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Abstract

Systematic testing of integrated systems models is extremely important but its difficulty is widely underestimated. The inherent complexity of
the integrated systems models, the philosophical debate about the model validity and validation, the uncertainty in model inputs, parameters and
future context and the scarcity of field data complicate model validation. This calls for a validation framework and procedures which can identify
the strengths and weaknesses of the model with the available data from observations, the literature and experts’ opinions. This paper presents
such a framework and the respective procedure. Three tests, namely, Parameter-Verification, Behaviour-Anomaly and Policy-Sensitivity are se-
lected to test a Rapid assessment Model for Coastal-zone Management (RaMCo). The Morris sensitivity analysis, a simple expert elicitation
technique and Monte Carlo uncertainty analysis are used to facilitate these three tests. The usefulness of the procedure is demonstrated for
two examples.
� 2006 Published by Elsevier Ltd.
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1. Introduction

There have been an increasing number of studies adopting
the systems approach and the integrated approach, especially
in the fields of modelling climate change (Dowlatabadi,
1995; Hulme and Raper, 1995; Janssen and de Vries, 1998)
and natural resources and environmental management (Hoek-
stra, 1998; Turner, 2000; De Kok and Wind, 2002). These
studies include the design and application of a number of in-
tegrated systems models (ISMs). These models are often
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designed to support scenario analysis, but none of them
were completely validated in a systematic manner. The valida-
tion of ISMs can be less effective for various reasons. One of
the main problems is that a philosophical debate persists about
the verification or justification of scientific theories (Kuhn,
1970; Popper, 1959; Reckhow and Chapra, 1983; Konikow
and Bredehoeft, 1992; Dery et al., 1993; Oreskes et al.,
1994; Kleindorfer et al., 1998). This debate results in a confus-
ing divergence of terminologies and methodologies with re-
spect to the model validation. A few examples related to this
debate are described below.

Oreskes et al. (1994) argue that the verification or valida-
tion of numerical models of natural systems is impossible.
This is because natural systems are never closed and the
models representing these systems show results that are never
unique. The openness of these models is reflected by un-
known input parameters and subjective assumptions related
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to the observation and measurement of both independent and
dependent variables. Because of the non-uniqueness of pa-
rameter sets (equifinality) two models can be simultaneously
justified by one dataset. A subset of this problem is that two
or more errors in auxiliary hypotheses may cancel out each
other. Oreskes et al. concluded that the primary value of
models is heuristic (i.e. models are representations, useful
for guiding further study but not susceptible to proof). Fur-
thermore, point-by-point comparisons between the simulated
and real data are sometimes considered to be the only legit-
imate tests for model validation or model confirmation (e.g.
Reckhow and Chapra, 1983). However, these tests are argued
to be unable to demonstrate the logical validity of the mod-
el’s scientific contents (Oreskes et al., 1994; Rykiel, 1996), to
have a poor diagnostic power (Kirchner et al., 1996) and
even to be inappropriate for the validation of system dynam-
ics models (Forrester and Senge, 1980). A review of frame-
works and methods for the validation of process models and
decision support systems is given by Nguyen et al (2007). It
is concluded that the available methodologies focus more on
the quantitative tests for operational validation. There has
been less focus on the design of the conceptual validation
or structural validation tests.

In addition to the difficulties related to the validation of
process models that are set forth in the literature, the valida-
tion of ISMs faces several other challenges. The first one is
the complexity of an ISM. All ISMs try to address complex
situations so that all ISMs developed for exploring such sit-
uations are necessarily complex (Parker et al., 2002). The
consequences of model complexity on model validation are
significant. It can trigger the equifinality problem mentioned
before. The dense concentration of interconnections and
feedback mechanisms between processes requires validation
of an ISM as a whole. Furthermore, the complexity of an
ISM amplifies the uncertainty of the final outcome through
the chain of causal relationships (Cocks et al., 1998; Janssen
and De Vries, 1999). Second, the incorporation of human
behaviour in an ISM poses another challenge. Human behav-
iour is highly unpredictable and difficult to model quantita-
tively. This means that the historical data on the processes
related to human activities are poor in predicting the future
state of the system. This is reflected by the philosophical
problem that successful replication of historical data does
not warrant the validity of an ISM. Third, the increase in
the scope of the integrated model, both spatially and concep-
tually, requires an increasing amount of data which are rarely
available (Beck and Chen, 2000). Last, the oversimplification
of the complex system (high aggregation level) makes the
problem of system openness worse. It is necessary to sim-
plify a real system into a tractable and manageable numerical
form. In doing so, the chance of having an open system is
increased.

Facing the problems stated above, this paper presents
a conceptual framework for validation of ISMs and the
relevant terminology. Within this conceptual framework,
sensitivity and uncertainty analyses, expert knowledge and
stakeholder experience play an important role in the process
of establishing the validity of ISMs. A testing procedure us-
ing sensitivity and uncertainty analyses is presented and ap-
plied to validate RaMCo. The Morris method (Morris, 1991)
is used to determine the parameters, inputs and measures
(management actions such as building a wastewater treat-
ment plant or implementing blast fishing patrolling
programmes) that have an important effect on the model
output. The opinions of end-users (local scientists and local
stakeholders) on the key influential factors affecting the
corresponding outputs are elicited. Monte Carlo uncertainty
analysis is applied to propagate the uncertainty of the model
inputs and parameters to the uncertainty of the output
variables. The results obtained are used to conduct three val-
idation tests (Forrester and Senge, 1980): Parameter-Verifica-
tion, Behaviour-Anomaly and Policy-Sensitivity tests. These
tests have been conducted to reveal the weaknesses of the
parameters and structure employed by RaMCo. The total
biological oxygen demand (BOD) load, an indicator for
the organic pollution of the coastal waters and the living
coral area serve as examples.

2. Terminology and framework for testing of ISMs

2.1. Terminology

Finding proper terminologies for the concepts of model
validity and validation is still an issue that creates a lot
of arguments among scientists and practitioners. Although
the literature on model validation is abundant, this issue is
still controversial (Oreskes, 1998; Kleijnen, 1995; Rykiel,
1996). The term validity has sometimes been interpreted
as the absolute truth (see Rykiel, 1996 for a detailed discus-
sion). However, increasing scientific research and the litera-
ture show that this is a wrong interpretation of the validity
of an open system model (Oreskes, 1998; Sterman, 2002;
Refsgaard and Henriksen, 2004). It is widely accepted that
models are tools designed for specified purposes, rather
than as truth generators. Following Forrester and Senge
(1980) we therefore consider the validity of an ISM to
be equivalent to the user’s confidence in the model’s
usefulness.

Having accepted that the validity of an ISM should be con-
sidered in the light of its usefulness, the remaining question is
which attributes of an ISM constitute this validity. Based on
the system concepts and a review of purposes of ISMs
(Nguyen, 2005), a specific definition of the validity of an
ISM is: ‘the soundness and completeness of the model struc-
ture, together with the correctness and plausibility of the
model behaviour’. Soundness of the structure means that the
model structure is based on valid reasoning and free from
logical flaws. Completeness of the structure means that the
model should include all elements relevant to the defined prob-
lems, which concern the stakeholders. Plausibility of behav-
iour means that the model behaviour should not contradict
general scientific laws and established knowledge. Behaviour
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correctness is understood as agreement between the computed
behaviour and observations.

