
Accurate and unbiased estimation of power-law exponents
from single-emitter blinking data

Jacob P. Hoogenbooma�

Optical Techniques, Faculty of Science and Technology, MESA� Institute for Nanotechnology,
University of Twente, P.O. Box 217, NL-7500 AE Enschede, The Netherlands

Wouter K. den Otter
Computational Biophysics, Faculty of Science and Technology, University of Twente,
P.O. Box 217, NL-7500 AE Enschede, The Netherlands

Herman L. Offerhaus
Optical Techniques, Faculty of Science and Technology, MESA� Institute for Nanotechnology,
University of Twente, P.O. Box 217, NL-7500 AE Enschede, The Netherlands

�Received 27 July 2006; accepted 6 October 2006; published online 29 November 2006�

Single emitter blinking with a power-law distribution for the on and off times has been observed on
a variety of systems including semiconductor nanocrystals, conjugated polymers, fluorescent
proteins, and organic fluorophores. The origin of this behavior is still under debate. Reliable
estimation of power exponents from experimental data is crucial in validating the various models
under consideration. We derive a maximum likelihood estimator for power-law distributed data and
analyze its accuracy as a function of data set size and power exponent both analytically and
numerically. Results are compared to least-squares fitting of the double logarithmically transformed
probability density. We demonstrate that least-squares fitting introduces a severe bias in the
estimation result and that the maximum likelihood procedure is superior in retrieving the correct
exponent and reducing the statistical error. For a data set as small as 50 data points, the error
margins of the maximum likelihood estimator are already below 7%, giving the possibility to
quantify blinking behavior when data set size is limited, e.g., due to photobleaching. © 2006
American Institute of Physics. �DOI: 10.1063/1.2387165�

I. INTRODUCTION

In the past 20 years single-molecule spectroscopy has
become an important tool in physics, chemistry, and
biology.1 One of the defining and intriguing observations on
single emitters is a pronounced blinking behavior:2 the fluo-
rescence or luminescence intensity of almost any type of
single emitter is found to randomly switch off and on despite
continuous excitation.3–9 In general, this emission intermit-
tency is the result of temporary excursions from the excited
state to a dark state from which the excited electron returns
to the ground state via a nonradiative pathway.10 A well-
known and intensively studied example is the symmetry for-
bidden population and depopulation of the triplet state in
organic fluorophores.3,11,12 This triplet blinking results in a
single-molecule intensity trace interrupted by off periods
with a typical duration of several milliseconds. In this case
the durations of on and off periods each follow a single-
exponential distribution. The averages of both distributions
are the triplet lifetime and the intersystem crossing yield,
respectively.

On/off intermittency with a much broader range of on
and off period durations was first observed on fluorescent
proteins4 and multichromophore conjugated polymers5 and
was later intensively studied on single semiconductor nano-

crystals and quantum dots.6–8,13–17 Here, the distribution of
on and off times, ranging from milliseconds up to hundreds
of seconds, was found to follow a power-law �t−� behavior,
with ��1. Several implications of the occurrence of such a
power-law distribution are as follows: �i� there is finite prob-
ability of observing an on or off period with a duration as
long as the measurement time, �ii� average on or off times
are not defined, and �iii� the system behaves nonergodic, i.e.,
the result of time-averaging single-emitter data does not
equal ensemble averaging.18,19 Recently, this power-law
blinking has also been observed for the emission intensity of
fluorescent organic molecules.9,12,20

For both semiconductor nanocrystals7,13,15,21 as well as
for organic molecules,9,22 the occurrence of power-law blink-
ing is generally ascribed to a charge separation reaction.
When the emitter switches off, it is in a charged state that
either does not absorb the excitation light or that follows a
nonradiative pathway. The ejected electron or hole is trapped
by a charge acceptor in the environment. How this charge
separation reaction exactly results in power-law distributed
on and off periods is under debate. Several models discuss
the power-law behavior in terms of �i� one-dimensional spec-
tral diffusion of charge donor and acceptor energy levels,7,23

�ii� charge separation and recombination controlled by three-
dimensional spatial diffusion of charge acceptors,24 �iii� elec-
tron or hole tunneling from the excited state to a spatial
distribution of acceptors,13,15,25 or �iv� the formation of mul-
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tiple localized excitons that each have competing pathways
for charge recombination.26 The differences between these
models are evidenced in different predictions for the ob-
served power-law exponent �. For instance, � can be ex-
pected to show a universal value of 1.5 �models �i�, �ii�, and
�iv��,7,23,24,26 may be environment dependent �models �ii� and
�iii��, related to charge tunneling barriers �model �iii��,13,15,25

or dependent on the dielectric properties of the medium in
which the emitter is embedded �models �ii� and �iii��.17,24

Clearly, the experimental determination of the precise value
for the power exponent on the level of single emitters is
crucial in understanding the nature of power-law blinking.

Several techniques exist to retrieve the power exponents
governing the blinking of single emitters. These include cal-
culation of the intensity correlation function,27 determination
of the power spectral density of intensity fluctuations,28 and
direct evaluation of the distributions of on- and off-time
durations.6 The latter technique is most commonly used and
has the advantage that it assesses the on and off kinetics
separately. Assessment of the power-law behavior requires
an evaluation of the functional form of either intensity cor-
relation function, power spectral density, or on- and off-time
duration probability densities over multiple orders of magni-
tude in time. Usually this is done by performing a double
logarithmic �log-log� transformation followed by least-
squares �LS� fitting in which the power exponent � is deter-
mined. The combined use of a log transformation and LS is,
however, known to introduce bias in the fitting result.29–31

Recently, Stefani et al. have noted this discrepancy between
the power exponent that was put into simulated blinking
traces and the one retrieved from those traces with LS.16

They then retrieved power exponent estimates by comparing
the experimental results to the outcome of iteratively per-
formed simulations with known power exponent. A direct,
unbiased estimation method has not yet been identified, nor
have the error margins involved in the estimation techniques
been evaluated.

