Editorial

Early Aspects: Aspect-oriented Requirements Engineering and

Architecture Design

Software development is a discipline that is continuously
evolving. New techniques, methodologies and tools con-
tinue to appear and shape the way we modularise and
compose software systems. An interesting characteristic of
this continuously evolving discipline is the reverse intro-
duction of the techniques. Historically, most new develop-
ment techniques are introduced at the programming level
and their concepts subsequently travel up the development
life cycle to be applied at the earlier stages, for example,
requirements engineering, analysis and design. We have
seen this evolution trend, in the 1970’s, with structured
techniques and, in the late 1980’s and early 1990’s, with
object-oriented techniques. For example, object-oriented
concepts were initially introduced by the programming
language SIMULA-67 and are now applied throughout the
software life cycle with standard notations, such as the
Unified Modelling Language (UML), available for model-
ling, analysis and design.

Aspect-oriented software development (AOSD) [1] is
another step towards achieving improved modularity during
software development. AOSD focuses on a specific type of
concerns, crosscutting ones, which span traditional module
boundaries (for example, classes and objects in an object-
oriented decomposition). Examples of such crosscutting
concerns include distribution, persistence, security and real-
time behaviour. The modules encapsulating such crosscutting
concerns using an AOSD technique are referred to as aspects
while the composition process, which integrates the aspects
with other modules in the system, is referred to as weaving.

The reverse introduction trend is also evident in this
newest addition to the set of software development
techniques. AOSD was introduced at the programming
level with Aspect] [2—4] playing a key role in its early
adoption by researchers and practitioners; the notion of
aspect-orientation is rooted in earlier work on composition
filters [5, 6], adaptive programming [7, 8] and subject-
oriented programming [9]. The concepts are now moving
beyond programming and being applied at earlier develop-
ment stages. For instance, a number of aspect-oriented
requirements engineering, analysis and design approaches
have been proposed (see, for example, [10—16]).

The term early aspects [17] refers to the set of techniques
focusing on separation of crosscutting concerns before the
detailed design (and subsequently the implementation) is
derived. It, therefore, encompasses techniques focusing on
aspects at the requirements engineering and architecture
design stages as well as mechanisms to model, analyse and
compose such aspects. Furthermore, the traceability of
aspects modularised at this early stage to later artefacts (at
the design and implementation level) is also an important
area of consideration. Three workshops, one at each of the
AOSD conferences so far, have explored a number of these
issues. A fourth workshop is due to be held in conjunction
with the Object-Oriented Programming Languages,
Systems and Applications Conference (OOPSLA) in
October 2004. The upcoming International Conference on
Requirements Engineering in September 2004 has a paper
session dedicated to aspect-oriented requirements
engineering.

IEE Proc.-Softw., Vol. 151, No. 4, August 2004

This Special Issue of IEE Proceedings Software includes
four very interesting papers focusing on a range of key
topics in the early aspects space namely, aspect-oriented
requirements engineering, aspects at the architecture and
early design stages, and feature composition and architec-
ture variability using aspect-orientation.

Whittle and Araudjo discuss that interaction of cross-
cutting requirements with other requirements must be
understood from the very early stages of software develop-
ment. Otherwise such interactions are discovered later on in
the development life cycle leading to increased develop-
ment costs arising from rectifying actions that must be
taken. They argue that the solution lies in aspect-oriented
requirements engineering and propose explicit modelling of
crosscutting requirements as well as their composition with
other requirements so that the whole requirements set can be
validated. They focus on a specific requirements modelling
mechanism, scenario-based modelling. Crosscutting scen-
arios are separated as aspectual scenarios and represented
using interaction pattern specifications, which are UML
sequence diagrams extended with generic role elements.
Non-aspectual scenarios are represented as UML sequence
diagrams. The two are composed together to produce state
machines that can be executed to understand the composed
behaviour. The composition mechanism and the resultant
state machines are key features of the paper as they make it
possible to identify erroneous requirements through analysis
of the behaviour of the composed specification. The paper
also includes a detailed case study applying the authors’
approach to a sub-system of a tool from the air traffic control
domain.