To avoid confusion the definition of validation requires fur-
ther clarification:

e Calibration is the process of specifying the values of
model parameters with which model behaviour and real
system behaviour are in good agreement.

e Verification is the process of substantiating that the com-
puter program and its implementation are correct, i.e., de-
bugging the computer program (Sargent, 1991).

Corresponding to our definition of validity we define the
validation of an integrated systems model as: ‘the process of
establishing the soundness and completeness of model struc-
ture together with the plausibility and correctness of the model
behaviour’.

The process of establishing the validity of the model struc-
ture and model behaviour addresses three questions after
Shannon (1981) and Parker et al. (2002):

(i) Are the structure of the model, its underlying assump-
tions and parameters contradictory to their counterparts
observed in reality and to those obtained from the liter-
ature and expert knowledge?

(ii) Is the behaviour of the model system in agreement with
the observed and/or expert’s anticipated behaviour of
the real system?

(iii) Does the model fulfil its designated tasks or serve its in-
tended purpose?

One purpose of validation is to make both the strong and
weak points of the model transparent to its potential users (di-
agnostic power). These potential users could be decision-
makers, analysts acting as intermediates between scientists
and decision-makers, or model developers (Uljee et al.,
1996). Another aspect of model validation is to find solutions
for improving the model structure and its elements so that the
validity criteria are met (constructive power). The validity cri-
teria require a more precise definition:

A validity criterion should clarify what aspect of the
model validity we want to examine, what source of informa-
tion is used for the validation, and a qualitative or quantita-
tive statement which determines whether the model quality is
satisfactory with respect to its purpose. For example, a certain
validity criterion proposed by Mitchell (1997) is ‘ninety five
per cent of the total residual points should lie within the ac-
ceptable bound’. The aspect of the model validity examined
here is the correctness of the model behaviour. The informa-
tion used for validation is obtained from observed data and
‘ninety five per cent of the total residual points should lie
within the acceptable bound’ is a quantitative statement de-
termining whether the quality of an ecological model is sat-
isfactory for its predictive purpose. A qualitative criterion for
testing the plausibility of the model behaviour, for example,
is ‘the model behaviour should correspond to the stock-
and-flow principle’.
2.2. Framework for validation

The following is the description of our conceptual frame-
work for validation of ISMs. We take the view that model
validation should take place after the model is built. The
reason is that it is sometimes impossible to know exactly
what an integrated systems model does until it is actually
built.

At the general level the framework for the ISM validation
distinguishes three systems (Fig. 1). The real system includes
existing components, causal linkages between these compo-
nents and the resulting behaviour of the system in reality.
In most cases we do not have enough knowledge about the
real system. The model system is the abstract system built
by the modellers to simulate the real system, which can
help managers in decision-making processes. The hypothes-
ised system is the counterpart of the real system, which is
constructed from the hypotheses for the purpose of model
validation. The hypothesised system is created by and from
the available knowledge of experts and/or the experiences
of the stakeholders with the real system through a process
of observation and reasoning. With this classification, we
can carry out two categories of tests, namely, empirical tests
and rational tests respectively with and without field data
(Fig. 1). Rational tests can also be used to validate a model
when the data for validation are only available to a limited
extent.

Empirical tests are tests based on direct comparison be-
tween the model outcomes and field data. Empirical tests ex-
amine the ability of a model to match the historical and
future data of the real system. In case no data are available,
the hypothesised system and model system are used to conduct
rational tests, such as: Parameter-Verification, Behaviour-
Anomaly, and Policy-Sensitivity tests (Forrester and Senge,
1980). These tests are referred to as rational tests since they
rely on expert knowledge, readily available data and reasoning
processes. Rational tests are increasingly important when ob-
served data on the complex system are lacking and subject
to considerable uncertainty.

A clear distinction is made between two terms: objective
variable and stimulus. Objective variables are either output
variables or state variables of the real system that decision-
makers desire to change. They can also be referred to as
management objective variables (MOVs). Stimuli or drivers

Fig. 1. Framework for validation of ISMs.
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are input variables which, in combination with control vari-
ables, drive the objective variables.

With the same stimuli as the inputs of each system, there
can be different values of objective variables in the system
output. These differences are caused by a lack of knowledge
of the real system and other problems (e.g. errors in field
data measurements, computational errors). Model developers
always want the model behaviour to be as close to the behav-
iour of the real systems as possible. If validation data are not
available to justify either the hypothesised or the model sys-
tem, or both systems are equally justified by the available
data, one has to select one of the two alternatives according
to some validity criterion of interestingness (Bhatnagar and
Kanal, 1992), simplicity or task fulfilment (Nguyen et al.,
2007).

3. The RaMCo model

In 1994, the Netherlands Foundation for the Advancement
of Tropical Research (WOTRO) launched a multidisciplinary
research program (De Kok and Wind, 2002). The aim of the
project was to develop a methodology for sustainable coastal
zone management, with the coastal zone of Southwest Sula-
wesi, Indonesia, as case study. In view of the project’s
theme, scientists in the fields of marine ecology, fisheries
science, hydrology, oceanography, cultural anthropology, hu-
man geography and systems science cooperated. The inte-
grated systems model RaMCo (Rapid Assessment Model
for Coastal-zone Management) was developed to test the
methodology (Uljee et al., 1996; De Kok and Wind, 2002).
During the design of RaMCo, each sub-model was sepa-
rately calibrated, using the available field data, expert knowl-
edge and data obtained from literature. However, the
validation of RaMCo as a whole did not take place during
the project.

In this paper the two objective variables of RaMCo: the liv-
ing coral area and the total BOD load to the coastal waters of
Southwest Sulawesi are selected for the purpose of demonstra-
tion. A detailed mathematical description of all process models
included in RaMCo and the linkages between them can be
found in De Kok and Wind (2002). Figs. 2 and 3 describe the
structure of the two submodels pertaining to the two objective
variables to be tested.

4. Systematic testing of RaMCo

4.1. Basics for the method

There has been an increasing consensus among re-
searchers and modellers that a model’s purpose is the key
factor determining the selection of the validation tests and
the corresponding validity criteria (Forrester and Senge,
1980; Rykiel, 1996; Parker et al., 2002). RaMCo is intended
to be used as a platform which facilitates the discussions be-
tween scientific experts and scientific experts, and between
scientific experts and stakeholders in order to improve strate-
gic planning. These discussions are aimed to arrive at
a common view on the problems and the ways to solve
them. Therefore, the terms ‘‘scientific experts’’, ‘‘stake-
holders’’, ‘‘common view’’ and ‘‘common solutions’’ are im-
portant, and require more elaboration.

