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Abstract

A method is presented to optimise the flow pipe arrangement for the RIFT process for complex 21
2
D geometries. To this end, a mesh

distance-based model is coupled to a genetic optimisation algorithm. The mesh distance-based model is based on the assumption that the
resin fills the nodes closest to the inlets first. It was verified with cases known from literature and with the results from a physically based
flow model. The genetic algorithm provides a stable and effective optimisation method. A variable crossover rate increased its effective-
ness. Depending on the choice of fitness function, the method can be used to optimise the different production parameters such as flow
pipe position and length, fill distance and number of vents.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Resin infusion under flexible tooling (RIFT) is a method
to manufacture good quality composite products with low
investment costs. Dry fibre mats (or a preform) are draped
into/onto a female/male mould and then covered by a flex-
ible plastic sheet (bag). The mould and bag are sealed and
put under vacuum. The resin is drawn into the mould by
this vacuum and impregnates the preform. A sketch of
the process is depicted in Fig. 1.

Nowadays, many manufacturers of large composite
structures, such as wind turbine blades and boat hulls,
use RIFT. For these large structures, flow enhancement
structures are normally used to speed up the process. Com-
mon examples are a coarse infusion mesh and spiral bind
infusion pipe (top right of Fig. 1), which are placed on
top of the preform. Also flow enhancement layers which
are integrated in the preform, can be used. However, these
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cannot be removed from the final product and thus come
with a weight penalty. Large components can be infused
in a relatively short amount of time, compared to hand
lay-up, with the help of these flow enhancement structures.
Brouwer et al. [1] and Gunnarsson [2] presented some very
impressive examples, e.g., an infusion of an 11.8 m boat
hull in only 195 min with 340 kg of resin.

The use of the infusion mesh is straightforward: nearly
the entire top surface of the preform can be covered.
Because the flow through the infusion mesh is much faster
than in the preform, care has to be taken that the resin gets
time to flow through the thickness. If this is not the case,
the resin in the infusion mesh can arrive at the vent prema-
turely, causing a dry spot under the vent location, as dem-
onstrated by Hsiao et al. [3].

The great effectiveness of the use of flow pipes can be
explained by comparing the permeability of a pipe with
the permeability of a preform. The effective permeability
of a pipe can be found by using Poiseuille’s law. According
to this law, the steady volume flow rate Q through a pipe
with a constant circular cross-section radius r, a resin vis-
cosity l and a pressure gradient $P can be written as [4]:
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Fig. 1. Schematical representation of the RIFT process with flow
enhancement structures.
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Q ¼ �upr2 ¼ pr4

8l
rP ð1Þ

The flow in the preform can be described using Darcy’s law
[5]. According to this law the relation between the local re-
sin flux density (also called superficial velocity), �u, the iso-
tropic preform permeability K, the resin viscosity l and the
resin pressure gradient $Pr, can be written as

�u ¼ �K
l
� rP r ð2Þ

Combining both laws gives an effective permeability for a
pipe with radius r:

K ¼ r2

8
ð3Þ

Consider a pipe with r = 12 · 10�3 m, it has an effective
permeability of K = 1.8 · 10�5 m2. As presented by Kessels
et al. [6], a preform of 10 layers of 280 g/m2 Twill Weave
(similar to Interglas 92125) has a permeability in the
uncompressed state of 6 · 10�10 m2. Even preforms with
integrated flow enhancement layers and an optimal flow
behaviour like CoreTEX have an uncompressed permeabil-
ity of 1 · 10�8 m2.
When these permeability values are compared it is clear
why flow pipes are such an effective way of reducing the
infusion time. A disadvantage of the use of flow pipes is
that the arrangement of the flow pipes is not always
straightforward as, for example, the infusion mesh. An
incorrect pipe/vent arrangement can lead to dry spots in
the final product. Therefore, a method was developed
which optimises the flow pipe, inlet and vent position in
advance.

2. Previous modelling effort

The number of developed optimisation tools for the
RIFT process is significantly lower than those for the
RTM process. In RIFT the preform compacts (due to the
flexible bag) during the process, influencing the permeabil-
ity of the preform. In RTM both moulds are solid and
hence mould filling times will be different for the RTM
and RIFT process under similar conditions (e.g., same
resin, pressure and preform). Nevertheless this preform
compaction will not be taken into account here, since it
does not influence the optimisation significantly. Acheson
et al. [7] showed that the RIFT process can successfully
be predicted with RTM models (which do not include pre-
form compaction) by using an ‘‘effective’’ permeability,
which accounts for the change in permeability due to com-
pression. Therefore, the relative difference in computed
mould filling times for two different scenarios will be the
same whether the preform compaction is included or not.
For this reason, some RTM optimising models will also
be discussed.

