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Abstract
We have investigated macroscopic quantum tunnelling (MQT) in in-plane
high-Tc superconductor Josephson junctions and the influence of the
nodal-quasiparticle and zero energy bound states (ZES) on MQT. We have
shown that the presence of ZES at the interface between the insulator and the
superconductor leads to strong Ohmic quasiparticle dissipation. Therefore,
the MQT rate is noticeably suppressed in comparison with c-axis junctions in
which ZES are completely absent.

1. Introduction

A mesoscopic single Josephson junction is an interesting phys-
ical object for testing quantum mechanics at a macroscopic
level. In current-biased Josephson junctions, measurements
of macroscopic quantum tunnelling (MQT) are performed by
switching the junction from its metastable zero-voltage state to
a non-zero voltage state (see figure 1(d)). Until now, exper-
imental investigations of MQT have been focused on s-wave
(low-Tc) junctions only. This is due to a naive preconception
that the existence of low energy quasiparticles in the d-wave
order parameter of a high-Tc cuprate superconductor [1] may
preclude the possibility of observing MQT.

Recently we have theoretically investigated the effect of
the nodal-quasiparticle on MQT in d-wave c-axis junctions
(e.g. Bi2212 intrinsic Josephson junctions [12, 13] and cross
whisker junctions [14]) [2, 3]. We have shown that the
effect of the nodal-quasiparticle gives rise to super-Ohmic
dissipation [4, 5] and the suppression of MQT due to the nodal-
quasiparticle is very weak.

The first experimental observation of MQT in high-Tc

Josephson junction was made by Bauch et al, using a YBCO
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Figure 1. Schematic of an in-plane d-wave Josephson junction:
(a) d0/d0, (b) d0/dπ/4 and (c) dπ/4/dπ/4. In the case of d0/dπ/4 and
dπ/4/dπ/4 junctions, zero energy bound states (ZES) are formed near
the boundary between superconductor dπ/4 and insulating barrier I.
(d) Potential U(φ) versus the phase difference φ between two
superconductors. U0 is the barrier height and ωp is the Josephson
plasma frequency.

(This figure is in colour only in the electronic version)

grain boundary bi-epitaxial junction [6, 7]. Recently, Inomata
et al [8], Jin et al [9] and Kashiwaya et al [10, 11] have
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experimentally observed MQT in c-axis (Bi2212 intrinsic)
junctions. They reported that the effect of the nodal-
quasiparticle on MQT is negligibly small and the thermal-to-
quantum crossover temperature is relatively high (0.5–1 K)
compared with the case of low-Tc and YBCO bi-epitaxial
junctions. In Jin et al’ s experiment, O(N 2) (N being
the number of the stacked junctions) enhancement of the
MQT rate was reported. This enhancement is attributed to
collective motion of the phase differences in the intrinsic
junctions [15–17].

In this paper we will theoretically investigate MQT
in d-wave in-plane junctions parallel to the ab-plane (see
figure 1) [18]. In such junctions, ZES [19] are formed near
the interface between the superconductor and the insulating
barrier. ZES are generated by the combined effect of multiple
Andreev reflections and the sign change of the d-wave order
parameter symmetry, and are bound states for the quasiparticle
at the Fermi energy. Below, we will show that ZES give
rise to Ohmic-type strong dissipation so MQT is considerably
suppressed compared with the c-axis and the d0/d0 junction
cases.

2. Effective action

By using the method developed by Eckern et al [20] the
partition function of the system can be described by a
functional integral over the macroscopic variable (the phase
difference φ):

Z =
∫

Dφ(τ) exp

(
− Seff[φ]

h̄

)
. (1)

In the high barrier limit, i.e. z0 ≡ mw0/h̄2kF � 1 (m is the
mass of the electron, w0 is the height of the delta function
potential I and kF is the Fermi wavelength), the effective action
Seff is given by

Seff[φ] =
∫ h̄β

0
dτ

[
M

2

(
∂φ(τ)

∂τ

)2

+ U (φ)

]
+ Sα[	],

Sα[	] = −
∫ h̄β

0
dτ

∫ h̄β

0
dτ ′α(τ − τ ′) cos

φ(τ) − φ(τ ′)
2

.