Stakeholders play an important role in the validation process
of an ISM (Jakeman and Letcher, 2003). Since the main purpose

Fig. 2. Structure of the urbanisation model of RaMCo.

Fig. 3. Structure of the marine ecosystems model of RaMCo.
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of an ISM is to define a ‘‘common view’’ and find ‘‘common so-
lutions’’ for a set of problems perceived by scientific experts and
stakeholders, the role of stakeholders should not be neglected
during the validation of an ISM. The stakeholders could include
both decision makers and the people affected by the decisions
made. A policy model is useful when it is able to simulate the
problems and their underlying causes that the stakeholders expe-
rience in the real system. Furthermore, an ISM should be able to
distinguish the differences between the consequences of various
policy options so that the decisions can be made with a certain
level of confidence.

The validity of a model cannot be achieved by conducting
only a single test, but a series of successful tests could in-
crease the user’s confidence in the usefulness of a model.
Forrester and Senge (1980) designed seventeen tests for the
validation of system dynamics models, some of which are
closely related. These tests can be categorised into tests of
model structure, tests of model behaviour and tests of policy
implications. These tests have later been categorised by Bar-
las (1994, 1999) into two main groups: direct structure test-
ing and indirect structure testing (or structure-oriented
behaviour). Direct structure tests assess the validity of the
model structure, by direct comparison with knowledge about
the real system structure. This involves evaluating each rela-
tionship in the model against the available knowledge about
the real system. These tests are qualitative in nature and no
simulation is involved. Structure oriented behaviour tests,
on the other hand, assess the validity of structure indirectly
by applying certain behaviour tests on the model-generated
patterns.

Sensitivity and uncertainty analyses (SUA) are considered
to be essential for model validation (Saltelli and Scott, 1997)
and important for model quality assurance (Scholten and
Cate, 1999; Refgaard and Henriksen, 2004). Depending on
the questions the validation need to answer, different types
and techniques of SUA have been applied (Kleijnen, 1995;
Tarantola et al., 2000; Beck and Chen, 2000). Sensitivity
analysis (SA) and uncertainty analysis (UA) are differently
defined by different authors (see Saltelli et al., 2000; Morgan
and Henrion, 1990). Here, we use the definition of SA given
in Saltelli et al. (2000), which is the study of how the uncer-
tainty in the output of a model can be apportioned, qualita-
tively or quantitatively, to different sources of uncertainty
in the model input (Saltelli et al., 2000). The term uncer-
tainty propagation, which is one aspect of uncertainty analy-
sis, is used interchangeably with UA in this paper. That is,
uncertainty propagation is a method to compute the uncer-
tainty in the model outputs induced by the uncertainties in
its inputs (Morgan and Henrion, 1990).

4.2. The testing procedure

As stated by Scholten and ten Cate (1999), the model val-
idation is discussed extensively in the literature, but most au-
thors merely offer a terminology instead of a method. Here,
a testing procedure, which is realised from the above valida-
tion framework, is presented. The procedure has been
successfully applied to validate RaMCo (Nguyen, 2005;
Nguyen et al., 2007) and is outlined in Fig. 4.

4.3. The Morris sensitivity analysis

Different types (local versus global) and a variety of tech-
niques (e.g. regression analysis versus differential analysis)
are available for SA. Some of these techniques were exam-
ined by Iman and Helton (1988), Campolongo and Saltelli
(1997) and Saltelli et al. (2000). The selection of a SA
method is often based on the model complexity and the na-
ture of the questions the analysis needs to answer. Morgan
and Henrion (1990) proposed four criteria for selecting
a SA method: uncertainty about the model form (if a model
structure and relationships are disputable extensive evaluation
and comprehensive quantitative methods are not suitable), the
nature of the model (how large is number of inputs and
parameter? does the response surface shows complex, non-
monotonic or discontinuous behaviour?), the requirement of
the analysis (are significant actions to be based directly on
its results?) and resource availability (i.e. time, human re-
course, software available). Following the first three criteria,
the present study adopts the Morris method (Morris, 1991)
for the analysis.

Morris (1991) made two significant contributions to sensitiv-
ity analysis. First, he proposed the concept of elementary effect,
di(X ), attributable to each input xi. An elementary effect can be
understood as the change in an output y induced by a relative
change in an input xi (e.g. the increment of 10 kg BOD/day of
the total BOD load to the coastal sea is induced by a decrease
of 33% in the total water treatment plant capacity).

diðXÞ ¼
yðx1; x2;.; xiþD;.; xkÞ � yðXÞ

D
ð1Þ

In Eq. (1), X is a vector containing k inputs or factors
(x1,.,xi,.,xk). A factor xi can randomly take a value in an
equal interval set fx1

i ; x
2
i ;.; xp

i g. The symbol p denotes the
number of levels chosen for each factor. The k-dimensional
vector X and the p values for every component xi create
the region of experiment U which is a k-dimensional p-level
grid. X is any value in the region of experiment U selected
such that X þ D is still in U. The symbol D denotes a prede-
termined increment of a factor xi. To ensure the equal prob-
ability of each input sampled in the equal interval set
fx1

i ; x
2
i ;.; xp

i g when the sample size r is relatively small
compared with the number of levels p, the increment D

can be computed by the formula suggested by Morris
(Morris, 1991; Saltelli et al., 2000). In the set of real num-
bers, xi

1 and xi
p are the minimum and maximum values of

the uncertainty range of factor xi, respectively. For technical
reasons, each element of vector X is assigned a rational num-
ber (Morris, 1991) or a natural integer number (Campolongo
and Satelli, 1997) in the Morris design. Therefore, after the
design, transformation of these factors to real numbers is
necessary for model computations. The frequency distribu-
tion Fi of elementary effects for each factor xi give an
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Fig. 4. Procedure and selected tests for the validation of RaMCo. Rounds are products; rectangles are actions facilitating tests; diamonds are tests; MOVs are

management objective variables. (1) Sufficient data and alternative models for empirical validation; (2) insufficient data but sufficient expert knowledge to build

an alternative hypothesised system; (3) insufficient data and insufficient expert knowledge. Model 1, useful for quantitative system analysis; Model 2, useful for

qualitative scenario analysis; Model 3, useful for learning and guiding further research (heuristic function).
indication on the degree and nature of the influence of that
factor on the specified output. For instance, a combination
of a relatively small mean mi with a small standard deviation
si indicates a negligible effect of the input xi on the output.
A large mean mi and a large standard deviation si indicate
a strong non-linear effect or strong interaction with other
inputs. A large mean mi and a small standard deviation si

indicate a strong linear and additive effect.
Second, Morris designed a highly economical numerical

experiment to extract k samples of elementary effect; each
with a size r. The total number of model runs is in the order
of rk (rather than k2). Interested readers are referred to Morris
(1991), Campolongo and Saltelli (1997) and Saltelli et al.
(2000) for the technical details.