France, Ray, Georg and Ghosh introduce an aspect-
oriented modelling approach from which they produce a
composed aspect-oriented architecture model. Their
approach is characterised by the existence of a base
architecture which they call the primary model and a set
of aspect models. The primary model is described using
UML diagrams, and, in this paper, the authors use classifier
and interaction diagrams. Aspect models, on the other hand,
represent generalised solutions for crosscutting concerns
and are specified as patterns. Patterns are described using
UML model templates which must be instantiated before
they can be composed with the primary model. The
instantiation is accomplished by binding the template
parameters to application-specific values. Finally, the aspect
models are composed with the primary model by following
a set of composition directives. A composition directive
may specify, for example, the order in which several aspect
models are composed with the primary model. The aspect-
oriented architecture is, therefore, composed of a primary
model, aspect models and the bindings needed to instantiate
them to an application-specific context, and a set of
composition directives that specify how the instantiated
aspect models are composed with the primary model.
The approach finishes with an analysis model that takes
the resulting composed aspect-oriented architecture model
and identifies conflicts that may arise during composition.
The authors also show how conflicts can be resolved using
composition directives.

153



These two first papers share the idea of employing
specification patterns, described using UML model
templates, to represent aspects. (This is also proposed in
Clarke’s work [18].) The major difference in the way the
two papers use patterns is that while Whittle and Araujo
allow concrete and role elements to coexist in a UML model
template, France ef al. impose that all model template
elements must be generic. Moreover, the composition
process proposed by France et al. is subsequent to the
instantiation process and the result is still the same type of
UML diagram, whereas in Whittle and Aratdjo’s work the
instantiation process generates a set of sequence diagrams
which are then merged together into a set of state machines
by using a synthesis algorithm.

The last two papers, on the other hand, focus on feature
modelling and variability. While Jansen er al. focus on
making features first class abstractions in software product
families, Pratap et al. devote their attention to providing
variability in middleware platforms.

Jansen, Smedinga, van Gurp and Bosch focus on product
development in software product families in their paper.
A software product family (SPF) represents a family of
related products that share common features and business
goals, and that are developed from a common set of core
assets in a prescribed way. Software product family
development primarily aims at systematic reuse and like-
wise improvements in productivity, time to market, and
product quality. A key challenge in SPFs is to define the
commonality and variability for the set of products that are
required to develop the required products. Products in this
context are essentially defined as a set of features. The
authors claim that features are examples of early aspects
because they have to be identified early on during the
commonality and variability analysis, and are scattered over
various products. Unfortunately, current SPF approaches do
not adopt features as first class representations. Changing or
adding features to the SPF, therefore, implies a tedious and
error-prone process and seriously complicates product
derivation. To solve the problem, the authors propose a
role-based first-class representation of features, thereby
explicitly separating features from products. To provide the
‘weaving’ of the features and as such to derive the products
the authors describe a composition algorithm and elaborate
on the possible composition problems.

Pratap, Hunleth and Cytron highlight the customisability
problem in middleware platforms. They argue that existing
customisation approaches such as macros and strategy and
template method patterns have a number of shortcomings
and propose an alternative approach to developing custo-
misable middleware. The proposed framework involves the
use of aspects to introduce features in an incremental
fashion. Most interestingly, however, the authors highlight a
number of architectural considerations in the development
of their framework. Firstly, they discuss the issue of
automatic validation of feature combinations and propose
the use of a feature registry to maintain all relationships and
meta-data pertaining to each feature. Secondly, they take
testing into account within the architecture of their frame-
work and use aspects to automatically run and upgrade tests
relating to the current feature set in the system. Lastly, they
discuss and present a number of aspect-oriented design
patterns identified during the development of their frame-
work. The paper also includes some experimental results
comparing the authors’ approach with traditional middle-
ware approaches. These measurements demonstrate that key
architectural considerations based on aspect-oriented devel-
opment concepts can go a long way towards improving the
overall footprint and performance as features can be

154

selectively enabled or disabled depending on the specific
requirements of the application.