(2)
In this equation β = 1/kBT , M = C(h̄/2e)2 is the mass (C
is the capacitance of the junction) and the potential U (φ) is
described by

U (φ) = h̄

2e

[∫ 1

0
dλφ IJ(λφ) − φ Iext

]
, (3)

where IJ is the Josephson current and Iext is the external
bias current. The dissipation kernel α(τ) is related to the
quasiparticle current Iqp under constant bias voltage V by

α(τ) = h̄

e

∫ ∞

0

dω

2π
e−ωτ Iqp

(
V = h̄ω

e

)
, (4)

at zero temperature.
Below, we will derive the effective action for the three

types of d-wave junction (d0/d0, d0/dπ/4 and dπ/4/dπ/4) in
order to investigate the effect of the nodal-quasiparticles and

ZES on MQT. In the case of the d0/d0 junction, node-to-
node quasiparticle tunnelling can contribute to the dissipative
quasiparticle current. However, ZES are completely absent.
These behaviours are qualitatively identical with that for c-axis
Josephson junctions [2, 3]. On the other hand, in the case of
d0/dπ/4 and dπ/4/dπ/4 junctions, ZES are formed around the
surface of the superconductor dπ/4. Therefore node-to-ZES
(d0/dπ/4) and ZES-to-ZES (dπ/4/dπ/4) quasiparticle tunnelling
becomes possible.

First, we will calculate the potential energy U in the
effective action (2). As mentioned above, U can be described
by the Josephson current through the junction in the high
barrier limit. In order to obtain the Josephson current we start
from the Bogoliubov–de Gennes (BdG) equation [19]:∫

dr′
(

δ(r − r′)h(r′) �(r − r′)eiϕ

�∗(r − r′)e−iϕ −δ(r − r′)h∗(r′)

)(
u(r)

v(r)

)

= E

(
u(r)

v(r)

)
, (5)

where ϕ is the phase of the order parameter, u(v) is the
amplitude of the wavefunction for the electron (hole)-like
quasiparticle, h(r) = −h̄2∇2/2m − μ + w0δ(x), and �(r −
r′) = �−1

∑
k �k exp[ik · (r − r′)] is the order parameter (�

is the volume of the superconductor). In the superconductor
regions (d0 and dπ/4), the BdG equation (5) can be transformed
into the eigenequation

(
ξk �keiϕ

�ke−iϕ −ξk

)(
uk

vk

)
= E

(
uk

vk

)
, (6)

where ξk = h̄2k2/2m + h̄2 p2/2m − μ (p = 2πn/D
and D is the width of the junction). The amplitude of
the order parameter �k is given by �0 cos 2θ ≡ �d0(θ)

for d0 and �0 sin 2θ ≡ �dπ/4(θ) for dπ/4, where cos θ =
k/kF. The Andreev reflection coefficient for the electron
(hole)-like quasiparticle rhe (reh) is calculated by solving
the eigenequation (6) together with the appropriate boundary
conditions. By substituting rhe (reh) into the formula of the
Josephson current for unconventional superconductors (the
Tanaka–Kashiwaya formula) [19]

IJ = e

h̄

∑
p

1

β

∑
ωn

(
�+
�+

rhe − �−
�−

reh

)
, (7)

we can obtain φ dependence of the Josephson current. Here
�± = �(±k,p), �± = √

(h̄ωn)2 − |�±|2, ωn = (2n +1)π/β h̄
is the fermionic Matsubara frequency. In the case of low
temperatures (β−1 � �0) and the high barrier limit (z0 � 1),
we get

IJ(φ) ≈

⎧⎪⎪⎨
⎪⎪⎩

I1 sin φ for d0/d0

−I2 sin 2φ for d0/dπ/4

I3 sin
φ

2
for dπ/4/dπ/4

(8)

where I1 ≡ 3π�0/10eRN , I2 ≡ π2h̄β�2
0/35e3Nc R2

N and
I3 ≡ 3πz0�0/4eRN (RN = 3π h̄z2

0/2e2 Nc is the normal state
resistance of the junction and Nc is the number of channels at
the Fermi energy).
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By substituting the Josephson current into equation (3), we
can obtain the analytical expression of the potential U, i.e.

