find that the ratio of the velocity

fluctuation of particles in the x and y directions is nearly

constant, which indicates that a dynamic equilibrium of the

contribution to the fluctuation energy of particles may exist

between the fluid–particle interaction and the particle–

particle collisions (and particle–wall collisions) in the

bubbling regime.

The comparison of the particulate pressure obtained from

our simulations with the theoretical prediction by Koch and

Sangani [33] suggests that the difference is more pro-

nounced in the homogeneous fluidization regime than that

in the bubbling regime. This further indicates that the fluid–

particle interaction is a dominant factor responsible for the

bubbling regime but not for the homogeneous fluidization.

Our results in bubbling regime are also shown in good

agreement with the experimental results by Rahman and

Campbell [35].

We stress, however, that the current results are for 2D

only, and can therefore only serve to get a qualitative insight

into the physical principles underlying the fluidization

behavior of Geldart A particles. For a true, quantitative

comparison with experiments, clearly, full 3D simulations

are required. This work is currently underway, and will be

the subject of future publications.
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