Maximum likelihood estimation �MLE� is a general es-
timation routine that involves calculation of the likelihood
that a data set is drawn from a model distribution character-
ized by a certain parameter.32 Maximization of the likelihood
with respect to this parameter yields the best estimation for
this model parameter. MLE has previously been shown to be
a more reliable estimation routine than LS for evaluating the
single-exponential �log-linear� relation for single-molecule
fluorescence lifetime data.29,30,33 Also for various other prob-
lems in single-molecule physics, MLE has appeared as a
robust estimation routine34 that can overcome a bias, e.g.,
when data are bound to physical constraints.35 In the case of
evaluation of on- and off-time distributions, MLE has the
further advantage that it can be performed directly on the
data, while LS requires additional binning in the construction
of on- and off-time histograms. Note that if measurement
errors are normally distributed for all data points, LS can be
derived as a special case of MLE.32 However, the log-log
transformation together with a low number of events per bin
distorts the measurement errors unequally.

Recently, MLE has been suggested as an estimation pro-
cedure superior to LS in assessing power-law data.31 To our

knowledge, the MLE technique has not yet been used for
quantifying blinking data and the statistical errors involved
in both MLE and in LS fitting have not yet been addressed.
This information is crucial in validating the various models
for single-emitter blinking, especially where one needs to
evaluate whether single-emitter exponents are universal or
exhibit a broad distribution of values. The size dependence
of the accuracy of estimation routines is particularly impor-
tant in the recently reported case of single-molecule fluores-
cence blinking,9,12,20,36 where photoinduced bleaching poses
a severe restriction on data set size.

In this article, we compare the accuracy and applicability
of LS and MLE algorithms for estimation of power expo-
nents in single-emitter blinking data and we assess the reli-
ability of both techniques as a function of data set size. Our
results demonstrate that LS introduces a severe bias that is
not present in the MLE procedure. This bias in the LS can be
overcome by applying a logarithmic binning in the construc-
tion of the on- or off-time histogram. However, the MLE
algorithm is superior in statistical accuracy and can be per-
formed in a computationally simple and fast way directly on
the sequence of on or off times. With MLE the power expo-
nent can be reliably estimated up to the first decimal for data
sets containing as few as 50 events and power exponent �
�1.5. We evaluate the accuracy and statistical error of the
MLE procedure as a function of � both analytically and nu-
merically. Finally, we will discuss an easy computational
procedure that can be used in combination with MLE to
discriminate power-law behavior against, e.g., single-
exponential behavior without the need for graphical inspec-
tion of the data distribution. The results presented here are
essential for assessing the homo- or heterogeneity of power
exponent distributions of single luminescent nanocrystals or
fluorescent molecules. Furthermore, MLE can be used to
check for possible dynamic effects37 by evaluating power
exponents over small subsets within a single-emitter data set.

The remainder of this paper is organized as follows:
First, we briefly illustrate single-emitter blinking and the oc-
currence of power-law blinking. Then the MLE procedure is
summarized and the derivation of the likelihood function for
a power-law distribution is presented. For the MLE estimator
we derive analytical expressions for the average estimator
retrieved from a finite-size data set and for the standard de-
viation, or statistical error, on this estimator. The details of
the calculations used to compare MLE and LS are described
in Sec. IV. Section V, containing the results and discussion of
the evaluation of the two estimation routines for power-law
data, is divided into three parts. First, we compare LS tech-
niques with the MLE method for different data set sizes.
Then the accuracy and statistical error margins involved in
the MLE method will be investigated in detail as a function
of both data set size and power exponent. Finally, we will
discuss the assessment of whether or not data actually follow
a power-law behavior and an easy to use computational test
that can for this purpose be used in combination with MLE is
presented. All results are summarized together with some
concluding remarks in Sec. VI.
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II. SINGLE-EMITTER BLINKING

The occurrence of power-law distributed on/off blinking
in semiconductor nanocrystals and recently in organic fluo-
rophores has been previously described in detail.6–9,12–18,20 In
Fig. 1, we present an example of an intensity trajectory of a
blinking fluorophore. The molecule under investigation, a
tetraphenoxy-perylene diïmide dye, was under continuous il-
lumination with 10 kW/cm2 at a wavelength of 568 nm from
an ArKr laser.36 Photons were collected per time bin of 2 ms
and we observed an emission level of approximately
30 counts”2 ms. The stream of photons is, however, repeat-
edly interrupted; the emission intensity drops to the back-
ground level and jumps back to the emission level at a later
time. The periods that the trace spends at the background
level vary from the time bin to several seconds. This behav-
ior persists when zooming in or out to smaller or larger time
scales.6,36

The kinetics of this blinking behavior can be retrieved
from the intensity trace by determining the durations of all
on and off periods occurring in the intensity trace. Similarly,
one can evaluate the intensity correlation function,27 but by
analyzing on- and off-time durations both on-to-off and off-
to-on kinetics can be evaluated separately. Based on a histo-
gram of the number of photon counts per time bin �see Fig.
1�, a threshold can be defined that separates the emissive
state from the background level.12,38 Thus, the intensity trace
is divided in a sequence of on and off states of varying du-
ration. From the series of on and off times, the probability
density for the occurrence of a specific on or off time can be
calculated.

In Fig. 2 we show the probability densities for the off-
period and on-period durations for the molecule in Fig. 1.
Both quantities are displayed on double logarithmic axes and
can be seen to span a broad range of decades on both axes.
We observe a clear log-log dependence of the probability
density for both off- and on-time durations, as indicated by
the straight lines. Thus, both probability densities obey a
power law �t−� behavior, where the power exponent � may
be different for the off times compared to the on times. In the
remainder of this paper, we will be concerned with the de-
termination of � from experimental data.