The purpose of the Morris method (Morris, 1991) is to de-
termine the model factors that have an important effect on
a specific output variable by measuring their uncertainty con-
tributions. The order of importance of these factors results
from the following four sources of uncertainty: (i) the model
structure uncertainty (the way modellers conceptualise the
real system, e.g. the aggregation level); (ii) the inherent var-
iability of factors observed in the real system, e.g. the price
of shrimp; (iii) the deterministic changes of decision vari-
ables, e.g. capacities of water treatment plants, and (iv) the
uncertainty introduced by the analysts (lack of knowledge
of the analysts about model parameters and inputs, e.g. esti-
mates of factors’ ranges). The ‘‘true’’ order of importance,
according to the model, of a factor should be determined
only from the first three sources of uncertainty and variation.
The last source of uncertainty should be minimised, in order
to correctly determine the order of importance for each factor
with the Morris analysis. This is the reason to use the prelim-
inary results of the Morris analysis and expert opinions to
carry out the Parameter-Verification test and to use the results
from the second round of the Morris analysis to conduct the
Behaviour-Anomaly test.

4.4. The elicitation of expert opinions

Elicitation of expert opinions has been proposed for both
uses as a heuristic tool (discovery) and as a scientific tool
(justification) (Cooke, 1991). The procedures guiding expert
elicitation vary from case to case, depending on the purpose
of the elicitation (Ayyub, 2001). This section describes the
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procedure followed to get opinions from local stakeholders
about the factors that have an important effect on the
organic pollution of the coastal waters, and on the area of
living coral. With the results obtained, validation tests can
be conducted, focusing on the causes of the differences.
This subsection describes the main steps in the elicitation
process: selecting experts, eliciting and combining expert
opinions.

4.4.1. Selection of respondents for the elicitation
The definitions and criteria to select experts for elicitation

may vary, depending on the nature of the answers elicitors
wants to get. For example, Cornelissen et al. (2003) define
an expert as a person whose knowledge in a specific domain
(e.g. welfare of laying hens) is obtained gradually through
a period of learning and experience. They distinguish stake-
holders from experts by differentiating the roles the two
groups play in the different phases of the systems evaluation
framework. These phases include: defining public concern,
determining multiple issues, defining measurable indicators,
and interpreting information on measured indicators to de-
rive conclusions. The stakeholders are involved in the first
two phases. They are allowed to affirm the facts observed
and to formulate the relevant issues. On the other hand, ex-
perts are allowed to give an opinion on the meaning of the
information gathered. In view of the purpose of the elicita-
tion, both the stakeholders and local scientific experts are
considered as the experts here. We define experts as knowl-
edgeable people who participate in the processes of opera-
tion and management of the real system directly (decision
makers and experienced staff), and indirectly (local scien-
tists). To study the differences in understanding and percep-
tion of the environmental problems between the local
scientists and experienced staff, two groups are separated
in the aggregation of expert opinion (mentioned later). For
the sake of convenience, local scientists are referred to as
scientific experts (SE) and local staff as stakeholders. The
selection of stakeholders for the elicitation was based on
the availability of an advanced course on environmental
studies in South Sulawesi, focusing on an integrated ap-
proach, held at the Hasanuddin University at Makassar
(UNHAS). The group of participants consisted of 27 staff
members, working in various provincial and district depart-
ments. They are the people who work on relevant issues
of the real system daily. Their educational backgrounds
were different, but the majority had Engineering and Master
degrees in Agriculture, Aquaculture, Water Resources, Mete-
orology, Infrastructure and Marine Biology. The scientist
elicitation was based on the scientific experts coming from
the various faculties of UNHAS and a few people from Pro-
vincial Departments and a Ministry with a higher educa-
tional background.

4.4.2. Elicitation
The elicitation was conducted by means of a questionnaire.

The elicitation started with an expert training session, includ-
ing a presentation of RaMCo during workshops, explaining the
purpose of the questionnaires and clarifying the terms used in
the questionnaires. The questionnaires were delivered to the
participants during workshops and collected during the week
after. This gave the experts sufficient time to think about the
questions and the answers thoroughly. In the questionnaire,
participants were asked to add the missing factors/processes
to the given set of factors/processes that could have important
effects on the model objective variables. They were asked di-
rectly to rank the order of importance of these factors (see Ap-
pendix A for an example). Experts are often biased and this
may lead them to give a response that does not correspond
to their true knowledge. There have been several types of
bias and inconsistency, which have been examined, and some-
what categorised (Cooke, 1991; Zio, 1996). An example of
a bias type is the institutional bias, which results in similar an-
swers given by the people who work together in an institution.
The assessment and correction of expert bias and inconsis-
tency is referred to as the expert calibration. Examples of
two elicitation methods with calibration are adaptive conjoint
analysis (Van der Fels-Klerx et al., 2000) and the analytical hi-
erarchy process technique (Zio, 1996). In comparison with
these two methods the simple method adopted in this paper as-
sumes that experts are unbiased and consistent (i.e. calibration
is considered unnecessary). In view of the purpose of the ques-
tionnaire as an exploring tool, the availability of experts and
their willingness to cooperate, this method was considered suf-
ficient for the current case study.

4.4.3. Aggregation
To aggregate the expert opinions, the mathematical ap-

proach (in contrast to the behavioural approach) was adopted
(Zio and Apostolakis, 1997). For the stakeholder group, the
simple average method was used. For the group of local scien-
tists, in addition to the simple average method, an attempt was
made to associate a weight to each expert’s answer, depending
on (1) knowledgeable fields (KF), (2) professional title (PT),
(3) years of experience (YE), (4) source of knowledge (SK),
and (5) level of interest (LI). These factors were selected
from a set of aspects proposed to have direct contributions
to the overall ranking of experts’ judgments by Cornelissen
et al. (2003) and Zio (1996). The aim is to examine whether
the result obtained from simple average method is substan-
tially altered when weights of the experts are included.
Eqs. (2) and (3) are used to calculate the final ranking for
each factor/process:

x ¼ 1

S

Xn

i¼1

wixi ð2Þ

where S ¼
Pn

i¼1 wi

wi ¼
1

8
KFiðPTiþYEiþ SKiþLIiÞ ð3Þ

In Eq. (2), wi is the weight assigned to an expert i, which rep-
resents the degree of confidence that the analyst associates
with the answers of expert i to a certain set of questions; xi
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is the rank of a factor/process given by expert i; x is the value
representing the rank of a factor/process which is obtained by
aggregating the ranks given by all experts. In Eq. (3), KFi re-
flects the fields of expertise of an expert i, which has values in
the range between zero and one; PTi, YEi, SKi, LIi represent
professional title, years of experience, source of knowledge
and the level of interest of expert i on a certain set of ques-
tions, respectively, with values are in the range between zero
and two. The result of Eq. (3) is the weight for the expert i,
which has a minimum value of zero when the expert i does
not have knowledge about a certain objective variable and
a value equal to one when an expert has the highest quality
on every aspect previously defined (Appendix B). It is noted
that the weight (wi) computed by Eq. (3) is based on a subjec-
tive assumption of equal weights of the four aspects (PT, YE,
SK, LI). Different sets of these weights can be assigned to
study the sensitivity of these aspects to the final results.
This, however, is beyond the scope of this paper.

