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Abstract

In this paper we consider an installed base of k-out-of-N systems, each consisting of identical, repairable components.

A block replacement policy is used to maintain each system and all components are repaired by a single repair shop.

System maintenance consists of replacing all failed and degraded components by spares. We focus on the downtime

resulting from the lack of spare parts. The control variables that influence the system availability are the maintenance

interval, the spare part inventory level and the repair capacity. We present two approximate methods to analyse the

relation between these control variables and the system availability. Comparison with simulation results shows that we can

generate nearly accurate approximations for the system availability using one of these models, depending on the system

size. The average errors are found to be between 0.1% and 4.3%, compared to simulation. We found that the errors

become smaller when the installed base increases and the number of system components becomes larger.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Today’s technological systems like aircraft, mili-
tary or medical equipment are becoming more
complex. At the same time, the users demand a
very high availability which can be achieved in
several ways. First, redundancy of critical compo-
nents can be included in the system design. Second,
the system downtime can be minimised using
efficient and effective maintenance. To this end,
repair-by-replacement of failed components and
e front matter r 2006 Elsevier B.V. All rights reserved
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modules is useful. Failed components are replaced
by spares and repaired off-line. Because many
components of technically advanced systems are
(very) expensive, it is often profitable to repair them
instead of scrapping them. Therefore, the main-
tenance time is influenced by the number of spares
and the repair shop capacity. We have a trade-off:
the need for spares is reduced (reducing costs) using
sufficient repair capacity (increasing costs) and the
other way round. Also the preventive maintenance
policy is relevant. Frequent preventive maintenance
is costly (e.g. due to set-ups), reduces the risk of
system failures and causes a more steady workload
of failed components to the repair shop, yielding
shorter throughput times (thereby reducing the need
for spares and costs). The throughput times through
.
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a repair shop can also be reduced using a proper
repair job scheduling mechanism (priority setting).

We see that the system availability is influenced in
many ways, and that it is important to balance control
variables like the amount of spares, maintenance
frequency, repair shop capacity and repair shop
scheduling. Until now, little research has been done
about such integral trade-offs. In this paper we present
a model to analyse these relations for an installed base
of identical k-out-of-N systems sharing spares and
repair capacity. A k-out-of-N system consists of N

identical components of which at least k components
are needed for a functional system. We focus on
quantitative modelling and analyse the relation
between control variables and system availability.

Fig. 1 shows two examples of systems that we
consider in this paper. The one on the left is the
Active Phased Array Radar (APAR), which consists
of four sides, so called faces. Each face consists of
several thousands of transmit and receive elements.
Not all these elements have to be functioning in
order to have the radar functioning. Therefore, this
system can be considered as a k-out-of-N system.
To give an indication, the APAR is approximately a
2700-out-of-3000 system. The Royal Netherlands
Navy has multiple ships equipped with this radar.
Therefore, there is an installed base sharing the
same spares and repair capacity. This is also valid
for the second system (Fig. 1 on the right), the
Active Towed Array Sonar (ATAS). It consists of
several tens of hydrophones used to detect objects
beneath the water surface (like submarines). Not all
Fig. 1. Left: the Active Phased Array Radar system.
hydrophones need to be functional to have the
system functioning. To give an indication, we say
this is a 58-out-of-64 system.

In this paper, we present approximation methods
to set the maintenance interval, number of spares
and repair capacity simultaneously for systems with
and without component wear-out. In the case
without component wear-out, a component is either
working or failed (e.g. electronical components). We
use exponential distributions for the component
failure times, which are appealing because of their
memoryless property. In case of component wear-
out, we define component states: working, degraded
and failed. Consider for instance the transmit and
receive elements of the APAR. Components are
fully operational if they can send and receive
signals. If one of these functions fails, we call a
component degraded, and failed if both functions
fail. We assume that a component has an exponen-
tially distributed time to move from ‘‘working’’
state to ‘‘degraded’’ state and an exponentially
distributed time to move from ‘‘degraded’’ state to
‘‘failed’’ state.

Most literature about maintenance models only
look at the maintenance policy, see e.g. the survey of
Wang (2002). Usually, spares and repair capacity
are assumed to be available and the relevant
decisions concern only the maintenance policy such
as intervals for inspections, maintenance (perfect,
minimal, imperfect) and replacements, see e.g.
(Abdel-Hameed, 1995). Sometimes, the action taken
depend upon the number of failures as in the model
Right: the Active Towed Array Sonar system.
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presented by Love and Guo (1996) with Weibull
failure rates.

There is only a limited amount of literature that
mentions the importance of integrating the mainte-
nance strategy with spares and repair capacity (e.g.
Gross et al., 1985; Dinesh Kumar et al., 2000) but do
not present a quantitative model. Bahrami-G et al.
(2000) present a model to find the optimal length of
the maintenance interval for equipment that deterio-
rates in time. However, dependency on the number of
spares or repair capacity for the maintenance duration
is not taken into account. Spare provisioning policy
has been taken into account simultaneously with the
maintenance policy by e.g. Kabir and Al-Olayan
(1996), Kabir and Farrash (1996) and Park and Park
(1986). In their models, maintenance strategy is an age
based one and components are non-repairable.
Chiang and Yuan (2001) for instance try to find an
optimal inspection period combined with the best
replenishment period and stock level. Brezavšček and
Hudoklin (2003) present a model with a joint
optimisation of a block replacement maintenance
policy and spare parts policy. Again, the components
are not repairable, which is encountered in most
models that concern joint optimisation of a main-
tenance policy and a spares provisioning policy. The
repair shop is obviously not modelled. In De Smidt-
Destombes et al. (2004) a similar model is presented
for a single system with no component wear-out under
a condition based maintenance strategy. A closely
related model is described in De Smidt-Destombes
et al. (2006) considering one system with component
wear-out. Compared to the last two models, this paper
considers a block replacement policy instead of a
condition based maintenance policy. The second
difference is that the two models mentioned have
spares and repair capacity for only a single system. In
this paper, we consider several systems sharing spares
and repair capacity. For a recent overview of
repairable spare parts inventory analysis under finite
repair capacity, we refer to Sleptchenko et al. (2002).