III. THE MLE ALGORITHM

Maximum likelihood estimation has been described be-
fore in relation to problems such as analyzing single-
exponential lifetime data,29,30,33 polarization modulation
data,34 and constrained single-molecule data.35 Here, we are
concerned with extracting the power exponent from power-
law distributed data and as such we will limit our description
to the implementation of the MLE procedure for this case.
The power-law distributed probability is characterized by a
prefactor A and a model exponent �,

P�t� = At−�. �1�

A measurement yields a finite set of N discrete data points
�ti�, with i=1, . . . ,N. Here, the �ti� are the sets of observed on
or off times in a single-molecule trace. The observable range
of data points is limited by the experimental time resolution
tmin and the time window of the experiment, tmax. The pref-
actor A is set by requiring normalization,

�
tmin

tmax

P�t�dt = 1. �2�

Thus, we get for Eq. �1�

P�t� =
� − 1

tmin
1−� − tmax

1−� t−�. �3�

The likelihood function L in terms of the model param-
eter � is constructed by multiplying the probabilities of all
data points ti,

L��� = 	
i

P�ti
�� . �4�

The best estimate for � given the data set �ti� can now be
retrieved by maximizing L with respect to �. This maximi-
zation is equivalent to maximizing the logarithm of L, so we
can take

� � ln L���
��

�
�=m

= 0. �5�

FIG. 1. Example of an intensity trace of a blinking fluorophore �left�. The
emission of fluorescence photons is interrupted by intervals of varying du-
ration where the intensity falls to the background level. Based on the distri-
bution of detected photon counts per time bin �right�, a threshold is defined
that separates on and off periods.

FIG. 2. Probability density for �a� the duration of the off states and �b� the
duration of the on states for the fluorophore timetrace depicted in Fig. 1. The
straight lines have been drawn to indicate the log-log dependency of the data
corresponding to power-law behavior.
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Here and in the remainder of this paper, we use � to
denote the model power exponent and m for the best estima-
tion given the data set �ti�. Using Eqs. �3� and �4�, Eq. �5� can
be rewritten as

1

N

i=1

N

ln�ti� = � �

��
�ln� � − 1

tmin
1−� − tmax

1−����
�=m

. �6�

Now, on the left-hand side of Eq. �6�, we encounter a simple
summation over all data points �ti�. Performing the differen-
tiation on the right-hand side and presuming m�1 lead to

1

N

i=1

N

ln�ti� =
1

m − 1
+

�ln�tmin�tmin
1−m − ln�tmax�tmax

1−m�
tmin
1−m − tmax

1−m . �7�

In general, the experimental time window spans several
orders of magnitude so that tmax� tmin. Scaling all ti with tmin,
taking tmax/ tmin→�, and m�1, we have

m = 1 +
1

S
,

�8�

S =
1

N

i=1

N

ln� ti

tmin
� .

Equation �8� shows that the maximum likelihood estimate m
for the power exponent � can be obtained by a simple sum-
mation over all individual data points. No binning, e.g., to
build a histogram or probability density, is necessary. Thus,
the MLE estimate for � can be retrieved in a simple and
computationally fast way from the series of on or off times.

Now, we are interested in the accuracy and statistical
error contained in the MLE result in Eq. �8� as a consequence
of the use of a finite N-sized data set. We have seen in Eq. �8�
that the information retrieved from the data series is con-
tained in the factor S, which is simply the expectation value
S= �ln�ti / tmin��. Calculation of �ln�ti / tmin�� over a power-law
probability density with exponent � yields the obvious result

�S� =
1

� − 1
. �9�

Similarly, we can calculate the second order moment for S
for which we find �S2�− �S�2= ��−1�−2. For a data set con-
sisting of N data points �ti�, we thus have for the standard
deviation of S

�S =
1

�� − 1��N
. �10�

We are interested in the expectation value �m� and the
standard deviation �m. A single measurement yields a series
of N data points �ti�, from which the value Sj is calculated
according to Eq. �8�. Thus, with Sj we denote the outcome of
a single measurement on a system characterized by power
exponent �. Performing multiple measurements on the same
system and averaging over all measured Sj result in the av-
erage �S� given in Eq. �9�. Now, the Sj will deviate from the
average �S� with standard deviation �s given in Eq. �10�, and

we write Sj-�S�=dS. Note that ��dS�2�=�s
2. With Sj, we cal-

culate the power exponent estimate mj, for which we have
mj-�m�=dm. With mj =1+1/Sj we find

�m� + dm = 1 +
1

�S� + dS
. �11�

For the last term on the right-hand side of Eq. �11� we can
perform a Taylor expansion around �S�,

1

�S� + dS
=

1

�S�
−

dS

�S�2 +
�dS�2

�S�3 + h.o.t. �12�

Here, h.o.t. stands for higher order terms. Now, we can find
the expectation value for m by averaging over all possible dS
and using �dS�=0,

�m� = 1 +
1

�S�
+

��dS�2�
�S�3 + h.o.t. �13�

Combining Eq. �13� with the results in Eqs. �9� and �10�
and neglecting all terms of order four and higher, we arrive
at

�m� = � +
� − 1

N
. �14�

Furthermore, insertion of Eqs. �12� and �13� into Eq. �11�
yields an expression for dm, which, after squaring, averag-
ing, and again neglecting higher order terms, leads to

��dm�2� =
��dS�2�

�S�4 . �15�

Using Eqs. �9� and �10�, and �m
2 = ��dm�2�, we arrive at

an expression for the standard deviation of the power expo-
nent estimate retrieved from an N-sized data set,

�m =
� − 1
�N

. �16�

Now, in Eqs. �14� and �16� we have expressions for the
accuracy of the maximum likelihood estimate m, and its sta-
tistical error margin �m. We can see from Eq. �14� that the
maximum likelihood estimator m defined in Eq. �8� very well
approximates the true exponent �, but with an overestima-
tion that is inversely proportional to the number of measured
data points. Furthermore, the statistical error in the MLE
result exhibits the usual 1 / �N dependency.