U (φ) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− h̄ I1

2e

(
cos φ + Iext

I1
φ

)
for d0/d0

− h̄ I2

4e

(
− cos 2φ + 2

Iext

I2
φ

)
for d0/dπ/4

− h̄ I3

e

(
cos

φ

2
+ 1

2

Iext

I3
φ

)
for dπ/4/dπ/4.

(9)

As in the case of the s-wave and the c-axis junctions [2], U can
be expressed as a tilted washboard potential (see figure 1(d)).

3. Dissipation due to nodal-quasiparticles and ZES

Next we will calculate the dissipation kernel α(τ) in the
effective action (2). In the high barrier limit, the quasiparticle
current is given by [19]

Iqp(V ) = 2e

h

∑
p

|tN |2
∫ ∞

−∞
dE NL (E, θ)NR (E + eV, θ)

× [
f (E) − f (E + eV )

]
, (10)

where tN ≈ cos θ/z0 is the transmission coefficient of the
barrier I, NL(R)(E, θ) is the quasiparticle surface density of
states (L = d0 and R = d0 or dπ/4) and f (E) is the
Fermi–Dirac distribution function. The explicit expression of
the surface density of states was obtained by Matsumoto and
Shiba [21]. In the case of d0, there are no ZES. Therefore the
angle θ dependence of Nd0 (E, θ) is the same as the bulk and is
given by

Nd0 (E, θ) = Re
|E |√

E2 − �d0(θ)2
. (11)

On the other hand, Ndπ/4(E, θ) is given by

Ndπ/4(E, θ) = Re

√
E2 − �dπ/4(θ)2

|E | + π |�dπ/4(θ)|δ(E). (12)

The delta function peak at E = 0 corresponds to ZES. Because
of the bound state at E = 0, the quasiparticle current for the
d0/dπ/4 and dπ/4/dπ/4 junctions is drastically different from
that for the d0/d0 junctions in which no ZES are formed. By
substituting equations (11) and (12) into equation (10), we can
obtain the analytical expression of the quasiparticle current
Iqp(V ). In the limit of low bias voltages (eV � �0) and low
temperatures (β−1 � �0), this can be approximated as

Iqp(V ) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

32π2

28
√

2

eV 2

�0 RN
for d0/d0

3π2

24
√

2

V

RN
for d0/dπ/4

25π

35

(
�0

ε

)2 V

RN
for dπ/4/dπ/4.

(13)

In the calculation of Iqp for the dπ/4/dπ/4 junctions, we have
replaced the ZES delta function δ(E) in equation (12) with the
Lorentz type function, i.e.

δ(E) → 1

π

ε

ε2 + E2
, (14)

in order to avoid a mathematical difficulty and model the
real systems (which include, for example, disorder and many-
body effects). It is apparent from equation (13) that, in
the case of d0/d0 junctions, the dissipation is of the super-
Ohmic type as in the case of c-axis junctions [2]. This can
be attributed to the effect of the node-to-node quasiparticle
tunnelling. Thus the quasiparticle dissipation is very weak.
On the other hand, in the case of d0/dπ/4 junctions, node-
to-ZES quasiparticle tunnelling gives the Ohmic dissipation
which is similar to that in normal junctions [20]. Therefore the
dissipation for d0/dπ/4 junctions is stronger than that for d0/d0

junctions. Moreover, in the case of dπ/4/dπ/4 junctions, ZES-
to-ZES quasiparticle tunnelling dominates the quasiparticle
dissipation. The broadening of the ZES peak ε is typically
one order of magnitude smaller than �0. Therefore, due
to the prefactor (�0/ε)

2 in equation (12), the quasiparticle
dissipation in the dπ/4/dπ/4 junctions becomes enormously
stronger than that for the d0/d0 and d0/dπ/4 cases.