The outline of this paper is as follows. We start with
the notation and the description of the basic model
with no component wear-out (i.e. exponential time to
failure) and exponential repair time of components in
Section 2. In Sections 3 and 4, we, respectively,
address the analysis of the model without component
wear-out and with component wear-out. Section 5
shows the results of these approximation models
compared with results of discrete event simulation.
We end this paper with some conclusions and
possibilities for further research in Section 6.
2. Notation and model description

2.1. Notation

Throughout this paper we use the following input
parameters:
k
 minimum number of system
components needed
N
 total number of system
components
c
 repair capacity

S
 total number of spares

T
 interval between two succeeding

maintenance arrivals

M
 size of the installed base

l
 component failure rate (without

wear-out)

l1
 transition rate from state 0 to 1

(with wear-out)

l2
 transition rate from state 1 to 2

(with wear-out)

m
 component repair rate (without

wear-out)

m1
 repair rate from state 1 to 0

(with wear-out)

m2
 repair rate from state 2 to 0

(with wear-out)
The next random variables are used:
UðtÞ
 operational time of system with
maintenance interval

tð¼ minf eU ; tgÞ
eU
 system time to failure
D
 maintenance time

D�
 time to system failure

b
 probability that maintenance

time is larger than 0

Ai
 number of components in state

i ð¼ 0; 1; 2Þ at system arrival

Bi
 number of spares in state i ð¼

0; 1; 2Þ at system arrival
Notation for random variables used for the model
without component wear-out:
RðnÞ
 time needed to repair n

components

ZðtÞ
 number of repairs during

time t
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Notation for random variables used for the model

with component wear-out:
B
 total number of spares that need
repair ð¼ B1 þ B2Þ
Tði; jÞ
 time for the system transition
from state ðN; 0; 0Þ to
ðN � i � j; i; jÞ
RiðnÞ
 time needed to repair n

components from state
i ð¼ 0; 1; 2Þ
W i
 number of repairs during
maintenance of type i ð¼ 0; 1; 2Þ
ZiðtÞ
 number of type i repairs during
time t
2.2. Model description

We consider an installed base of M identical k-out-
of-N systems with hot stand-by redundancy. Hot
stand-by redundancy means that all components,
even the ones that are strictly not necessary, are
operational and are therefore subject to failure with
the same failure rate. Each component fails accord-
ing to an exponential distribution with a failure rate l
per time unit. We assume that each system is
maintained with a fixed maintenance interval of
length T. In other words, we use a block replacement
policy with no action taken if the system fails before
its maintenance period. We assume that when a
system has failed and less than k components are
working, the system is not shut down. As an
example, consider the APAR that can still work if
less than 2700 out of the 3000 transmit-and-receive
elements are available, although the performance is
inferior (but better than nothing). Therefore, the
components are still subject to failure after system
failure. During maintenance, all failed components
are replaced by spare components. The total number
of spares for the installed base equals S. The
components are repairable and are processed by a
single repair shop with c identical, parallel repair
channels. If the number of functional spares is
insufficient to replace all failed components, the
maintenance period is extended with the time needed
to restore the lacking number of components. Repair
of a failed component is exponentially distributed
with a repair rate m per time unit. The maintenance
time, D, only consists of the waiting time for spares.
We neglect the replacement time of components.

In Fig. 2, we show the various cycles that we
distinguish when modelling the system. We have a
cycle for each system in the installed base, defined as
the period between two consecutive arrivals of the
same system at the repair shop for maintenance (a
fixed period with length T), and a repair shop cycle,
defined as the period between the arrivals of two
consecutive systems (a fixed period with length T

M
).

Both cycles start just before a system arrives for
maintenance. The figure shows an example with an
installed base M ¼ 3 systems. The availability of
each system is defined as the uptime of the system
divided by the uptime plus the downtime, which
equals T�D

T
if no system failure occurs during the

operational time. Taking into account system fail-
ures and defining UðT �DÞ as the uptime during
T �D, the availability equals:

Av ¼
E½UðT �DÞ�

T
. (1)

The maintenance duration D depends on the
number of failed system components and the number
of spares available at the start of maintenance as well
as the repair capacity. Assuming that the failure rate
and repair rate are known, we can control the system
availability by the cycle length T, the number of
spares S and repair capacity c.

For the analysis of this system, queueing models
seem to be suitable at first sight. The repair shop can
be modelled as a multi-server queue with batch
arrivals, similar to the DX=M=c queue. The time
between the arrivals of batches is deterministic
(equal to T

M
) and the number of components in each

batch is a random variable that, unfortunately,
depends on the system uptime T �D and is
therefore dependent on the repair shop perfor-
mance. If the repair shop is highly utilised, the
maintenance duration D increases, so the system
uptime T �D decreases and so the work offered to
the system decreases. Theoretically, it is even
possible that D4T , and then there are no failed
components offered to the repair shop M � 1 repair
cycles later. As a consequence, the system is always
stable having a utilisation of at most 1. Of course,
the system availability is very low if the repair shop
capacity is low. We also observe that it is not
straightforward to estimate the repair shop utilisa-
tion in advance because of the relation between
repair shop capacity and component arrival rate.
Therefore, we have to use our approximations or
simulations to estimate the repair shop utilisation.
We conclude that the repair shop can be modelled
as a non-standard queueing system for which no
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Fig. 2. A schematic representation for an installed base consisting of three systems.

maintenancemaintenancemaintenance repairs repairsrepairs maintenancemaintenance repairs repairsrepairs maintenance

Arrival system 1 Arrival system 2 Arrival system 3 Arrival system 1 Arrival system 2 Arrival system 3

Repair shop:

Systemfailures :

Failed spares

System 1:

A1

B1

A1’

B1’

maintenance maintenance

A1 larger D larger T-D shorter A1’ smaller

D T-D

Correlation

Correlation

Fig. 3. Arrivals at the repair shop for an installed base of three systems.
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suitable results are available in the literature to the
best of our knowledge.

As another option, it seems to be logical to use
renewal theory. However, we face the complication
that consecutive system cycles are (possibly heavily)
correlated, which induces correlations between
repair shop cycles as well. We can explain this using
Fig. 3 as follows. A k-out-of-N system arrives every
T time units for maintenance. Maintenance is
finished as soon as sufficient ready-for-use compo-
nents are available to replace all failed components,
which takes some time D (where D ¼ 0 if the
number of functional spares is sufficient to replace
all failed components immediately). The operational
time in the next system cycle equals the time until
the start of the next system maintenance, T �D.
Now suppose that the system has more failed
components than average, upon arrival for main-
tenance at the repair shop in the first system cycle.
Then the maintenance duration D will probably be
longer than average and so the operational time in
the next cycle T �D will be shorter than average.
As a consequence, the number of failed components
will be less than average when the system arrives
again at the repair shop for maintenance in the
second system cycle. Hence, we expect a negative
correlation between the number of failed system
components at the start of two consecutive system
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cycles for the same system in the installed base.
From Fig. 3, we see that this also means a negative
correlation between repair shop cycles, because the
start of a cycle for each system in the installed base
coincides with the start of a repair shop cycle. So,
we expect a negative correlation between the
number of failed components arriving at the repair
shop in one cycle and the number of failed system
components arriving M repair shop cycles later.
This correlation is very hard to quantify. Therefore,
we ignore this correlation in our model and assume
that both the repair shop cycles and the system
cycles are mutually independent. In the numerical
section, we see to which extent this assumption has a
significant impact on the accuracy of our approx-
imations by comparison to results from discrete
event simulation.

In the next sections, we focus on the approxima-
tion of E½UðT �DÞ� given the independence as-
sumption as stated above. In Section 3, we address
the simple case without component wear-out (the
component time to failure is exponentially distri-
buted). We derive a set of stochastic equations for
the maintenance duration D. We present two
approximation methods to solve the system of
equations for D based on the first two moments of
the key random variables involved. The first
approximation is based on continuous probability
distributions (particularly suitable for large systems)
and the second approximation is based on discrete
probability distributions (particularly suitable for
small systems).