IV. CALCULATIONS

In order to evaluate and compare the accuracy of the
MLE and LS techniques, both procedures were applied on
sets of data points following a power-law distribution with
known power exponent. To this end, we started with a series
of random numbers �xi�, uniformly distributed over the inter-
val �0, 1�. The random numbers were generated using either
a random number generator or atmospheric noise.39 Both
procedures yielded similar results. The data series �xi� was
transformed to a power-law t−� distributed series by taking32

t = x1/�1−��. �17�

204713-4 Hoogenboom, den Otter, and Offerhaus J. Chem. Phys. 125, 204713 �2006�

Downloaded 30 Jan 2009 to 130.89.112.87. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



As in Eq. �5�, we will use � to denote the power-law
exponent input to the transformation, which thus is the
“ideal” model power exponent. Similarly, the estimates
retrieved from the finite series of random numbers will be
denoted by the symbol m. Note that after the transformation
in Eq. �17�, we have tmin=1.

For evaluation of the MLE procedure a series of in total
Ntot=105 random numbers was drawn from a power-law dis-
tribution with exponent � using Eq. �17�. The estimator
mMLE was then calculated according to Eq. �8�. To investi-
gate the accuracy of mMLE as a function of data size N, the
total series was divided into Ntot /N subseries of size N. For
each subseries mMLE was calculated. One of the advantages
of the MLE procedure is that it can be performed directly on
the sequence of on and off times. In an experimental situa-
tion, however, all data are usually binned in terms of the time
resolution tmin. Both these situations will be compared and
we will refer to the MLE result on the sequence generated
using Eq. �17� as the “exact times” result. The binning was
performed by rounding the exact times series to the nearest
integer multiple of tmin and these will be denoted as the
“binned times.”

The LS procedure was similarly evaluated as a function
of N using a master series of Ntot=106. The procedure for
extracting mLS is illustrated in Fig. 3�a�. First, a frequency
histogram is constructed and normalized to assess the mea-
sured probability for the occurrence of a specific time in the
N-sized data set. As can be seen in Fig. 3�a�, the long range
of the power-law distribution leads to a three order of mag-
nitude tail in the histogram with single encounters. The
power-law exponent can now be assessed by introducing an
�arbitrary� cutoff to remove the single-event bins from the
histogram and analyzing the linear regime only, but the sta-
tistical information contained in these rare events can better
be used by calculating the corresponding probability density,
i.e., scaling the histogram data to the surrounding interval in
which there was no event.13 Clearly, from the probability
density in Fig. 3�a�, the power-law dependency and the full
range of the data set are immediately evident. The LS esti-
mator for the power exponent is now retrieved by least-
squares fitting of the log-log transformed probability density
depicted in Fig. 3�a�.

V. RESULTS AND DISCUSSION

A. Comparison between MLE and LS

Using the procedure outlined before, we have assessed
the accuracy of the MLE and LS procedures in reproducing
model power exponents as a function of data set size. In Fig.
4, we plot the distribution of power exponent estimators as a
function of data set size for both methods. In both cases, the
underlying power exponent had a value of �=1.5. For every
value of data set size N, the distribution of mLS can be seen
to be markedly broader than the distribution of mMLE. Even
more important, whereas the distribution of mMLE is correctly
centered around mMLE=1.5 for every N, the distribution for
mLS is seen to be shifted towards mLS=1.4 for all values of
N. Thus, the LS procedure underestimates the actual value of
the power exponent. This underestimation persists even up to

N=105, for which we find a MLE estimator of mMLE

=1.502. The LS result over the entire data series gives mLS

=1.42 for N=106 indicating persistent underestimation. Fur-
thermore, for exponents differing from �=1.5, similar under-
estimation in the LS estimator is found. For instance, for �
=1.2 and �=1.7, we find mLS=1.14 and mLS=1.58, respec-
tively, with N=100 and averaged over 1000 data sets.

In the example that we have given on the LS procedure
in Fig. 3�a�, the underestimation is also apparent: LS fitting
of the log-log transformed probability density gives an esti-
mator of mLS=1.37, compared to an input value of �=1.50.
We can compare the data set to both the power-law models
with �=1.50 and �=1.37, respectively, by looking at the
cumulative distributions �Fig. 3�b��. This procedure is known
as the Kolmogorov-Smirnov test, which is commonly used to
test the equivalence of two data sets or a data set and a
model.32 The cumulative distribution gives, for every value
of t, the fraction of data points with a value smaller than or

FIG. 3. �Color online� �a� Histogram and corresponding probability density
for a sequence of 50 data points drawn from a power-law distribution with
�=1.5. The dashed red line is the result of a least-squares fit of the prob-
ability density �m=1.37�; and the dotted blue line indicates an �=1.5 power
law. The bottom panel in �b� displays the cumulative distribution for the data
series in �a� �open squares� together with the cumulative distributions for
power laws with �=1.5 �blue solid line� and �=1.37 �red dashed line�. The
top panel gives the difference � between the data cumulative distribution
and both power-law cumulative distributions.
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equal to t. In the lower panel of Fig. 3�b�, the cumulative
distribution of the N=50 data series used in Fig. 3�a� is
given, together with the expected distributions for �=1.50
and �=1.37, respectively. As can be seen, the �=1.37 result
well reproduces the data cumulative distribution in the

middle region. Here we find closely spaced bins with a single
or few events and this is where the unequal distribution of
statistical noise by the log-log transformation is manifested.
For the statistically reliable first data points, as well as for
the tail of the distribution, the �=1.37 result deviates con-
siderably from the data cumulative distribution. In contrast,
the �=1.50 result better represents the behavior at the low
and high ends of the distribution. This is also apparent from
the top panel in Fig. 3�b�, where the difference � between
the data cumulative distribution and both models is given.
Whereas for �=1.37 � is bound to positive values only, �
=1.50 gives a more evenly distributed difference with a
smaller �max, indicating a larger significance32 for the corre-
spondence between data and model: for m=1.50, we have
�max=0.103 with a significance of 64%, compared to �max

=0.168 with a significance of 14% for m=1.37. Thus, from
the evolution of the cumulative distributions and �, we see
that indeed the LS result is biased by the statistical noise in
the bins with a low number of events.