4.5. The uncertainty propagation

The quantities subject to the uncertainty propagation in pol-
icy models may include decision variables, empirical parame-
ters, defined constants, value parameters, and others (Morgan
and Henrion, 1990). Decision variables are quantities over
which the decision maker exercises direct control. These are
sometimes also referred to as control variables or policy vari-
ables. Examples of the decision variables in RaMCo are the
number of fish blasts, the total capacity of urban wastewater
treatment plants, and those for industrial wastewater (De Kok
and Wind, 2002). Empirical parameters are the empirical quan-
tities that represent the measurable properties of the systems be-
ing modelled. Examples of the empirical parameters in RaMCo
are the price of shrimps and the BOD concentrations in the ur-
ban wastewater. Value parameters represent aspects of the ref-
erences of the decision makers or the people they represent. As
stated by Morgan and Henrion (1990), the classification of
a value parameter is context-dependent and the difference be-
tween a value parameter and an empirical parameter is also
a matter of intent and perspective. They argue that it is generally
inappropriate to represent the uncertainty of decision variables
and value parameters by probability distributions. However, it
is useful to conduct a parametric sensitivity analysis on these
quantities to examine the effect on the output of deterministic
changes to the uncertain quantity. For example the parametric
sensitivity analysis can address the question: what are the aver-
age effects on the BOD load if the total capacity of urban water
treatment plants increases 33%? The Morris analysis can be
considered as a parametric SA (Campolongo and Saltelli,
1997). There are two reasons for not representing the value pa-
rameters by probability distributions (Morgan and Henrion,
1990). First, the value parameters tend to be among those quan-
tities people are most unsure about, and thus contribute most to
uncertainty about what decision is the best. Probabilistic treat-
ment of the uncertainty may hide the impact of this uncertainty,
and the decision makers may lose the opportunity to see the im-
plications of their possible alternative value choices. Second, an
important purpose of the system analysis is to help people to
choose or clarify their values. Refinement of the values of the
influential value parameters is best done through parametric
treatment of these values. For the technical details of the Monte
Carlo uncertainty propagation readers are referred to (Morgan
and Henrion, 1990).

4.6. The validation tests

The approach presented in this paper uses SUA as tools to
facilitate three validation tests proposed by Forrester and
Senge (1980). These tests include: Parameter-Verification, Be-
haviour-Anomaly and Policy-Sensitivity tests.

Parameter verification means comparing model parameters
to knowledge of the real system to determine if parameters
correspond conceptually and numerically to real life.

Failure of a model to mimic the behaviour of a real system
could result from the wrong estimations of the values and the
uncertainty ranges of the model parameters (numerical corre-
spondence). Besides, the parameters should match elements
of system structure (conceptual correspondence). For a simple
model, it is often easy to fit the model output with the measured
data by varying the parameter values (calibration). However,
for ISMs, the difficulty in obtaining data, both for parameters,
inputs and outputs makes this kind of calibration almost impos-
sible. Moreover, due to the requirement of a sound structure of
an ISM, the plausibility of the parameters and inputs of the
model should be taken as one of the criteria to conclude on
the soundness of the model structure and the model usefulness.
For that reason, Forrester and Senge (1980) suggest it as a vali-
dation test. This test can be interpreted in terms of a validity cri-
terion as the existence of the model parameters and their
numerical ranges should be in accordance with the observa-
tions, expert experience and the literature. The aspects exam-
ined are the correctness and plausibility of the model
parameters. The information used for the validation is obtained
from the observations, expert experience and the literature.

The behaviour anomaly test aims to determine whether or
not the model behaviour sharply conflicts with the behav-
iour of the real system. Once the behavioural anomaly is
traced back to the elements of the model structure responsi-
ble for the behaviour, one often finds obvious flaws in the
model assumptions. This test is closely related to the struc-
ture-verification test (Forrester and Senge, 1980) in the
sense that the structure and components of the model sys-
tems are subject to testing. However, in the structure-
verification test, the model outputs or its behaviour is not
examined. The behaviour-anomaly is also similar to the sen-
sitivity analysis test discussed by Kleijnen (1995), which is
specified by him as the application of sensitivity analysis to
determine whether the model’s behaviour agrees with the
experts (users and analysts). The behaviour-anomaly test
can be interpreted in terms of a validity criterion as the
model should include all relevant factors to a defined prob-
lem, and causal effects of the important parameters and in-
puts on the model outputs should have the sign and order of
importance in accordance with the observations and
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experience of the experts. The aspects examined are the
completeness and soundness of the model structure. The in-
formation used for validation is obtained from expert expe-
rience and scientific literature.

The policy sensitivity test aims to determine if the policy
recommendations are affected by the uncertainties in parame-
ter values or not. If the same policies would be recommended,
regardless of parameter values within a plausible range, the
risk of using the model will be less than if two plausible
sets of parameters lead to opposite policy recommendations.
In this paper, we put this test in a similar context while retain-
ing its meaning and purpose. The usefulness of a policy model
increases if it can distinguish the consequences of different
policy alternatives, given the uncertainty in the model inputs
and parameters. This policy sensitivity test can be interpreted
in terms of a validity criterion as the recommended policies
should be distinguishable in terms of trend lines of the pre-
dicted mean values and the overlap of the uncertainty bounds
of the results. The aspects examined are the soundness of the
model structure and the plausibility of the model parameters.
The information used for the validation is obtained from the
literature and expert experience.

5. Results

5.1. Sensitivity analysis

The purpose of the current sensitivity analysis is to deter-
mine the order of importance of the factors/processes provided
by the model and to compare this with the expert experience.
Therefore, the total BOD load to the coastal waters and the liv-
ing coral area after five years of simulation (the year 2000) are
selected to be the quantities of interest.

In the first round of the Morris analysis, all model factors
are grouped and the representative factors for each group are
traced back and selected qualitatively on the basis of the
quantities of interest. This results in a reduction of the num-
ber of the relevant factors to be analysed, from 309 to 137
factors (k ¼ 137). Next, the quantitative ranges of those pa-
rameters and inputs are selected from the default set of the
factors’ ranges defined by the modellers. Since RaMCo
does not only include inputs and parameters but also mea-
sures (management actions) and scenarios, an adaptation is
needed to allow for the Morris method. To compare the im-
portance of the measures with other parameters and inputs,
all the measures are assumed to be implemented simulta-
neously. A decision variable (controlled by a measure) is
treated similarly as an input or a parameter. Next, the Morris
design is applied with the number of levels for each factor
equal to four ( p ¼ 4), the increment of xi to compute ele-
mentary effects di(x), D ¼ 1 (Campolongo and Saltelli,
1997) and the selected size of each sample r ¼ 9. A total
number of model evaluations N ¼ 1142 (N ¼ r(k þ 1)) is per-
formed. Finally, the two indicators representing the impor-
tance of each factor uncertainty, the mean m and the
standard deviation s are computed and plotted against each
other.
Fig. 5 shows that there are only three important processes
that, in order of importance, have a significant contribution
to the total BOD load: brackish-pond culture (factors 68, 86,
87,124, 13 and 14), urban domestic wastewater (factors 120,
113 and 55) and industrial wastewater (factor 5).