In Section 4, we extend our model to include
wear-out.
3. Analysis without component wear-out

As stated in Section 2.2 we need to determine the
expected uptime UðT �DÞ of the system during the
operational time T �D. In the remainder of this
paper, we simply use the shorthand notation U. If
the system is still operational when it arrives for
maintenance (i.e. the number of failed components
is at most N � k), we have that U ¼ T �D.
However, if the system fails before maintenance
starts, the uptime equals the time until system
failure. Let us use eU to denote the system time to
failure if there is no maintenance. Then we can write
U ¼ minfT �D; eUg. It is easy to find eU as we show
at the end of Section 3.1. The unknown variable we
focus on first is the maintenance duration D. Before
we do so, we give a list of the assumptions we use
throughout this section.
1.
 All components have the same exponentially
distributed time to failure.
2.
 The failure behaviour of the components is
independent of each other.
3.
 There are no component failures during main-
tenance activities, as the system is down.
4.
 During maintenance all servers c are continu-
ously busy (which is always true when the
number of servers is less than the number of
spares).
5.
 The same assumption is made for the time
between two system arrivals.
6.
 Consecutive system cycles are independent.

7.
 Consecutive repair shop cycles are independent.

Now let us derive stochastic equations for the
maintenance duration D based on the repair shop
cycle. We define A1 as the number of failed
components in the system that arrives for main-
tenance at the start of the repair shop cycle. Also,
we define B1 as the number of failed components
waiting for repair at the start of the same repair
shop cycle, see Fig. 3. If there is no other system in
repair, we have that B1pS. If at least one other
system is still in repair, B14S (all spares are failed
and there are some additional failed components
from systems that arrived in the preceding repair
shop cycles that have not been repaired yet). If
A1 þ B1pS, the number of ready-for-use spares is
sufficient to replace all failed components immedi-
ately and hence the repair time is zero. If
A1 þ B14S, the maintenance duration equals the
time needed to restore A1 þ B1 � S failed compo-
nents. Denoting the time to restore X components
as RðX Þ and using the notation Xþ ¼ maxfX ; 0g for
any variable X , we write for D

D ¼ Rð½B1 þ A1 � S�þÞ. (2)

We find a stochastic equation for B1 (using
assumption 4) by noting that the number of
failed components at the start of a repair cycle
equals the number of failed spares from the previous
cycle plus the number of failed components
from the system that arrived the previous cycle
minus the number of spares restored between
the two system arrivals (repair cycle with length
T
M
). In a stable situation, the probability distribution

of B1 should be identical at the start of all repair
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cycles. So if we define ZðX Þ as the number of spares
repaired during a period with length X, we find the
stochastic equation

B1 ¼ B1 þ A1 � Z
T

M

� �� �þ
. (3)

Next we have A1, which is the number of failed
system components during T �D

A1 ¼ number of failed components during T �D.

(4)

Conditioning on T �D, A1 has a binomial
distribution with parameters N and 1� e�lðT�DÞ,
because the probability of a component failure
during T �D equals 1� e�lðT�DÞ.

In theory, we can find the probability distribu-
tions of A1, B1 and D by solving the set of stochastic
equations (2)–(4). Unfortunately, an analytical
solution is in general hard to find because of the
complexity of these equations. A solution to our
problem can be found in using the moment iteration
approach as has initially been suggested by De
Kok (1989) to approximate the waiting time in
the G=G=1 queue from Lindley’s equation. The
moment iteration model we use to solve the set
of equations is given in Section 3.1. For specific
details of the moment iteration method, we refer to
Section 3.2.

3.1. The moment iteration scheme

The moment iteration method is suitable to solve
an implicit stochastic equation of the form
X ¼ f ðX Þ, where f ð:Þ is some arbitrary function
and X is some stochastic variable. The idea is to
approximate the distribution of X by fitting a
convenient distribution to the first two moments
of the random variable X. In each iteration, we
calculate improved estimates for the first two
moments of X from the equation X ¼ f ðX Þ using
a two-moment approximation. We continue until
the estimates for the first two moments of X do not
change significantly anymore. We can do this, if it is
relatively easy to calculate the first two moments of
f ðX Þ for some specific family of probability
distributions (e.g. Normal or Erlang distributions).
This is particularly true for simple but common
functions like f ðX Þ ¼ maxfX � C; 0g and f ðX Þ ¼

maxfC � X ; 0g for some constant C. Although
convergence cannot be proven, the moment itera-
tion approach appears to converge in many
practical situations, see for example Van der
Heijden et al. (2001).

We can apply the same principle to a set of
stochastic equations as we have here. We start with
some arbitrary initial values for the first two
moments of several random variables, approximate
their distributions using a two-moment fit and
generate improved approximations for the first
two moments of the random variables involved,
repeating this procedure until convergence. Again,
we can do this if it is relatively easy to calculate the
first two moments of some function f ðX ;Y Þ for
some specific family of probability distributions
(e.g. Normal or Erlang distributions), particularly
for simple but common functions like f ðX ;Y Þ ¼
maxfX � Y ; 0g.

Our iteration scheme to find the expected main-
tenance duration D involves two other key stochas-
tic variables, A1 and B1, for which we use the set of
equations given in (2)–(4). To find the mean and
variance of RðX Þ we use assumption 2. The
conditional probability distribution of RðX Þ (given
X) has an Erlang distribution with X phases and
scale parameter cm. Using the formulas for the
conditional mean and variance, we find Eqs. (5) and
(6). These expressions are used as an approxima-
tion, since it will not always be true that all servers
are busy during the whole time RðX Þ. However, as
long as there is not a surplus of capacity the c

servers will be busy most of the time and this
assumption is reasonable

E½RðX Þ� �
E½X �

cm
, (5)

var½RðX Þ� �
E½X �

ðcmÞ2
þ

var½X �

ðcmÞ2
. (6)

In Eq. (3) for B1, we defined ZðX Þ for which we
also use assumption 3, which gives us a Poisson
distribution with parameter cmX . Hence, we find
that the mean and variance are approximately
given by

E Z
T

M

� �� �
� cm

T

M
, (7)

var Z
T

M

� �� �
� cm

T

M
. (8)
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Finally, we need an expression for A1 or
A0 ¼ N � A1. Because of assumption 1, the condi-
tional distribution of A0 given the length of the
previous maintenance duration D is a binomial
distribution with parameters N and e�lðT�DÞ.
Similarly, the conditional distribution of A1 given
D is a binomial distribution with parameters N and
ð1� e�lðT�DÞÞ. Hence,

E½A0� ¼ Ne�lT E½elD�, (9)

var½A0� ¼ E½var½A0jD�� þ var½E½A0jD��

¼ E½A0� þNðN � 1Þe�2lT E½e2lD�

� ðE½A0�Þ
2. ð10Þ

Directly determining E½elD� by fitting a contin-
uous distribution for D is not very precise, due to
the point mass in D ¼ 0. Therefore, we define D� as
the maintenance duration, given that the mainte-
nance duration is larger than zero. Hence, with b ¼
PrðA1 þ B14SÞ and E½elD� � the Laplace transform
of D�,

E½elD� ¼ ð1� bÞ þ bE½elD� �. (11)

Our moment iteration scheme to find the mean
maintenance duration consists of the following
steps:

Step 0. Initialisation, choose starting values for
E½A1�, var½A1�, E½B1�, var½B1�, E½D� and var½D�.