The bias in the LS result can be overcome by applying a
nonlinear binning scheme in the construction of the fre-
quency histogram. In Fig. 4�c� we present the distribution of
power exponents retrieved by performing a logarithmic bin-
ning of the data followed by least-squares fitting �LBLS� of
the probability density. The distributions are, especially for
low N, markedly asymmetric, but contrary to the LS results
in Fig. 4�a�, the distribution average approaches mLBLS=1.5
for all N. Comparing the distributions in Fig. 4�c� with the
MLE results in Fig. 4�b� we can clearly see that the MLE
distributions are not only symmetric around their mean
value, but that these distributions are also markedly narrower
than the distributions of the LBLS results. Thus, the MLE
procedure appears to have smaller statistical error margins
than the LS method.

In order to better illustrate the differences between MLE,
LS, and LBLS results in Fig. 4, we directly compare the
distributions of mMLE, mLS, and mLBLS retrieved from evalu-
ating 500 �MLE� and 5000 �LS, LBLS� data sets of N=200
data points each. This comparison is given in Fig. 5. The bias
in the LS results is again clearly visible, while the MLE
results are centered around �=1.50. The LBLS removes the
bias in the LS result, but maintains the asymmetry and width
of the LS distribution. Thus, apart from a better convergence
of MLE results towards the correct power exponent, the
MLE results also have a reduced statistical error.

In Fig. 6, we show the average estimator as a function of
data set size for both estimation procedures in red. Again, the
bias in the LS results is clearly visible, and more importantly,
it can be seen that with increasing data set size, the average
power exponent estimator diverges from the actual model
parameter �=1.50. The use of logarithmic binning removes
this underestimation and the LBLS average estimator shows
slight deviations from �=1.50, around 0.01 in magnitude,
for all N investigated. In Fig. 4�c� we have seen that the
distribution of mLBLS estimators is asymmetric around the
distribution maximum, especially for the smaller data set
sizes. Here, we see that the LBLS distribution average
closely reproduces the value of �=1.50 even for small N,
while in Fig. 4�c� the distribution maximum for, e.g., N=50

FIG. 4. �Color online� �a� Distribution of the power exponent estimators
retrieved via least-squares �LS� fitting of the log-log transformed probability
distribution as a function of data set size N �N given in the legend�. In total
106 data points were drawn from a power-law distribution with exponent
�=1.5. ��b� and �c�� Similar distributions for power exponent estimators
retrieved with �b� maximum likelihood estimation �MLE� and �c� logarith-
mically binned least-squares fitting �LBLS�. Note that the largest two values
of N in �a� are an order of magnitude larger than in �b� and �c� to highlight
the persistent underestimation in LS estimators.
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is found to be around m=1.41. Thus the values retrieved with
LBLS are spread over a wide range and, as we will see
below, this indeed leads to a considerable statistical error in
the LBLS result.

The average estimator retrieved with MLE on the other
hand, rapidly and consistently converges towards 1.50 with
increasing data set size. For data sets containing as few as 50
data points, the average exponent retrieved with MLE shows
a slight, about 0.5%, deviation from the model value. This
deviation is manifested as a slight overestimation, in line
with the analytical result in Eq. �14�. Apart from the fact that
the overestimation is as small as 0.5% for N=50, we can also
see in Fig. 6 as well as in Eq. �14� that it rapidly decreases to
zero with increasing data set size. We will compare the nu-
merical results in more detail to the analytical expressions in

Eqs. �14� and �16� in Sec. V B. Here, we will focus on the
comparison between MLE, LS, and LBLS procedures.
Clearly, the MLE procedure constitutes a more reliable esti-
mation technique for extracting power-law blinking expo-
nents than LS fitting of the logarithmically transformed prob-
ability density.

Apart from the average retrieved exponents, also indi-
cated in Fig. 6 are the standard deviations of the distributions
of mMLE, mLBLS, and mLS. These constitute a measure for the
statistical error in these procedures as a function of data set
size. While we have seen before that the LBLS yields, on
average, a more accurate estimation of the true power expo-
nent than LS, here we see that the error in the mLBLS values
is similar to or larger than that in the mLS values. For both
these procedures the error margins are consistently two to
three times larger than for the MLE procedure. With the
MLE technique, we see that the result is already reliable up
to the first decimal for data set size as small as N=50. Fur-
thermore, we can see that the statistical error for mMLE con-
verges an order of magnitude in data set size faster to zero
than for mLS. Thus, we conclude that the MLE procedure is
superior in retrieving the correct model exponent and reduc-
ing the statistical error involved in the estimation.

B. MLE accuracy and error margins

We now investigate the MLE accuracy in more detail.
One of the advantages of the MLE procedure is that it can be
performed directly on the “exact times” sequence, while the
LS methods need additional binning in the construction of a
probability density function. In practice, however, experi-
mental data are binned by the time resolution tmin and this
binning will influence the MLE.29 We want to stress that this
binning procedure is inherent to the experimental situation
and that the LS and LBLS procedures would still need addi-
tional binning in construction of the probability density.

In Fig. 7, we present the results of MLE calculations on
“binned times” sequences. The binned times MLE result is

FIG. 5. Direct comparison of the distribution of power exponent estimators
m retrieved with maximum likelihood estimation �MLE� �squares, solid
line�, least-squares fitting �LS� �triangles, dashed line�, and logarithmically
binned least-squares fitting �LBLS� �circles, dotted line� of data sets of size
N=200 random numbers drawn from a power-law distribution with �=1.5.
The distribution of MLE estimators is considerably narrower and more sym-
metric around 1.5 compared to the LS and LBLS distributions. The distri-
bution of LS estimators displays a clear underestimation.