The results obtained from the second round of the Morris
analysis (Fig. 6) show some interesting points. In contrast
with the results of the Morris analyses applied to natural system
models (Campolongo and Saltelli, 1997; Comenges and Cam-
polongo, 2000), the rankings provided by m and s respectively
are not identical (Table 1). This can be attributed to the highly
complex combination of both linear and non-linear relationships
between the output and the input variables. However the two
rankings, which are measured by m and by the Euclidean dis-
tance from the origin in the (m, s) plane, i.e. the mean square
value, agree well (Table 1). This indicates that the mean m is
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a good indicator to measure the overall influence of a factor on
a certain output as argued by Morris (1991). Contrary to the re-
sults of the first round (Fig. 5), the results of the second round
(Fig. 6) do not show distinct clusters of factors. This is because
there are no dominant processes that have a much larger effect
than the others, except for the domestic wastewater discharge
(factors 113 and 55 on Fig. 6 and Table 1). To compare the ef-
fects of the industry and shrimp-culture related wastewaters,
the sum of the mean m from all factors belonging to each process
is computed. Shrimp culture contributes a value of 12.2 to the
variability of the total BOD, while industrial wastewater

Table 1

Results of Morris analysis on the relative important effects of 137 factors on

the total BOD load and the living coral area

Factor jmj s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ s2

p
Short description

113 10.81 4.19 11.59 Total purification capacity of domestic

wastewater treatment plants (mil. m3/day)

55 8.05 1.42 8.18 Percentage of urban connected

households (%)

124 4.85 0.64 4.89 BOD generated by 1 kg of shrimp

(kg BOD/kg shrimp)

120 3.26 2.39 4.04 BOD concentration of domestic

wastewater before purification (mg/l)

68 2.56 2.01 3.25 Spatial growth rate of shrimp pond area

(1/mil. IDR)

119 2.47 4.10 4.78 Production of wastewater per industrial

production value (mil. m3/mil. IDR)

87 2.40 1.07 2.63 Yield of the extensive shrimp culture

(ton/ha)

64 2.26 3.04 3.78 Time for investment of industry to take

effect (month)

114 2.14 2.57 3.34 Total purification capacity of industrial

water treatment plants (mil. m3/day)

60 2.08 3.23 3.84 Slope coefficient of the linear

relationship between investment and

production of industry (e)

3 1.97 3.00 3.59 Urban income (mil. IDR/cp per year)

86 1.82 0.93 2.05 Yield of the intensive shrimp culture

(ton/ha)

121 1.03 1.99 2.24 BOD concentration of industrial

wastewater before purification (mg/l)

5 0.82 1.62 1.81 Yearly investment on the industry

(mil. IDR/year)

56 0.63 0.42 0.76 Water demand for unconnected

households (m3/cp per day)

6 0.38 0.44 0.58 Yearly investment on shrimp

intensification (mil. IDR/year)

122 0.30 0.19 0.35 BOD concentration of domestic

wastewater after purification (mg/l)

123 0.19 0.17 0.25 BOD concentration of industrial

wastewater after purification (mg/l)

13 0.17 0.13 0.22 Relative growth rate of shrimp price (e)

2 0.15 0.40 0.43 Immigration scenario selection

133 591.3 87.33 597.7 Damage surface area of coral reef per

fish blast (ha/blast)

135 233.4 66.43 242.7 Number of fish blasts per ha per year

(blast/ha per year)

132 60.13 19.68 63.27 Natural growth rate of coral reef

(ha/ha per year)

134 46.66 16.81 49.60 Recovery rate of damage coral

(ha/ha per year)

The influential factors are listed in descending order of importance, resulting

from the second round of analysis.
contributes a value of 11.0. This small difference does not allow
a clear conclusion with regard to the order of importance of the
two processes.

Fig. 7 shows the four important factors that have an effect
on the total area of living coral from the first and second
rounds of the Morris analysis. Factors 133 (damaged surface
area of coral reef per fish blast) and 135 (the number of fish
blasts per year per ha) demonstrate that the most important
process influencing the living coral area is blast fishing. Factor
132 (natural growth rate of coral reef) and factor 134 (recovery
rate of damaged coral) play a relatively small role compared to
blast fishing. The other factors, such as the effect of suspended
sediment, are so small that they are outstripped by the effect of
a stochastic module to generate the spatial distribution of fish
blasts over the coastal sea area.

5.2. Elicitation of expert opinions

Tables 2 and 3 show the results of expert opinion aggrega-
tion of the two groups. The number of respondents answering
a specific set of questions varied depending on the objective
variable. Among the first group there were 18 and 15 respon-
dents answering the issue of coral reef degradation and marine
pollution, respectively. The corresponding numbers among the
second groups were 7 and 8, respectively.

In Tables 2 and 3, a low average (Ave.) value indicates a high
rank of a factor, and a low standard deviation (Std.) value indi-
cates a high degree of consensus among the respondents con-
cerning the rank of a factor. Table 3 shows that there is
consensus among the scientific experts on the importance of
the effect of blast fishing on the living coral area. The results ob-
tained with the stakeholder group also point to blast fishing as
the most important process, but with more variability
(Std. ¼ 1.41). Both groups identified fishing using cyanide as
the second most important factor. The two groups ranked the
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remaining four factors slightly differently. However, there is
a general agreement between the two groups about the relatively
low effect of coral reef mining for construction on living coral
area.

With respect to the sources of organic pollution of coastal
waters, the average values of domestic and industrial wastewa-
ters (Table 2) indicate an equal importance order of the two
sources. However, for domestic wastewater, a higher consen-
sus was obtained. When using the weighted average method
to combine expert opinions, the results show a difference be-
tween the two sources. The ranking, in descending order, is:
(1) domestic wastewater, (2) industrial wastewater, and (3)
shrimp culture wastewater. This ranking is the same as the
ranking indicated by the stakeholders.

The results in Tables 2 and 3 show that the standard devi-
ations in the answers given by the scientific experts are gener-
ally smaller than those given by the stakeholders. This
indicates a higher degree of consensus among the SEs than
among the stakeholders. Furthermore, the difference in the av-
erage values of the two successive factors/processes is gener-
ally larger for the scientific experts than for the stakeholders
(Tables 2 and 3). The exceptions are domestic wastewater
and industrial wastewater in Table 2. This could indicate
that the SEs have more confidence to differentiate the order
of importance of the factors/processes than the stakeholders.

Assigning weights to individual expert’ answers results in
the rank of a factor which is similar to the corresponding
rank obtained by the simple average method (Tables 2 and
3). This is an indication that the simple average method is ap-
propriate for this study.

5.3. Uncertainty analysis

The uncertainty propagations of the input factors to the liv-
ing coral area have been compared for two scenarios (Fig. 8).