Step 1. Determine the first and second moment of
A1 using E½A1� ¼ N � E½A0� and var½A1� ¼ var½A0�

and Eqs. (9) and (10) with (11).
Step 2. Fit a distribution to X ¼ A1 þ B1 using

the new values of E½A1� and var½A1� that we found in
step 1, assuming that A1 and B1 are independent.

Step 3. Determine the first and second moment of
B1 ¼ ½X � ZðT

M
Þ�þ with the mean and variance of

ZðT
M
Þ as given in Eqs. (7) and (8).

Step 4. Find the first and second moment of ½X �
S�þ with X ¼ A1 þ B1 using the new values of E½B1�

and var½B1� that were found in the previous step.
Step 5. Approximate the first and second moment

of D ¼ Rð½X � S�þÞ using Eqs. (5) and (6).
Step 6. Convergence check. If the relative di-

fference between the E½D� found in this iteration
and the previous one is smaller than some fixed �
then stop, else go to step 1. In our model we chose
� ¼ 10�5.

The impact of the initial values on E½D� is
discussed in Section 5. After finding an approxima-
tion for the maintenance duration, we still need to
find the mean operational time E½U �. We define the
operational time as

U ¼ minfT �D; eUg ¼ T �D� ½T �D� eU �þ.
(12)

As stated earlier we can determine relatively
easily the first two moments of ½X � Y �þ with X and
Y positive random variables. Therefore, we define a
positive random variable X ¼ T �D and fit a
distribution to X and to eU and find the mean of
½T �D� eU �þ. E½U � then equals E½T �D��

E½½T �D� eU �þ�.
We therefore need the mean and variance of D,

which we determine using our iteration scheme,
and we need the mean and variance of eU . eU is the
sum of the interval until the first component
failure and the interval between the first and
second failure,y, until the interval between failures
N � k and N � k þ 1. The mean eU equals the sum
of the mean interval lengths and the variance of eU
equals the sum of the variances of the interval
lengths

E½ eU � ¼XN

i¼k

1

il
, (13)

var½ eU � ¼XN

i¼k

1

ðilÞ2
. (14)
3.2. Large systems versus smaller systems

In the moment iteration scheme as presented in
Section 3.1, we need the Laplace transform of D�

and we need to fit distributions. Therefore, we
distinguish systems with a small number of compo-
nents and systems with a large number of compo-
nents. For large systems (systems like the APAR)
we are able to use an Erlang distribution (see Tijms,
1994), while for smaller ones (systems like the
ATAS) we use some specific discrete distributions.
Dependent on the first two moments, we either use a
mixture of two binomial distributions, a mixture of
two negative binomial distributions, a mixture of
two geometric distributions or a Poisson distribu-
tion, see Adan et al. (1995).

For systems with a large number of components,
E½elD� � is the Laplace transform of D� for which
we use an Erlang distribution with parameters
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a ¼ E½D��
var½D�� and r ¼ ðE½D

��Þ
2

var½D��. This results in the follow-
ing expression for the Laplace transform of D�:

E½elD� � ¼

Z T

t¼0

eltf D� ðtÞdt

¼

ð�1Þr
a

l� a

� �r

þar
Pr�1

i¼0

�1iþr�1Tieðl�aÞT

i!ðl� aÞr�i
; aol;

ðaTÞr

r!
; a ¼ l;

a
a� l

� �r

� ar
Pr�1

i¼0

Tie�ða�lÞT

i!ða� lÞr�i
; a4l:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð15Þ

For smaller systems, we use one of the discrete
distributions as mentioned above.
�
 If the distribution of D� is approximated by a
mixture of two binomial distributions: qBinðn; pÞþ
ð1� qÞBinðnþ 1; pÞ the mean and variance of A0

become

E½A0� ¼ Ne�lT ð1� bÞ þ b q ð1� pÞpel
� 	n

��
þð1� qÞðð1� pÞpelÞnþ1

��
,

var½A0� ¼ E½A0� � ðE½A0�Þ
2

þNðN � 1Þe�2lT ð1� bÞð

þ b qðð1� pÞpe2lÞn
�

þð1� qÞðð1� pÞpelÞnþ1
		
.

�
 If the distribution of D� is approximated by a
mixture of two negative binomial distributions:
qNegBinðn; pÞ þ ð1� qÞNegBinðnþ 1; pÞ the mean
and variance of A0 become

E½A0� ¼ Ne�lT ð1� bÞ þ b q
p

1� ð1� pÞel

� �n
  

þð1� qÞ
p

1� ð1� pÞel

� �nþ1
!!

,

var½A0� ¼ E½A0� � ðE½A0�Þ
2
þNðN � 1Þe�2lT

� ð1� bÞ þ b q
p

1� ð1� pÞe2l

� �n
  

þð1� qÞ
p

1� ð1� pÞe2l

� �nþ1
!!

.

If the distribution of D� is approximated by a
�

mixture of two geometric distributions: qGeoðp1Þþ

ð1� qÞGeoðp2Þ the mean and variance of A0

become

E½A0� ¼ Ne�lT ð1� bÞ þ b q
p1

1� ð1� p1Þe
l

��
þð1� qÞ

p2

1� ð1� p2Þe
l

��
,

var½A0� ¼ E½A0� � ðE½A0�Þ
2
þNðN � 1Þe�2lT

� ð1� bÞ þ b q
p1

1� ð1� p1Þe
2l

��
þð1� qÞ

p2

1� ð1� p2Þe
2l

��
.

�
 If the distribution of D� is approximated by a
Poisson distribution: PoisðnÞ, equations of the
mean and variance of A0 become

E½A0� ¼ Ne�lT ðð1� bÞ þ benðe
l�1ÞÞ,

var½A0� ¼ E½A0� � ðE½A0�Þ
2

þNðN � 1Þe�2lT ðð1� bÞ þ benðe
2l�1ÞÞ.

4. Model with ageing of components

We model a wear-out process using three
component states 0–2 for a fully functional,
degraded and failed component, respectively. Again
we use the assumptions given in Section 3 and:
1.
 State transitions from state 0 to state 1 occur
according to an exponential distribution with
rate l1.
2.
 State transitions from state 1 to state 2 occur
according to an exponential distribution with
rate l2.
3.
 There are no direct transitions possible from
state 0 to state 2.
4.
 During maintenance all degraded and failed
components are replaced by spare components.
5.
 The repair times for degraded and failed compo-
nents are exponentially distributed with rates m1
and m2, respectively.

To derive approximations for this model, we use
an intermediate step, namely the special case where
the repair rates of degraded and failed components
are identical, m1 ¼ m2 (Section 4.1). Next, we address
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the variant where the repair rates may be different
(Section 4.2). In the latter case, it makes a difference
in which order we repair degraded and failed
components because of the different repair rates,
m1am2. Hence, we can use a scheduling rule to
decide in which order the spares are restored.