From equation (4), the asymptotic form of the dissipation
kernel is given by

α(τ) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

32h̄2

27
√

2

RQ

�0 RN

1

|τ |3 for d0/d0

3h̄

24
√

2

RQ

RN

1

|τ |2 for d0/dπ/4

25h̄

35π

(
�0

ε

)2 RQ

RN

1

|τ |2 for dπ/4/dπ/4.

(15)

The result for the d0/d0 junction is in agreement with previous
works [4, 5, 22, 23].

4. MQT in in-plane d-wave junctions

Let us move to calculation of the MQT rate � for d-
wave Josephson junctions based on the standard Caldeira and
Leggett theory [24]. At zero temperature � is given by

� ≈ A exp

(
− SB

h̄

)
, (16)

where SB ≡ Seff[φB] and φB is the bounce solution. Following
the procedures above, we obtain the analytical formulae of the
MQT rate for in-plane d-wave junctions as

�

�0
≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

[
−

(
c0

35π

27
√

2

h̄η

�0
+ 18

5

δM

h̄

)
U0

Mωp

]

for d0/d0

exp

[
− 34ζ(3)

25
√

2π2
η(1 − x2)

]

for d0/dπ/4

exp

[
−2833ζ(3)

35π3

(
�0

ε

)2

η(1 − x2)

]

for dπ/4/dπ/4,

(17)

where c0 = ∫ ∞
0 dy y4 ln(1+1/y2)/ sinh2(πy) ≈ 0.0135, ζ(3)

is the Riemann zeta function, η = RQ/RN is the dissipation
parameter, U0 is the barrier height of the potential U , ωp is the
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Josephson plasma frequency, x = Iext/Ii (i = 1, 2, 3), and

�0 = 12ωp

√
3U0

2π h̄ωp
exp

(
−36U0

5h̄ωp

)
(18)

is the MQT rate without the dissipation. In equation (17)

δM = 3

24
√

2

h̄2η

�0

∫ 1

−1
dy y2 1 + y√

1 − y

∫ �0
h̄ωp

0
dz z2 K1 (z|y|)2

(19)
is the renormalized mass due to the high frequency components
(ω � ωp) of the quasiparticle dissipation.

In order to compare the influence of ZES and the nodal-
quasiparticle on MQT more clearly, we will estimate the MQT
rate (17) numerically. For a mesoscopic bi-crystal YBCO
Josephson junction [25] (�0 = 17.8 meV, C = 20 × 10−15 F,
RN = 100 �, x = 0.95), the MQT rate is estimated as

�

�0
≈

⎧⎪⎨
⎪⎩

83% for d0/d0

25% for d0/dπ/4

0% for dπ/4/dπ/4.

(20)

As expected, the node-to-ZES and ZES-to-ZES quasipar-
ticle tunnelling in d0/dπ/4 and dπ/4/dπ/4 junctions gives strong
suppression of the MQT rate compared with the d0/d0 junc-
tion cases. Moreover in the dπ/4/dπ/4 cases, MQT is almost
completely depressed.

5. Summary

In conclusion, MQT in in-plane high-Tc superconductors has
been theoretically investigated and the formulae for the MQT
rate, which can be used to analyse experiments, have been
analytically obtained. Node-to-node quasiparticle tunnelling
in d0/d0 junctions gives rise to weak super-Ohmic dissipation
as in the case of c-axis junctions [2]. For d0/dπ/4 junctions, on
the other hand, we have found that node-to-ZES quasiparticle
tunnelling leads to Ohmic dissipation. Moreover, in the case
of dπ/4/dπ/4 junctions, ZES-to-ZES quasiparticle tunnelling
gives very strong Ohmic dissipation so MQT is drastically
suppressed.

In this paper we have only considered the case of a
high barrier limit (z0 � 1). In low barrier cases, the ZES
become split into two finite energy Andreev levels due to ZES
resonance [19]. Moreover, the energy of the split Andreev
levels depends on the phase difference φ and the influence
of the proximity effect becomes more important. To take

into account such effects, the present approach should be
considerably modified. This issue will be investigated in future
articles.
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