Table 3

Results of the analysis of the important factors/processes affecting the living

coral area, elicited from local stakeholders and scientific experts (SEs)

Factor Stakeholders SEs (simple

average)

SEs (weighted

average)

Ave. Std. Rank Ave. Std. Rank W. ave. Rank

Suspended sediment 2.74 0.73 5 2.29 0.95 3 2.29 3

Blast 2.00 1.41 1 1.29 0.49 1 1.35 1

Cyanide 2.17 1.47 2 2.00 1.15 2 1.97 2

Natural growth 2.22 1.26 3 2.57 0.98 4 2.73 4

Recover 2.61 1.42 4 3.00 1.15 6 3.13 6

Mining 2.95 1.35 6 2.71 0.95 5 2.85 5

Table 2

Results of the analysis of the important factors/processes affecting the organic

pollution, elicited from local stakeholders and scientific experts (SEs)

Factor Stakeholders SEs (simple average) SEs (weighted average)

Ave. Std. Rank Ave. Std. Rank W. ave. Rank

Domestic 1.50 0.94 1 1.50 0.55 1 1.45 1

Industry 1.73 1.22 2 1.50 0.89 2 1.60 2

Shrimp 2.00 1.03 3 2.38 0.71 3 2.50 3
The first scenario is an extrapolation of the existing situation
(no measure), where the ban on blast fishing is not in effect
due to a number of social-economic and politic reasons. The
second scenario consists of an enforced ban on blast fishing
(with measure). An example of this situation can be found in
a study on blast fishing in Komodo National Park (Pet-Soede
et al., 1999) where about 90% of fish blasts were reduced after
a patrolling programme had been implemented. The uncer-
tainty bounds are subject to a 95% confidence level, with a sam-
ple size of 1000 simulation runs. The similar approach is
applied for the total BOD discharge into the coastal waters.
Fig. 9 depicts the extended current scenario and the scenario
where urban wastewater treatment plants are installed, both un-
der the assumption of 90% of connected urban households.

5.4. Parameter-Verification test

The most important factors influencing the total BOD load
and the living coral area could be identified in the first round
of the Morris analysis (Figs. 5 and 7). The order of importance
of these factors is affected by the model as well as the analyst’s
errors, as explained previously. To reduce the analyst’s error in
estimating the ranges of parameters and inputs, a comparison of
the results of the first round and the opinions of the local stake-
holders and experts were used as a the starting point for the in-
vestigation. For the total BOD load, all parameters and inputs
which belong to the three important processes, as suggested
by the local stakeholders and experts, were subject to a careful
examination. A number of refinements on the uncertainty range
of these parameters and inputs have been made. For example,
the literature study (Fung-Smith and Briggs, 1996; Otte,
1997) revealed an overestimation of factor 124 (amount of
BOD generated per kg of shrimps). In contrast, industrial in-
vestment (factor 5) was overlooked by assigning it a too small
range. Similarly for the living coral area, factor 133 (damaged

1995 2000 2005 2010 2015 2020
0

2000

4000

6000

8000

10000

12000

14000

16000

Time (year)

Li
vi

ng
 c

or
al

 a
re

a 
(h

a)

Fig. 8. Results of the Monte Carlo uncertainty analyses on the living coral area

for the two scenarios: (a) full enforcement of a ban on blast fishing (dotted

lines, 95% confidence bounds; and ,, mean) and (b) without this measure

(solid lines, 95% confidence bounds; B, mean).



1583T.G. Nguyen, J.L. de Kok / Environmental Modelling & Software 22 (2007) 1572e1587
surface area of coral reef per fish blast) was overestimated
whereas the factor 135 (number of fish blasts per ha per year)
was underestimated (Pet-Soede et al., 1999). The natural
growth rate of coral (factor 132) and the recovery rate of dam-
aged coral (factor 134) were also adjusted according to Saila
et al. (1993) and Fox et al. (2003). After refining all the ranges
of the important factors discovered in the first round of the Mor-
ris analysis and the local stakeholders and experts’ opinions,
the second round was carried out. The results are shown in
Fig. 6, for BOD load and Fig. 7 (star) for the total area of living
coral. Fig. 6 shows that the percentage of urban households
connected to the water supply network (factor 55) is a strong
determinant of the total BOD load. This percentage was treated
as a constant parameter in RaMCo. It might need to be con-
verted to a variable which is driven by socio-economic factors
and policy options in RaMCo.

5.5. Behaviour-Anomaly test

As shown in Figs. 5 and 6 the order of importance of the rel-
evant processes has changed, in comparison to the first round of
the Morris analysis. There is an agreement between the model
and the stakeholders/experts (Table 2) with respect to the most
important source of organic pollution, domestic wastewater dis-
charge (factors 113, 55, 120). However, there is a disagreement
about the order of importance of industrial wastewater (factors
119, 64, 114) and shrimp culture wastewater (factors 124, 68,
87). There are three possible explanations for this difference.
First, the shrimp-pond area is located along the coastal line
whereas the domestic and industrial wastewater discharges
originate from the city of Makassar. This may distort the per-
ception of the experts with regard to the order of magnitude
of the pollutant sources. Second, the assumption on the linear
relationship between shrimp production and the production of
the BOD load may not be valid. The equation employed in

1995 2000 2005 2010 2015 2020
0

50

100

150

200

250

300

Time (year)

To
ta

l B
O

D
 lo

ad
 (t

on
/d

ay
)

Fig. 9. Results of the Monte Carlo uncertainty analyses on the total BOD load to

the coast for the two scenarios: (a) with the implementation of wastewater treat-

ment plants of 145,000 m3/day (dotted lines, 95% confidence bounds; ,, mean),

and (b) without this measure (solid lines, 95% confidence bounds; B, mean).
RaMCo is: Q(t) ¼ CA(t)I(t), where Q(t) is total BOD load
(ton/year), C is the amount of BOD generated by a kilogram
of shrimp (kg/kg), A(t) is the area of shrimp culture at year t
(ha), and I(t) is the yield of shrimp at year t (ton/ha). Empirical
data and research on this relationship are lacking in the scien-
tific literature, so it requires further investigation. Third, the var-
iability of the BOD concentration of the industrial wastewater is
very large and strongly dependent on the types of industry pre-
vailing in the study area. The analysis of BOD concentration of
industrial wastewater was based on a previous investigation of
industrial sectors carried out by JICA (1994). According to the
authors, the research outcomes should be interpreted carefully
since they were derived from a very limited measurement.
Therefore, more research on this topic should be conducted.
Obvious flaws in the model cannot be found in this case, but
outcomes of the test justify further research.

For the important factors influencing the area of living coral,
there is an agreement that blast fishing (factors 133, 135) is the
most influential process. A comparable result is obtained on the
natural growth rate (factor 132) and the recovery rate of dam-
aged coral (factor 134) (Fig. 7 and Table 3). However, a short-
coming of RaMCo is that it does not include the process of
fishing using poisonous substances, which is regarded as being
more important than the natural growth rate and the recovery
rate by both stakeholders and experts. The effect of suspended
sediment on the living coral is ranked differently by stake-
holders and experts (Table 3). The results of the model agree
more with the stakeholders’ assessments. Nevertheless, the dif-
ferences call for an in-depth investigation of the effect of the
suspended sediment on the living coral for the study area.