4.1. Degraded and failed components with equal

repair rates

If the repair rates of the degraded and failed
components are equal, it is sufficient to know the
total number of components that are waiting or in
repair at the start of a repair cycle, which we define
as B. The total number of failed and degraded
components at the start of a repair cycle equals Bþ

A1 þ A2 with Ai is the number of system compo-
nents in state i at system arrival in the repair shop
ði ¼ 0; 1; 2Þ. Then our equation for the maintenance
duration (2) changes to

D ¼ R ½Bþ A1 þ A2 � S�þ
� 	

¼ R ½BþN � A0 � S�þ
� 	

. ð16Þ

Similar to the model without wear-out, the
conditional distribution of the number of compo-
nents in state 0 at the start of a repair cycle given the
length of the previous maintenance time, A0jD, is
binomial with parameters N and e�l1ðT�DÞ. The
unconditional mean and variance of this stochastic
variable are given by Eqs. (9) and (10) with l
replaced by l1.

The number of components that are not yet
restored at the start of the repair cycle B equals the
number of spares to restore at the previous system
arrival, plus the failed components that came out of
that system minus the number of repairs that is
done between the two system arrivals. Hence, we
have the same equation as for the model without
wear-out, see Eq. (3) with A1 ¼ N � A0

B ¼ BþN � A0 � Z
T

M

� �� �þ
. (17)

Analogous to the model without ageing of
components we use a moment iteration method to
solve this set of Eqs. (16), (17) and (9)–(11). The
generic iteration scheme is as follows:

Step 0. Initialisation, choose start values for
E½A0�, var½A0�, E½B�, var½B�, E½D� and var½D�.
Approximate the mean and variance of ZðT

M
Þ as in

Eqs. (7) and (8).
Step 1. Determine the mean and variance of A0

using Eqs. (9)–(11).
Step 2. Find the mean and variance of Y ¼ N�

A0 þ B, assuming that A0 and B1 are independent.
Step 3. Find the mean and variance of B ¼

½Y � ZðT
M
Þ�þ.

Step 4. Find the mean and variance of X ¼

½Y � S�þ after determining the mean and variance
of Y ¼ N � A0 þ B again with the new values for
the mean and variance for B found in step 3.

Step 5. Approximate the mean and variance of
the maintenance duration D ¼ RðX Þ using Eqs. (5)
and (6).

Step 6. Convergence check. If the relative
difference between the E½D� found in this iteration
and the previous one is smaller than some fixed �
then stop, else go to step 1. In our model, we chose
� ¼ 10�5.

To find the mean operational time E½U �, we also
need the mean and variance of eU , which changes
because of the ageing of components. In De Smidt-
Destombes et al. (2006) a recursive method is
presented to find the first two moments. In short,
this method works as follows. We define Tði; jÞ as
the time duration to get from state ði; jÞ to a failed
state which has N � k þ 1 components in state 2.
State ði; jÞ refers to N � i � j components in state 0, i

components in state 1 and j components in state 2.
This immediately gives us the starting values of the
recursion, Tði;N � k þ 1Þ ¼ 0 and T2ði;N � k þ

1Þ ¼ 0 for every value of 0pipk � 1. The recursion
is given by

E½Tði; jÞ� ¼ tði; jÞ þ aði; jÞE½Tði þ 1; jÞ�

þ bði; jÞE½Tði � 1; j þ 1Þ�,

E½T2ði; jÞ� ¼ 2tði; jÞE½Tði; jÞ� þ aði; jÞE½T2ði þ 1; jÞ�

þ bði; jÞE½T2ði � 1; j þ 1Þ�.

Here, tði; jÞ ¼ 1
ðN�i�jÞl1þil2

is defined as the ex-

pected sojourn time in state ði; jÞ, aði; jÞ ¼
ðN�i�jÞl1
ðN�i�jÞl1þil2

is the probability of a transition from

state 0 to state 1 and bði; jÞ ¼ il2
ðN�i�jÞl1þil2

is the

probability of a transition from state 1 to state 2.

Now eU is defined as the time from state ð0; 0Þ to a
failed state. Hence,

E½ eU � ¼ E½Tð0; 0Þ�,

var½ eU � ¼ E½T2ð0; 0Þ� � ðE½Tð0; 0Þ�Þ2.
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With the first two moments of eU and D, we are
able to determine the expected uptime U from
Eq. (12).

4.2. Degraded and failed components with different

repair rates

4.2.1. Repair strategy

We denote the repair rate for degraded and failed
components by m1 and m2, respectively. It is plausible
that repair of failed components takes more time on
average than repair of degraded components, so
m1Xm2. The remainder of our analysis is based on
this assumption for ease of notation. It is straightfor-
ward to modify the analysis if m24m1.

If the two repair types (degraded and failed
components) have different repair rates, we can
influence the maintenance duration and hence the
availability by choosing the order in which the
repair jobs are processed. Hence, we have an
additional degree of freedom, namely a repair
priority rule that we can use to minimise the
maintenance duration. We know that we should
recover exactly ½Bþ A1 þ A2 � S�þ components to
restore the system that arrived at the start of a
repair cycle. Therefore, we have to choose (a) how
many of these ½Bþ A1 þ A2 � S�þ components
should be degraded components and how many
should be failed components (b) in which order are
we going to repair these ½Bþ A1 þ A2 � S�þ com-
ponents. Regarding the first issue, it is obvious that
we should select as many degraded components as
possible, because their repair rate is higher. If we
have insufficient degraded components, we add
failed components until we reach the required
number of ½Bþ A1 þ A2 � S�þ components. Re-
garding the second issue, we can use the fact that we
can minimise the makespan of a fixed set of repair
jobs by selecting the longest processing times first,
see for instance Pinedo and Chao (1999). So, within
the set of degraded and failed components that we
should repair to recover the system, we should give
priority to failed components. Summarised, our
repair strategy is as follows:

If the number of degraded spares (state 1) is
sufficient to replace all components in the system,
then only repair degraded ones. If the number of
degraded spares is not sufficient, start repairing
the minimum number of failed components
needed to repair the system and next repair all
degraded components.
During the time in which the repair shop repairs
components without a direct demand (the periods
between maintenance periods in Fig. 2) we want the
repair shop to restore as many spare parts as
possible. Therefore, during this time the priority
rule is:

First repair all degraded spares and then start
repairing failed spares.

Using these priority rules, we are able to define a
set equations, which is presented in Section 4.2.2.

4.2.2. Model with wear-out and different repair rates

The approach to the problem with ageing of
components and different repair rates is analogous
to the one with distinguishing the components in
states 1 and 2. The maintenance duration is there-
fore splitted into two parts, one part for the number
of type 1 repairs and one part for the type 2 repairs.
We define W 1 and W 2 as stochastic variables for the
number of repairs of type 1 and repairs of type 2,
respectively, during the maintenance time. Then, we
approximate the expected maintenance duration
and its variance by

E½D� �
E½W 1�

cm1
þ

E½W 2�

cm2
, (18)

var½D� �
E½W 1� þ var½W 1�

ðcm1Þ
2

þ
E½W 2� þ var½W 2�

ðcm2Þ
2

.