This Special Issue would not have been possible without
the time and effort devoted by the various reviewers:
Uwe Assman, Elisa Baniassad, Gordon Blair, Marcelo
Campo, Siobhan Clarke, Paul Clements, Fernando
Figueroa, Lidia Fuentes, Jeff Gray, John Grundy, Charles
Haley, Juan Hernandez, Shmuel Katz, Robin Laney, Mira
Mezini, Gail Murphy, Bashar Nuseibeh, Peter Sawyer, Ian
Sommerville and Stanley Sutton Jr. We also wish to thank
Lee Baldwin, Stuart Govan and Shirley Rossall at IEE for
their help throughout the preparation of this Special Issue.
Last, but not least, we would like to thank all the authors
who submitted papers to the Special Issue.

Although the papers in this Special Issue provide an
interesting insight into the topic of early aspects and address
some important research issues pertaining to early aspect
composition, there are a number of other key research issues
outstanding that need to be addressed. One of these is
traceability. Aspects at earlier development stages do not
necessarily map on to aspects at the design and implemen-
tation level while new aspects might arise during these later
development stages. It is important that one clearly
understands how early aspects filter down the development
stages and how one can verify that the resultant system
satisfies and preserves the properties specified by early
aspects. Another key area is that of early aspect identifi-
cation. What makes a good early aspect and how does one
identify these early aspects in the plethora of requirements
documentation available, e.g., interviews with stakeholders,
users, ethnographic studies, etc? There is also a need to
clarify the relationship between early aspects research and
existing research in requirements engineering and architec-
ture design. Some of these techniques, for example, goal-
oriented approaches [19] and architectural styles [20], also
attempt to tackle the problem of crosscutting concerns. It is,
therefore, important to understand what lessons early
aspects techniques can learn from these approaches and
what interesting ideas can be injected into these approaches
from the work on early aspects. The above, non-exhaustive,
list of outstanding research issues shows that this Special
Issue has just scratched the surface. We, therefore, hope that
a number of similarly exciting approaches addressing the
issues above will appear over the next few years. Whatever
shape or form those approaches take, it is clear that early
aspects tackle a very important problem at the requirements
engineering and architecture design stages and can provide
improved support for requirements engineers and architects
to reason about their specifications and architectures.

AWAIS RASHID
ANA MOREIRA
BEDIR TEKINERDOGAN

IEE Proceedings online no. 20041027
doi: 10.1049/ip-sen:20041027

References

1 AOSD, ‘Aspect-oriented software development’, http://aosd.net, 2004

2 Aspect] Team, ‘Aspect] Project’, http://www.eclipse.org/aspectj/, 2004

3 Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M.A., Palm, J., and
Griswold, W.G.: ‘An Overview of Aspect]’, Lect. Notes Comput. Sci.,
2001, 2072, pp. 327-353

4 Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,
Loingtier, J., and Irwin, J.: ‘Aspect-oriented programming’, Lect. Notes
Comput. Sci., 1997, 1241, pp. 220-242

5 Aksit, M., Bergmans, L., and Vural, S.: ‘An object-oriented language-
database integration model: the composition-filters approach’, Lect.
Notes Comput. Sci., 1992, 615, pp. 372-395

IEE Proc.-Softw., Vol. 151, No. 4, August 2004


http://aosd.net
http://www.eclipse.org/aspectj/

6 Bergmans, L., and Aksit, M.: ‘Composing crosscutting concerns using
composition filters’, Commun. ACM, 2001, 44, (10), pp. 51-57

7 Lieberherr, K.J., Orleans, D., and Ovlinger, J.: ‘Aspect-oriented

programming with adaptive methods’, Commun. ACM, 2001, 44,

(10), pp. 39-41

Lieberherr, K.J., Silva-Lepe, 1., and Xiao, C.: ‘Adaptive object-oriented

programming using graph-based customization’, Commun. ACM, 1994,

37, (5), pp. 94-101

9 Harrison, W.H., and Ossher, H.: ‘Subject-oriented programming

(a critique of pure objects)’. Proc. ACM SIGPLAN Conf. on Object-
oriented Programming, Languages, Systems and Applications
(OOPSLA), 1993, ACM, SIGPLAN Notices, 28, (10), pp. 411-428