5.6. Policy-Sensitivity test

As depicted by Fig. 8, the difference between the extended
current situation and the situation with an enforcement of the
ban on blast fishing is clear. There is no overlap between the
confidence bounds. The time series of the predicted mean
values are significantly different in terms of trend lines. This
gives the decision makers more confidence in using the model.

For the BOD load (Fig. 9), there is a large overlap between
the two scenarios where urban wastewater treatment plants are
installed or not. The difference between the two time series of
the predicted mean values of the total BOD load is small com-
pared with the overlap of the confidence bounds after the year
2005. In addition, the trend lines of the predicted mean values
in two situations are almost the same. This suggests that this
measure should not be implemented separately but combined
with other measures, such as the installation of industrial
wastewater treatment plants and water treatment structures
for shrimp pond area. In this case, this test does not increase
the confidence of the decision makers.

6. Discussion

In this paper, the concepts of validity and validation of ISMs
have been defined. A conceptual framework for ISM validation
and the detailed steps have been presented. This framework and
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the procedure reflect the philosophical position taken in this pa-
per, which lies somewhere between objectivism (in the
sense that there is an ultimate truth) and relativism (one model
is as good as another), beyond rationalism and positive empiri-
cism. Based on this position, we consider an ISM as a tool which
is designed for specified purposes. The model validation is con-
sidered to be a process, which should take these purposes into
account.

The examples clearly demonstrate that the Morris (1991)
method can be a valuable tool for the validation of an inte-
grated systems model. First, it helps to pinpoint the parame-
ters, inputs and measures that need careful investigations in
the process of model validation. Second, it allows the end-
users of a model to judge qualitatively the validity of the hy-
potheses embedded in the model. Third, it helps to find the
backbone of a model, on which the validation should be based.

The current method of the expert elicitation does not take
into account two aspects of the expert opinion, namely, bias
and inconsistency. Nevertheless, it is simple, informative,
time and cost effective. Given its purpose as an exploratory
tool, it is acceptable for this type of applications. Alternative
methods such as analytical hierarchy process and adaptive
conjoint analysis may further improve the credibility of the
results.

The approach to the validation of integrated systems models
presented in this paper is a combination of the sensitivity and
uncertainty analyses with the three validation tests of system
dynamics models proposed by Forrester and Senge (1980). Tak-
ing into account the increasing difficulties in collecting data for
empirical validation of ISMs, the current approach is one of the
possible ways to get out of ‘‘the impasse’’ mentioned by Beck
and Chen (2000). Our argument for the current approach is that
one main purpose of ISM validation is to show transparently
both the strengths and weaknesses of a model to its intended
users. To the model developers, validation can reveal flaws in
the model, from which they may see a need to improve or re-
build the model. To the analysts, validation can provide the nec-
essary information to facilitate the process of calibration for
other applications, and analysis of the results before transfer-
ring them to the decision makers. Finally, validation gives deci-
sion makers confidence in using the model results to support
their decision-making processes. This argument is in line with
the current view that the validation of ISMs is a process, not a fi-
nal product of integrated assessment (Parker et al., 2002); and
one important component of it is the adaptive feedback between
stakeholders and researchers (Jakeman and Letcher, 2003).

The three tests presented in this paper can be used as the
first steps in the process of establishing the validity of an
ISM. They have diagnostic power. A new approach, in which
a hypothesised system is built and compared with the model
system, is presented in Nguyen et al (2007). Within this
approach, the validity of the two systems is evaluated in terms
of the capability to fulfil a specified task. This testing approach
has constructive power, and helps to overcome the problems of
system openness, uncertain future context and scarcity of field
data. Another testing procedure for model validation when ob-
served data are available to a limited extent is presented in
Nguyen (2005). This testing procedure contains three tests
(pattern replication test, behaviour accuracy test and extreme
policy test), which were applied to validate the fisheries model
incorporated in RaMCo.

In accordance with Rykiel (1996) and others (e.g. Oreskes,
1998; Sterman, 2002; Refsgaard and Henriksen, 2004), we
conclude that the validity of any model, in the sense of scien-
tific hypothesis testing, is not feasible. The validity of a model
is always provisional and based on the availability of field data
and knowledge of the real system against which the model can
be tested. However, model validation is a legitimate activity
required to improve our understanding and to guide our man-
agement decisions.
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Appendix A. Example of the questionnaire

In order to make the RaMCo a useful tool in practice, we would like to have your valuable contributions to the process of model validation by thoroughly filling

this questionnaire.

No. Question Answer

A What is your name?

B What is your title?

(e.g. Prof., Dr., Deputy head of the department)

C Where do you work?

(e.g. Department of Forestry, UNHAS University)

D: What is/are your

field(s) of expertise?

Marine

ecology

Land use

management

Marine water

quality

Marine

fisheries

Other

(please specify)

E: How long have you been

working on these field(s)?
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A.1 Coral reefs

In this section, you are asked for the relative importance order of factors and processes that have effects on coral reefs. Please answer these questions by

marking them in appropriate places.

No. Question Answer

33 Do you have knowledge

of the coral reef?

YES Please go on with question 34

NO Please go on with question 47

34 Where do you obtain your knowledge

to answer these questions?

(Multiple answers possible)

Information gathered

in practice

Information gathered through research

35 Are you interested in coral reef? Very interested

Interested

Moderate

Little

Not at all

No. Factor/process 1: extremely

important

2: very

important

3: important 4: not so

important

5: not

important at all

6: I have no idea

36 The impact of suspended sediment

on coral reefs

37 The fisheries using dynamite

38 Cyanide fishing

39 The expansion of coral reef area

40 Recovery rate of damaged coral

41 The use of coral for the supply

construction

There also can be some factors/processes we overlooked. Please add them to the list and explain how important these factor/processes are, by giving them a ranking

too.

No. Factor/process 1 2 3 4 5 6

42

43

44

45

46

Appendix B. Weighting factors for aggregation of expert opinions

Table B.1

Weighting factor for professional title (PT)

Stakeholders/policy makers Research experts Weighting factor

Heads of an institution Professor 2.0

Head of a department Doctor 1.5

Staff member Master of Science/Engineer 1.0

Table B.2

Weighting factor for source of knowledge (SK)

Source of knowledge Weighting factor

Information gathered

from practice

1.0

Information gathered

from research

1.0

Information gathered

from both practice and research

2.0
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Table B.3

Weighting for years of experience (YE)

Time active in field of expertise Weighting factor

0e5 years 0

5e10 years 0.5

10e15 years 1.0

15e20 years 1.5

More than 20 years 2.0

Table B.4

Weighting factor for level of interest (LI)

Level of interest Weighting factor

Very interested 2

Interested 1.5

Moderate 1.0

Little interested 0.5

Not at all interested 0.0
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