(19)

To determine the workload of types 1 and 2 we
use the priority rule as discussed in the previous
section. This implies the workload of type 2
components to be zero as long as the total number
of failed components, A2 þ B2, is at most equal to S.
Otherwise the workload is equal to the difference
between the total number of failed components and
the number of spares

W 2 ¼ ½A2 þ B2 � S�þ. (20)

For the workload of type 1 components we
consider the total workload and subtract the work-
load of type 2 components. The total number of
degraded and failed components in the system and
the repair shop equals A1 þ A2 þ B1 þ B2 ¼ N�

A0 þ B1 þ B2. The total workload is the total
number of degraded and failed components minus
the number that does not need to be restored during
the system maintenance period. In other words, if
the total number of components to restore is less
than or equal to S, the total workload during
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maintenance is zero, otherwise the workload is the
difference between the components to restore and S.
Hence, we find for the workload of types 1 and 2
components

W 1 ¼ ½N � A0 þ B1 þ B2 � S�þ �W 2. (21)

Because of the different repair rates, we split the
number of unrestored spares B into B1 and B2 where
Bi denotes the number of components in state i in
the repair shop at arrival of a system. The number
of spare components in state 1 is equal to the total
number of components in state 1 just after the
previous system arrival (B1 þ A1) minus the number
of repairs done in the time left after the type 2
repairs W 2. For B2, we assume that W 2 is repaired
before the next system arrives. This is a reasonable
assumption since these are the first components to
be restored and the availability requirements of the
systems are rather high. Then B2 equals the total
number of components in state 2 minus W 2 minus
the number of restores done in the time left after W 2

and B1 þ A1 are repaired. We then find the
following equations for Bi:

B0 ¼ ½S � B1 � B2�
þ, (22)

B1 ¼ B1 þ A1 � Z1
T

M
� R2ðW 2Þ

� �þ� �� �þ
, (23)

B2 ¼ B2 þ A2 �W 2 � Z2

�
�

T

M
� R2ðW 2Þ � R1ðA1 þ B1Þ

� �þ� ��þ
. ð24Þ

Here RiðX Þ is defined as the time needed to
restore X components of type i and ZiðY Þ is defined
as the number of repairs of type i during time Y. If
we use a moment iteration scheme to determine the
maintenance duration using Eqs. (18)–(24) the
results are not very good. In the expression for
W 1, we have a correlation between the total
workload during maintenance and the workload
of type 2 components that we ignore in our
approximations. This affects the variance of W 1

and consequently it also affects the variance of D.
The simulations that we describe more detail in
Section 5 showed that this correlation is often close
to 1. For the approximation of B2 we have a
correlation between W 2 and A2 þ B2 which is at
least 0.6 according to our simulation. To deal with
these problems, we can try to estimate the magni-
tude of the correlations. Unfortunately, this is
mathematically hard. As an alternative, we can
reformulate Eqs. (18)–(24) in terms of other random
variables, such that the correlations are less severe.
Below, we derive such alternative expressions for
W 1 and B2.

Regarding W 1 we know that if the maintenance
duration equals zero, then the value of W 1 equals
zero. The probability that the maintenance duration
is larger than zero, is

PrðA1 þ A2 þ B1 þ B24SÞ

¼ PrðN � A0 þ B1 þ B24SÞ ¼ b.

The total number of spares to restore during the
maintenance period is N � A0 þ B1 þ B2 � S, under
the condition that N � A0 þ B1 þ B2 � S40. The
time needed to restore this number of spares equals
D�. Now there are two possibilities. The first
possibility is that we need to restore only part of
the components in state 1. Then the value of W 1

becomes equal to the number of restores that can be
done during D�, Z1ðD

�Þ. The second possibility is
that we need to restore all components in state 1 and
maybe even a number of components in state 2. The
value of W 1 is then equal to A1 þ B1. Combining
these different possibilities we find

W 1 ¼ minfZ1ðD
�Þ;A1 þ B1gbþ 0ð1� bÞ. (25)

Regarding B2, we add the assumption that we are
also able to restore all type 1 components, A1 þ B1,
before the next system arrives in the repair shop.
This assumption is not an unreasonable one as long
as we are dealing with utilisation rates of the repair
shop that are not too large, say 90–95%. Hence, we
approximate B2 by using the following expression:

B2 ¼ B2 þ A2 � Z2
T

M
� R1ðA1 þ B1Þ

� �þ� �� �þ
.

(26)

For the mean and variance of A0 we use the
previous expressions (9) and (10). The number of
components in state 1 also has a binomial distribu-
tion with parameters N and l1

l1�l2
ðe�l2ðT�DÞ �

e�l1ðT�DÞÞ and the number of components in state
2 is binomially distributed with parameters N and
1�e�l1ðT�DÞ� l1

l1�l2
ðe�l2ðT�DÞ�e�l1ðT�DÞÞ. With some

algebra we find

E½A1� ¼ N
l1

l1 � l2
ðe�l2T E½el2D� � e�l1T E½el1D�Þ,

(27)
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var½A1� ¼ ðN
2 �NÞ

l1
l1 � l2

� �2

ðe�2l2T E½e2l2D�

� 2e�ðl1þl2ÞT E½eðl1þl2ÞD� þ e�2l1T E½e2l1D�Þ

þ E½A1� � ðE½A1�Þ
2, ð28Þ

E½A2� ¼ N � E½A0� � E½A1�, (29)

var½A2� ¼
2NðN � 1Þl1

l1 � l2
ðe�ðl1þl2ÞT E½eðl1þl2ÞD�

� e�2l1T E½e2l1D�Þ þ var½A0� þ var½A1�

� 2E½A0�E½A1�. ð30Þ

To find an approximation of the maintenance
duration we use a moment iteration method using
Eqs. (18)–(20), (22), (23), (25)–(30), (9)–(10). The
iteration scheme becomes as follows:

Step 0. Initialisation, choose start values for
E½A0�, var½A0�, E½B0�, var½B0�, E½W 2�, var½W 2�,
E½D� and var½D�.

Step 1. Determine the means and variances of A0

(using Eqs. (9) and (10)) and A1 and A2 using
Eqs. (27)–(30). Therefore, we again take out the
point mass of D in zero and use Eq. (11) with b ¼
PrðA1þA2 þ B1þB24SÞ¼PrðN�A0 þ B1þB24SÞ.

Step 2. Find the mean and variance of B1 ¼ ½B1 þ

A1 � Z1ðX Þ�
þ with X ¼ ½T

M
� R2ðW 2Þ�

þ. Therefore,
we first determine the mean and variance of R2ðW 2Þ

using Eqs. (5) and (6) with m replaced by m2 and
X ¼W 2. Secondly, we find the mean and variance
of the time available for type 2 repairs during a
repair shop cycle: X ¼ ½T

M
� R2ðW 2Þ�

þ. Thirdly, we
find the mean and variance of Z1ðX Þ using the
approximations given in Eqs. (7) and (8) with m
replaced by m1. Finally, we find the mean and
variance of B1.

Step 3. Find the mean and variance of B2 ¼

½B2 þ A2 � Z2ðY Þ�
þ with Y ¼ ½T

M
� R1ðA1 þ B1Þ�

þ.
Therefore, we first find the mean and variance of
R1ðA1 þ B1Þ approximated by Eqs. (5) and (6) with
X ¼ A1 þ B1 and m replaced by m1. Secondly, we
find the mean and variance of Y and thirdly, we find
the mean and variance of Z2ðY Þ using the approx-
imations given in Eqs. (7) and (8) with m replaced by
m2. Finally, we find the mean and variance of B2.