FIG. 6. �Color online� Average power exponents �left axis and red solid
lines� retrieved with LS �triangles�, LBLS �squares�, and MLE �circles� as a
function of the number of data points. The LS results show a persistent,
diverging underestimation, whereas the MLE results converge to the under-
lying exponent of �=1.5. Standard deviation �right axis and blue dashed
lines�, or statistical error, of the exponents retrieved with LS �triangles�,
LBLS �squares�, and MLE �circles�. The error margins in LS and LBLS
procedures are comparable, while the MLE procedure yields considerably
smaller error margins.

FIG. 7. �Color online� Comparison of the average power exponents �left
axis and red solid lines� retrieved with the MLE procedure on series of
binned times �down triangles� to the MLE result on exact times �circles�,
and the LBLS result �squares�. As a result of binning, a slight, 0.01 overes-
timation compared to the “exact times” MLE results is introduced. This
effect is comparable to the offset in the LBLS results. Standard deviation
�right axis and blue dashed lines�, or statistical error, of the exponents re-
trieved with MLE on “exact times” �circles� and “binned times” �down
triangles� and with LBLS �squares�.
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seen to follow the same consistent convergent behavior upon
increasing data set size as the exact times MLE but with a
small additional overestimation. The deviation from the ac-
tual exponent �=1.5 is comparable to the LBLS result. The
statistical error in the binned times MLE result is, however,
hardly affected by the binning and, thus, like the exact times
MLE result, considerably smaller than with the LBLS proce-
dure. As with the exact times result, the power exponent is
already correctly estimated up to the first decimal for data set
size of N=50.

Before, we have seen that the statistical error margins
are particularly important for data set size below N=1000.
All investigations thus far have been performed for power-
law distributions with exponent �=1.5. We will now inves-
tigate the accuracy and error margins of the MLE procedure
as a function of the power exponent and compare the nu-
merical results with the analytical expressions in Eqs. �14�
and �16� derived before. For � ranging from 1.1 to 3.0, we
have applied the same procedure as before and thus deter-
mined the distribution of retrieved exponents mMLE for data
set size N=50, 100, 200, and 400, respectively. First, we will
focus on the results of exact times sequences.

The relative deviation of the average �m� with respect to
� is depicted in Fig. 8�a�. There is a small overestimation for
almost all � that grows with increasing �, but this remains
below 1.5% even for the smallest data set size of N=50. This
overestimation is very well represented by Eq. �14�, the re-
sults of which are indicated in Fig. 8�a� by the solid lines.
When the number of data points increases to above 100, this
overestimation rapidly decreases to below 0.5% for all � and
thus becomes nearly negligible.

In Fig. 8�b�, we show the relative full width at half maxi-
mum of the distribution of power exponent estimates, again
as a function of both � and N. This provides a measure of the
statistical error of the MLE procedure. We observe an in-
crease of the relative error with increasing �, but again, the
errors remain relatively small, below 10% for data set size as
small as 50 points, and furthermore, rapidly decrease with
growing data set size. Like the result for the overestimation
of �, the statistical errors retrieved from our calculations
smoothly follow the result obtained from Eq. �16�, which is
indicated by the solid lines. For the smallest value of � in-
vestigated, �=1.1, we observe a slight increase in the statis-
tical error for a larger data set size together with a deviant
underestimation. This is probably due to the increased prob-
ability of observing events in the tail of the power-law dis-
tribution. In any case, for this �, the underestimation and the
statistical error are, in absolute values, limited to −0.006 and
0.02, respectively, which will in general be negligible com-
pared to measurement errors.

The results for binned times sequences are displayed in
Fig. 9. With respect to the accuracy of the average estimator
in Fig. 9�a�, we again observe the overestimation of the
power exponent due to the data binning. For values around
�=1.5 this overestimation remains relatively small, about
1% of the power exponent, and comparable to the analytical
result for the exact times series. For increasing above �
=1.6 the overestimation in the binned times result grows
more rapidly than for the exact times, but remains limited to

at maximum 3% for �=2. With � rising above �=2, this
overestimation rapidly increases from about 8% for �=2.5
up to almost 15% for �=3.0. This behavior is intrinsic to the
binning process as it is seen to be hardly dependent on the
data set size. Regarding the power-law blinking of single
emitters, most data and models reported so far indicate
power exponents in between �=1.0 and �=2.0. The overes-
timation by MLE in this range remains below 3%, which is
negligible compared to the bias in the LS estimator observed
before and comparable to the fluctuating bias in the LBLS
estimator.

Next, we turn to the relative statistical error in the
binned times MLE results, which is depicted as a function of
� in Fig. 9�b�. Comparing the binned times results with the
exact times results in Fig. 8�b�, we can see that the two
figures mainly differ for ��2.0. For the exact times result
we observed a flattening of the growth of �m /� in this region
corresponding to the �1−�−1� dependency that results from
Eq. �16�, while for the binned times �m /� increases almost
in linear dependency with �. For the range of 1.0���2.0,
which is most relevant for blinking chromophores, however,
the differences between the error margins of the exact times

FIG. 8. �Color online� �a� Relative accuracy and �b� relative statistical error
of the MLE procedure as a function of power-law exponent � for different
data set sizes N. The results have been retrieved on data sets consisting of
exact times. The graphs provide an estimate of the accuracy and the error
margins of an estimated power exponent. The solid lines indicate the ana-
lytical results from Eqs. �14� and �16�, respectively.
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estimator and the binned times estimator are negligble, cor-
responding to the observations for �=1.5 in Fig. 7. For both
exact times as well as for binned times, the relative standard
deviation of the estimators remains below 8% for N=50 and
below 5% for N=200. Thus, we see that the observations
made for �=1.5 on the accuracy and reliability of the MLE
procedure hold for the range of 1.0���2.0 and can to good
approximation be represented by the analytical expressions
in Eqs. �14� and �16�. Care should be taken for values �
�2.0, where the overestimation due to data binning as well
as the statistical error margins rapidly increase and an assess-
ment of their magnitude, as presented here, becomes indis-
pensable in the interpretation of retrieved power exponents.