10 Baniassad, E.L.A., and Clarke, S.: ‘Theme: an approach for aspect-
oriented analysis and design’. Proc. Int. Conf. on Software Engineering
(ICSE), 2004, pp. 158-167

11 Clarke, S., and Walker, R.J.: ‘Towards a standard design language for
AOSD’. Proc. 1st ACM Conf. on Aspect-oriented software Develop-
ment, 2002, pp. 113-119

12 Haley, C., Laney, R., and Nuseibeh, B.: ‘Deriving security requirements
from crosscutting threat descriptions’. Proc. 3rd ACM Int. Conf. on
Aspect-oriented Software Development (AOSD), 2004, pp. 112121

13 Katara, M., and Katz, S.: ‘Architectural views of aspects’. Proc. 2nd
ACM Int. Conf. on Aspect-oriented Software Development, 2003,
pp- 1-10

14 Moreira, A., Aratjo, J., and Brito, L.: ‘Crosscutting quality attributes for
requirements engineering’. Proc. 14th ACM Int. Conf. on Software
Engineering and Knowledge Engineering (SEKE), 2002, pp. 167-174

15 Rashid, A., Moreira, A., and Araujo, J.: ‘Modularisation and
composition of aspectual requirements’. Proc. 2nd ACM Int. Conf. on
Aspect-oriented Software Development, 2003, pp. 11-20

16 Sutton, S.M., and Rouvellou, I.: ‘Modeling of software concerns in
cosmos’. Proc. ACM Int. Conf. on Aspect-oriented Software Develop-
ment, 2002, pp. 127-133

17 EarlyAspects, ‘Early aspects: aspect-oriented requirements engineering
and architecture design’, http://early-aspects.net, 2004

18 Clarke, S., and Walker, R.J.: ‘Composition patterns: an approach to
designing reusable aspects’. Proc. Int. Conf. on Software Engineering
(ICSE), 2001, pp. 5-14

19 Lamsweerde, A.: ‘Goal-oriented requirements engineering: a guided
tour’. Proc. 5th Int. Symp. on Requirements Engineering, 2001,
pp. 249-261

20 Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M.:
‘Pattern-oriented software architecture: a system of patterns’ (Wiley,
1996)

oo

Awais Rashid is a senior lecturer
in the Computing Department at
Lancaster University in the United
Kingdom. His principal research inter-
ests are in aspect-oriented software
engineering, aspect-oriented databases
and object data management. He is
particularly interested in composition

IEE Proc.-Softw., Vol. 151, No. 4, August 2004

and traceability issues in aspect-oriented requirements
engineering, combining different aspect-oriented appro-
aches during system development and application of aspect-
oriented techniques in databases, software product lines and
safety critical systems. He has published actively on these
topics. He is coordinating the European Network of
Excellence on Aspect-Oriented Software Development
and is the co-editor-in-chief of Transactions on Aspect-
Oriented Software Development.

Ana Moreira is an assistant
professor in the Computer Science
Department at Universidade Nova
Lisboa, Portugal. Her main research
areas are aspect-oriented software
development, object technology,
requirements engineering, and formal
description techniques. Currently she is
interested in investigating how aspect-
orientation can be used during the early activities of the
software development process. She has been actively
involved in several scientific events in her topics of interest.
She is a member of the editorial board for the Springer-
Verlag journals ‘Software and Systems Modeling’ and also
the upcoming ‘Transactions on Aspect-Oriented Software
Development’.

Bedir Tekinerdogan is an assistant
professor at University of Twente in
the Department of Computer Science.
His current research is on aspect-
oriented software architecture design,
quantitative evaluation of software
architectures, multidimensional separ-
ation of concerns using design space
modelling and aspect-oriented domain
analysis. He has served on the program and organising
committees of several workshops on the topics of aspect-
oriented software development.

155


http://early-aspects.net

	footer1: 