Step 4. Find the mean and variance of B0 ¼

½S � B1 � B2�
þ.

Step 5. Find the mean and variance of W 1 ¼

ðA1 þ B1 � ½A1 þ B1 � Z1ðD
�Þ�þÞb with b as found

in step 1 and the mean and variance of Z1ðD
�Þ, with

the mean and variance of D� as we found in step 1
to take out the point mass.
Step 6. Find the mean and variance of W 2 ¼

½A2 þ B2 � S�þ.
Step 7. Approximate the mean and variance of

the maintenance duration using Eq. (18) for E½D�

and Eq. (19) for var½D�.
Step 8. Convergence check. If the relative

difference between the E½D� found in this iteration
and the previous one is smaller than some fixed �
then stop, else go to step 1. In our model we chose
� ¼ 10�5.

To compute the mean operational time for the
systems E½U � we use the same method as described
in the model with ageing of components and equal
repair rates.

In our model the maintenance duration is equal
to zero as long as the number of components in the
system that need to be replaced is smaller than or
equal to the number of ready-for-use spares. This
can be adjusted easily by adding the expected
replacement time to the maintenance duration. Let
us assume that n is the replacement rate of a
component. Then the replacement time for a
component is approximated by 1

cn and therefore
the maintenance duration is increased by
EA1þEA2

cn ¼ N�EA0

cn . Of course, one might argue that
it is more reasonable to assume a deterministic
replacement time, because component replacement
is a well-defined task that usually shows little
variation in the time required, unlike component
repair. We refer to De Smidt-Destombes et al.
(2004) for a model variant with deterministic
replacement times.

5. Numerical results

5.1. Accuracy of the models

We constructed two models in this paper, one
without component wear-out and a second one with
component wear-out. For both types of systems
convergence of the iteration scheme is found within
roughly 10 iterations. Both models are approxima-
tions and we therefore need to check the accuracy of
the models. To this end we constructed a discrete
event simulation model in the object oriented
simulation software eM-Plant 7.5 as a benchmark.
In all cases, we simulated 1010 system cycles, where
we ignored the first 10 cycles for output analysis
(that is, we used a warm-up period of 10 system
cycles). We used the batch means method (cf. Law
and Kelton, 1991) to calculate a confidence interval
for the mean availability and found that the half
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Table 1

Combinations of input parameters used for systems with and without component wear-out

M l ¼ l1 l2 ðT ;S; cÞ m ¼ m1 ¼ m2

7-out-of-10 2 0:0001 0:1 ð2000; 4; 1Þ, ð2200; 4; 1Þ, ð2500; 4; 1Þ, ð3000; 4; 1Þ 0.0023–0.0036

4 0:0001 0:1 ð2000; 3; 1Þ, ð2000; 4; 2Þ, ð2500; 5; 1Þ, ð2750; 4; 1Þ 0.004–0.0075

10 0:0001 0:05 ð2000; 3; 1Þ, ð2750; 4; 1Þ 0.011–0.017

0:1 ð2000; 1; 1Þ, ð2000; 2; 1Þ 0.01125–0.0175

58-out-of-64 2 0:0001 0:1 ð800; 4; 1Þ , ð800; 6; 1Þ, ð900; 5; 1Þ, ð1000; 6; 1Þ 0.008–0.02

4 0:0001 0:1 ð800; 4; 1Þ, ð800; 6; 1Þ, ð900; 5; 1Þ, ð1000; 6; 1Þ 0.02–0.032

10 0:0001 0:1 ð800; 4; 3Þ, ð800; 6; 3Þ, ð900; 5; 3Þ, ð1000; 6; 3Þ 0.02–0.032

2700-out-of-3000 2 0:0001 0:1 ð800; 250; 1Þ, ð800; 300; 1Þ, ð900; 275; 1Þ, ð1000; 300; 1Þ 0.4–1

4 0:0001 0:1 ð800; 250; 1Þ, ð800; 300; 1Þ, ð900; 275; 1Þ, ð1000; 300; 1Þ 1–1.6

10 0:0001 0:1 ð800; 250; 3Þ, ð800; 300; 3Þ,ð900; 275; 3Þ, ð1000; 300; 3Þ 1–1.6

Table 2

Mean (max) differences between the approximations and the simulation results for both the maintenance duration and the availability

using discrete distributions and continuous distributions

Without wear-out With wear-out (m1 ¼ m2) With wear-out (m1am2)

E½D� Av E½D� Av E½D� Av

Discrete

7-out-of-10 22.2% (106.7%) 1.4% (11.7%) 19.4% (93.6%) 0.9% (7.7%) 14.0% (74.2%) 2.2% (7.6%)

58-out-of-64 3.5% (32.3%) 0.2% (2.1%) 5.1% (38.0%) 0.2% (2.5%) 4.1% (32.0%) 4.3% (7.1%)

2700-out-of-3000 – – – – – –

Continuous

7-out-of-10 29.4% (111.6%) 1.6% (13.6%) 63.2% (791%) 1.9% (19.0%) 32.7% (644%) 0.9% (12.5%)

58-out-of-64 4.0% (29.8%) 0.1% (0.6%) 5.0% (37.4%) 0.2% (2.5%) 4.6% (29.2%) 0.1% (1.0%)

2700-out-of-3000 3.5% (13.6%) 0.1% (0.5%) 3.7% (10.9%) 0.1% (0.4%) 2.5% (8.6%) 0.1% (0.4%)
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width of the 95% confidence interval is (consider-
ably) less than 1% in most cases.

We considered three different system sizes: 7-out-
of-10, 58-out-of-64 and 2700-out-of-3000. For the
latter one, which is a large system, we only used the
approach with continuous distributions. For the
other two system sizes we used the approximation
with both discrete distributions and continuous
distributions. The computation time for a 2700-out-
of-3000 system is too large for the use of the
approximation with discrete distributions.

In order to deal with realistic situations we
consider systems with an availability of at least
90%. For a realistic utilisation rate of the repair
shop we consider rates between 50% and 90%.

For each of the three system sizes we constructed
about 80 combinations of values for the transition
rates, repair rates, maintenance intervals, number of
spares and number of repair capacity for both
models, divided equally over the size of the installed
base (see Table 1 for an overview of the parameter
combinations used). For the model with component
wear-out we chose m1 ¼ m2. This gives us the
opportunity to compare the model of Section 4.1
which requires equal repair rates and the more
general model of Section 4.2 which does not require
equal repair rates.

In Table 2 we show the mean and maximum
relative differences that we found in the main-
tenance duration and in the availability compared
to our simulation results. We did not find evidence
that approximation errors depend on the repair
shop utilisation or the system availability.

For large systems we have no choice other than to
use an approximation with continuous distribu-
tions. Although, the approximation of the main-
tenance duration may not be very accurate at all
times, we have a good approximation for the system
availability. This is due to the fact that the
availability of the systems is 90% or more and the
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maintenance duration is a relatively small part of
the system’s cycle. As a result the impact of an error
in the maintenance duration is small.