C. Assessment of power-law behavior

Finally, we want to note on the use of the maximum
likelihood estimator derived in this paper and the assessment
whether or not the data set actually obeys a power-law rela-
tionship. One of the aforementioned advantages of the MLE
procedure is that the calculation given in Eq. �8� can be

easily performed directly on the data set, contrary to LS pro-
cedures. However, this calculation will have an outcome for
any underlying distribution and although many distributions
will render results that are far off with respect to the ex-
pected range of power exponents ���1.5�, the maximum
likelihood estimator in itself does not prove whether or not
data are actually distributed according to a power-law model.
This can be illustrated with a single-exponential �SE� distri-
bution P�t��e−	t, for which it can be easily seen that Eq. �8�
gives results around 1.5 if 	� 1

3 . The significance of the
power-law behavior can be separately assessed by evaluation
of the probability density, as in Fig. 3�a�, or by applying a
Kolmogorov-Smirnov test, as in Fig. 3�b�. In the evaluation
of a large amount of data sets these procedures, however,
become quite laborious. Here, we want to present a simple
mathematical procedure that in these circumstances can be
applied to quickly detect possible deviations from the power-
law model.

Taking a closer look at Eq. �8�, we see that the last term
on the right-hand side is equivalent to the expectation value
�ln�t�� over a power-law distribution, where t= ti / tmin denotes
the measured time scaled to the time resolution. Equiva-
lently, we can derive expressions for the expectation values
of a variety of other data functions, provided that these
expectation values yield a finite result over the power-law
distribution. An example of such a function is t−k, for which
we can derive

�t−k� =
�1

�
−k
−�d


�1
�
−�d


= 1 −
k

k + � − 1
. �18�

With Eq. �18� we find an estimator mk for � that can be
calculated by evaluating the expectation value �t−k� over the
data set,

mk = 1 − k −
k

�t−k� − 1
. �19�

In the case of power-law behavior Eq. �19� gives a result
comparable to mMLE, while for other data distributions the mk

rapidly run to values an order of magnitude different from
mMLE. In Fig. 10 we show the average estimator �mk� re-
trieved by evaluating 2000 random power-law distributed se-
quences of size N=50. For k=0 we list the result for �mMLE�.
The �mk� on exact times sequences give results similar to
�mMLE�, and, in fact, the slight overestimation in the MLE
result for N=50 is found to decrease for �mk� with increasing
k. This is due to the fact that the mk estimator, because of its
t−k dependency, is less sensitive to undersampling in the tail
of the distribution. For the binned times data series, the av-
erage mk estimators for increasing k gradually rise with re-
spect to the MLE result and we observe a similar behavior
for the standard deviation, which rises to about 10% for
k=5. For the exact times series, the behavior of the mMLE

with respect to the sequence of mk provides a unique indica-
tion for power-law behavior: for other distributions, includ-
ing the 	= 1

3 SE distribution mentioned above, either the
MLE result or the sequence of mk estimators give widely
differing values. For a SE distribution it can, e.g., be easily

FIG. 9. �Color online� �a� Relative accuracy of the MLE procedure applied
to sequences of binned times. The overestimation of the power exponent due
to the use of binned times is persistent for each data set size and rapidly
increases for ��2. The black solid line indicates the theoretical result for
“exact times” for N=50 �following Eq. �14��. �b� Relative statistical error in
the MLE procedure on binned times. The solid lines indicate the theoretical
relative standard deviation �Eq. �16�� for exact times for N=50 �black�, 100
�green�, 200 �red�, and 400 �blue�. Compared to the exact times result, the
statistical error is mostly affected by the binning procedure for ��2.
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seen that the sequence of mk rapidly decays to mk=1, irre-
spective of the value of mMLE.

For the binned times, the situation more commonly en-
countered in experiments, the ability of the mk estimators to
detect power-law behavior is less straightforward because of
the less consistent behavior of the sequence of mk estimators
and their increasing standard deviation observed in Fig. 10.
Here, however, most distributions again show very different
behavior from the typical power-law behavior illustrated in
Fig. 10. In these situations, either mMLE or the mk sequence
display values differing over an order of magnitude, while
the power-law distribution shows an upward trend bounded
approximately to mMLE+1. This bounded upward trend is
illustrated in Fig. 11 for five different random “binned” data
sets �N=50� for an �=1.5 power law. Also indicated in Fig.
11 is the behavior of five random data sets from a SE distri-
bution with 	= 1

3 . As can be seen, the MLE �k=0� results on
both distributions are similar for all data sets. For the se-
quence of mk estimators on the five SE distributed data sets,
we observe a rapid and consistent decay to mk=1 with in-
creasing k for all data sets. This behavior is typical for SE
distributions. The power-law data sets, on the other hand,
show the typical rising behavior that was indicated by the
averages in Fig. 10. Thus, calculation of a short sequence of
mk estimators together with the maximum likelihood estima-
tor can serve as a fast check for the assumption of power-law
behavior, without the need to evaluate the graphical appear-
ance of a probability density. This can be particularly benefi-
cial when large amounts of single-emitter data sets are to be
evaluated, or when subsets in a large power-law distributed
data set are to be evaluated, e.g., to check on dynamic effects
or temporary transitions to single-rate, i.e., single-
exponential, behavior.