For the medium sized systems without compo-
nent wear-out we can choose between an approx-
imation with continuous or discrete distributions.
If we would split the results according to the size of
the installed base we would see that for a larger
installed base the approximation with discrete
distributions is slightly better than the one with
continuous distributions. For medium sized systems
with component wear-out, and not necessarily with
m1 ¼ m2, we find that the results using continuous
distributions are more accurate.

In case of the small systems we find a better
performance if we use the approximation with
discrete distributions. Including component wear-
out and arranging the results according to the size
of the installed base we see that for a large installed
base it is best to use the approximation with
continuous distributions and the one with discrete
distributions for the smaller sizes of the installed base.

As seen in Table 2 the approximations for smaller
systems are less satisfactory. This can be explained
Table 3

Mean differences between the approximations and the simulation resul

out-of-10 system

# Systems per installed base Without wear-out Wit

E½D� (%) Av (%) E½D

2 Systems 56.6 3.7 42.3

4 Systems 26.4 0.8 13.7

10 Systems 5.2 0.3 3.8

Fig. 4. Approximation errors in maintenance duration shown
by the fact that an absolute small approximation
error for Ai or Bi is a relatively large error when we
only have a few components. As a result, the error
in the approximation of the maintenance duration is
relatively large. For systems with a larger number of
components the relative approximation errors are
therefore smaller. Without exception the maximum
errors given in Table 2 are all generated by the
scenarios with a smaller size of the installed base.

When the installed base is small the errors in the
approximations are much worse than the errors
we find for a larger installed base. This is probably
due to the fact that there is a dependency between
the cycles in which the same system arrives at the
repair shop. If the installed base becomes larger this
dependency becomes smaller because the number of
intermediate cycles (M � 1) becomes larger. This is
shown in Table 3, showing the results for the
different number of systems per installed base for a
7-out-of-10 system.

In Fig. 4, we show the differences in approxima-
tion errors for maintenance duration as a function
of the utilisation rate of the repair shop for the
different sizes of the installed base consisting of
ts for both the maintenance duration and the availability for a 7-

h wear-out (m1 ¼ m2) With wear-out (m1am2)

� (%) Av (%) E½D� (%) Av (%)

2.0 25.0 1.3

0.5 11.9 3.2

0.2 5.0 2.2

as a function of the utilisation rate of the repair shop.
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58-out-of-64 systems. It is shown that the approx-
imation errors become smaller as the size of the
installed base increases. For larger systems, the
errors for the maintenance duration are less and for
smaller systems the differences tend to be larger.

Looking at Table 2 again, there is another
interesting result. When we look at the approxima-
tion errors for the maintenance duration for the two
models with component wear-out we see that the
model that does not require the repair rates m1 and
m2 to be equal to give less satisfactory approxima-
tions. While for the same scenarios we find that for
the approximations of the availability the results are
the other way around. The scenarios in which this
happens are scenarios with either a small installed
base or an availability level of over 99%. For the
scenarios with a small installed base we already
concluded that the model does not perform very
well and for the scenarios with an availability level
over 99% the absolute differences in the approx-
imation errors are small.

So, for the remaining scenarios with smaller
availability levels and a sufficiently large installed
base the model that requires m1 ¼ m2 outperforms
the more general model with component wear-out.

5.2. Relations between decision variables T, S, c

In this section, we take a closer look at the
relations between the decision variables T, S and c.
Using an example we look at the effects that
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S=200, c=3

S=250, c=3

S=300, c=3

Fig. 5. Different combinations of maintenance interval length, number
variations in the different variables have on the
system availability and what trade-offs there are
between these variables.

In Fig. 5 an example is shown for an installed
base of ten 2700-out-of-3000 systems. If for instance
the target availability level is 98%, we can see from
the graph the different combinations of length of
maintenance interval, number of spares and repair
capacity, with which to achieve this availability
level. Reducing the repair capacity can to a certain
extent be compensated for by more frequent
maintenance. For instance, with c ¼ 5 and S ¼

200 we find an availability of 98:2% with a
maintenance interval of 1050 time units. Bringing
the capacity down to 4 or 3, we can achieve the same
availability if we decrease the maintenance interval
to 950 or 850 time units respectively. This confirms
the expectations we mentioned in the introduction
of this paper that a higher maintenance frequency
leads to less variation in the component arrival
process at the repair shop, so that less repair
capacity is needed. For the number of spares we
see similar results. Looking at it the other way
around we see that with an increase of the spares
from 200 to 300 we can increase our maintenance
interval from 650 to 1100 and still have an
availability of almost 99:5% with c ¼ 3. So, with
an increasing maintenance interval we can decrease
the repair capacity, decrease the number of spares
or decrease both. With this model the effects can be
quantified for specific cases. Which combination of
1100 1300 1500

nce interval

S=200, c=4 S=200, c=5

S=250, c=4 S=250, c=5

S=300, c=4 S=300, c=5

of spares and repair capacity can lead to similar availability levels.
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parameters ðT ;S; cÞ is the best, depends on the cost
involved. Without loss of performance the cheapest
option can be chosen.

6. Conclusions and future research

From the previous section we conclude that we
have accurate approximations for the availability as
function of the maintenance interval, number of
spare parts and the number of repair capacity,
provided that the number of components in a
system is not too small (say more than 10) and the
size of the installed base is not too small (say at least
4). We can draw graphs in which we can quantify
the effect of the length of the maintenance interval
and the maintenance means (spares and capacity).
Increasing the maintenance interval means we can
do with less spares or capacity (or both) and still
have the same availability performance. For systems
with only a small number of components or a small
installed base we have to be careful because the
approximation errors may be relatively large.

In practice, multiple component types are usually
restored in the same repair shop, sharing the same
capacity. Then, we have to find a decision rule for
the order in which items are repaired, especially, if
the different items are all needed for the main-
tenance on a single system. Of each item, there has
to be enough spares restored. The active phased
array radar (APAR) system is again a good
example. Besides the transmit and receive elements,
the system consist of a large number of power
supplies. To get the system fully operational during
a maintenance period, we need transmit and receive
elements and power supplies. The repair strategy
during the maintenance period does not change very
much. This duration is minimal as long as we take
as many small repair jobs as possible, and perform
the repair jobs from the longest to the shortest. The
repair strategy for the period between the main-
tenance periods is less obvious. All sorts of items are
needed, so a priority rule based on the repair length
will not be optimal. What this rule should look like
is subject to future research. Some research has been
done on these priority rules in Sleptchenko et al.
(2005).

If the assumption of system shutdown at N �

k þ 1 failures is introduced we find smaller main-
tenance durations if the number of spares and
capacity remains unchanged. The mean operational
time E½U � will increase if the value of T is not too
large and as a result the system availability
increases. To have the same availability as without
system shutdown we may be able to lower the cost
involved. Either by reducing the number of spares
or capacity or by increasing the maintenance
interval length.

Given the approximations as provided in this
paper, we may want to find the optimal combina-
tion of maintenance interval and number of spares
and repair capacity with respect to costs. Given the
number of options for the decision variables and the
computation times, enumeration is usually not an
option. Therefore, the development of an optimisa-
tion method is a subject for further research.
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