Apart from deviations of the data distribution from
power law to, e.g., SE, there may be physical constraints that
limit the range of on- and off-time durations over which a

power-law dependence can be observed. For instance, in the
case of fluorescence blinking, fast triplet transitions, charac-
terized by microseconds time scale SE kinetics,3,11,12 will
give deviations from power-law behavior at short time
scales. For semiconductor nanocrystal blinking it has been
reported that the on-time distribution can exhibit cutoff at
large times.7 If included in the data analysis, these phenom-
ena will lead to erroneous results in the MLE procedure.
Detection of these constraints still requires �visual� inspec-
tion of the on- and off-time probability densities and subse-
quent selection of the appropriate range over which power-
law behavior is observed. With respect to short time scale
triplet blinking, this can simply be done by applying a mil-
lisecond time scale binning to the intensity trace, thus aver-
aging out all triplet kinetics �cf. Fig. 1�.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed the accuracy of estima-
tion routines for extracting the power exponents from power-
law distributed data such as single-emitter blinking times.
Sequences of power-law distributed random numbers were
generated and the power exponent was estimated by least-
squares fitting of the log-log transformed probability density
and by using a maximum likelihood procedure. We have
demonstrated that least-squares fitting exhibits a severe un-
derestimation of the actual power exponent. This underesti-
mation can be circumvented by applying a logarithmic bin-
ning scheme prior to construction of the probability density
or by using the maximum likelihood procedure. The maxi-
mum likelihood procedure already correctly predicts the
power exponent for data set size as small as 50 numbers and
was found to be superior in both estimating the correct
power exponent as well as in reducing the statistical error.
Furthermore, this procedure involves only a simple summa-

FIG. 10. �Color online� Results of the maximum likelihood estimator �at
k=0� and the mk estimators based on evaluation of �t−k� following Eq. �13�
applied to 2000 series consisting of N=50 data points. Average power ex-
ponents �left axis, red solid lines� and statistical errors �right axis, blue
dashed lines� in the kth estimator on series of “exact times” are indicated
with circles, whereas results on “binned times” with up triangles. For exact
times, the mk estimators give equivalent results as the MLE procedure. For
binned times, there is an upward trend in the estimator with increasing error
margins.

FIG. 11. �Color online� Result for the mk estimators for five series each
consisting of N=50 “binned” random numbers drawn from a power-law
�PL� distribution with �=1.5 �black dashed lines� and five series from a
single-exponential �SE� distribution with 	=1/3 �red solid lines, all five
curves fall on top of each other�. At k=0 the MLE result is indicated.
Despite the overlap in the MLE result for both distributions, the trend over
the mk estimators is markedly different. An increase in the values for the mk

estimators for k running from k=0 to k=5 of at maximum about +2.0 is
indicative of power-law behavior.
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tion, given in Eq. �8�, over the series of �power-law distrib-
uted� data points and can thus be performed in an easy and
fast way.

For the maximum likelihood procedure, we have nu-
merically and analytically investigated the accuracy and er-
ror margins of the estimation result as a function of both data
set size and power exponent. For data consisting of “exact
times,” these results are displayed in Fig. 8, and the analyti-
cal expressions are given in Eqs. �14� and �16�. We observed
a very good correspondence between the numerical data and
the analytical expressions. For a data set size as small as 50
numbers there is a slight overestimation of the power expo-
nent, which increases when the exponent increases. This
overestimation decays as 1/N with data set size N and its
magnitude can be evaluated using Eq. �14�. For N=50, the
overestimation is less than 1% for power exponents in be-
tween �=1.0 and �=2.0, and becomes negligible when the
data set size increases to above 100 numbers.

For “binned times,” i.e., data limited by a finite experi-
mental time resolution, the numerical results are displayed in
Fig. 9. Using Eqs. �14� and �16�, together with Figs. 8 and 9,
the accuracy and error margins of experimentally obtained
power exponent can be evaluated. For binned times there is
an additional small overestimation of the power exponent by
about 2% for all data set sizes, which rapidly increases for
��2.0. The statistical error in the maximum likelihood re-
sult for 1.0���2.0 is below 8% for a data set size of only
50 numbers and decays further to below 5% for 200 num-
bers. For ��2.0 the statistical error margins for binned data
can to good approximation be evaluated using the exact
times result of Eq. �16�.

Using maximum likelihood estimation it should be
readily possible to determine blinking exponents up to first
decimal even when data set size is limited, e.g., due to pho-
tobleaching of organic fluorophores. Power-law blinking in
the fluorescence of organic molecules has only recently been
reported, its detection being seriously hindered by the low
amount of observable long-time scale events before pho-
tobleaching. So far, data have been mainly analyzed by add-
ing blinking data from multiple molecules.9,12,20

The maximum likelihood procedure presented here can
be used to investigate this phenomenon at the level of single
emitters.36 Furthermore, given the relative error margins pre-
sented in Fig. 9�b�, one can establish whether a distribution
of exponents retrieved from several single emitters is homo-
geneous, i.e., exhibits a universal value of �, or is heteroge-
neous. Recently, there have been indications that in quantum
dot blinking the on state is not adequately described by a
simple one state picture, but rather consists of multiple or
even a continuous distribution of on states characterized by
different luminescence intensities and lifetime levels.15,40

The different on states then result from different charge dis-
tributions surrounding the quantum dot. The multitude of on
states then explains the power-law dependence observed
when a simple two state on/off model is applied to the inten-
sity trace. We want to note that it is this resulting power-law
behavior that can be evaluated using the MLE procedure.
Only when multiple levels can be unambiguously defined
can the MLE procedure be applied to analyze the distribution

of durations of each of these levels. Dynamic effects in the
power-law distribution could be probed by applying the
MLE procedure to small subsets in the intensity trace and
comparing the width of the distribution of retrieved expo-
nents to the calculated distributions presented here. Finally,
we want to note that data in many other research areas ex-
hibit power-law frequency distributions such as links and site
sizes on the world wide web,41 baby name giving,42 human
dynamics,43 journal references,44 and earthquake data.45 The
results presented above can be applied in the study of any
system displaying power-law behavior.
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