Most researchers focussed on the optimal location of the
inlet and vents. Cai [8] was one of the first to look at these
optimal locations and came up with some useful closed
form solutions for the wet length, mould filling time and
pressure distribution of rectangular, trapezoidal and circu-
lar sections. Two years later Young [9] published an algo-
rithm to optimise the inlet location on any 21

2
D geometry.

A previously developed non isothermal flow simulation
program was coupled with a genetic search algorithm. Thin
film part assumptions were used for the simulation pro-
gram and, for example, the resin flow in the thickness direc-
tion was neglected. Therefore, this model, although
describing 3D geometries, is called an 21

2
dimensional

(21
2
D) flow model. The disadvantage of using a physically

based flow model was also shown: The calculation time
of 600 generations with a population size of 30 on a 448 ele-
ment model was over 75 h.

Boccard et al. [10] addressed the issue of excessive calcu-
lation times and therefore presented a fast geometrically
based model to determine the location of the vents on flat
(2D) RTM moulds. However, the major drawback of their
model was, that it was limited to 2D shapes and the calcu-
lation for complex parts was very difficult [11].

Jiang et al. [11] used a genetic algorithm to, again, opti-
mise the location of the inlet and vent with a mesh distance-
based approach model. Such a model is fast and can
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accommodate any type of mesh (e.g., the mesh of a struc-
tural analysis). The model could only optimise 2D geome-
tries. Although not mentioned explicitly it was shown how
ineffective a genetic algorithm can be. In a case where one
inlet was allowed on a model with 930 nodes, it took the
algorithm 1000 trials. It would have been faster to try all
930 nodes successively. However, optimising times in order
of minutes instead of hours, like Young [9], were achieved,
with the mesh distance-based model.

Hsiao et al. [3] were some of the few researchers who
tried to optimise the RIFT process. They used RTM soft-
ware and a genetic algorithm to find the optimum for the
diameter of the flow runner channels and the amount of
layers of a flow distribution medium. Because these values
could be zero, solutions without these flow enhancement
structures could also be found. Good agreement between
simulation and experiments was achieved and the unwetted
area was reduced by optimising the size of the flow
enhancement structures. They focused only on one design
case where the position of the flow channels/pipes and dis-
tribution medium were fixed and determined by the user in
advance.

Especially with larger and more complex structures the
optimal position of the flow pipes is not always straightfor-
ward and the presented model here will therefore optimise
the inlet/vent position as well as the arrangement of flow
pipes.
3. Method of optimisation

Before the optimisation model was developed, a couple
of assumptions were made. Firstly, preform compaction is
neglected, an isotropic preform permeability is assumed
and there is no pressure gradient in the z direction. The lat-
ter restricts the model to preforms with a uniform flow
through the thickness. There are two situations where this
occurs: The different plies have a uniform permeability over
the thickness (like the aforementioned 10 plies of twill
weave) or the flow is dominated by the layer with the high-
est permeability. An example of the latter are preforms
which consist of a thick flow enhancement core which is
covered by just a few single plies of (woven) fabric. In such
a preform, the single plies of fabric are wetted instanta-
neously as the resin reaches the underlying core and hence
the flow can be assumed to be uniform [12]. The CoreTEX
fabric is an example of such a preform.

The model is also based on the assumption that the resin
first fills the nodes that are closest to the inlet, then the next
closest, etc. Although locally true, Cai [8] showed that this
assumption is not globally true for the RIFT or the RTM
process. If different types of flow exist (radial or linear/
channel), it is possible that a node further away from the
inlet is filled earlier than a closer one. Still it is valid to
make this assumption, when the objective of the optimisa-
tion is only to minimise the distance between inlet and vent
(and hence minimise fill time) and an accurate estimation
of the fill time is of second order importance. This distance
between inlet and vent is defined here as the fill distance.

Based on these assumptions, a mesh distance-based
model was developed to simulate the process, based on a
given inlet/vent and flow pipe arrangement. The mesh dis-
tance-based model is similar to the one presented by Jiang
et al. [11], but with an extension to the use of 21

2
D geome-

tries. It is much faster and hence better suited for optimis-
ing purposes than physically based flow models. The input
parameters of the mesh distance-based model are a meshed
surface representation of the part and the flow pipe
arrangement. It is assumed that the inlet is at the first node
of the flow pipe. The output parameters of the mesh dis-
tance-based model are:

� x: the fill distance;
� Nvents: the number of the vents;
� Npipes: the number of nodes on the pipe (pipe nodes).

The number of pipe nodes, Npipes, is being used as an
estimate for the relative pipe length, instead of calculating
the flow pipe length precisely. This is much faster and gives
a fair indication as long as the lengths of the element edges
are more or less uniform.

In the next sections, the calculation of these output
parameters will be discussed.

4. Calculation of the fill distance

For each vent the calculations of the fill distance are
straightforward:

1. The neighbour nodes of the inlet(s) are identified as flow
front nodes and the inlet nodes are defined as distance
known nodes with distance 0.

2. The distance of the flow front nodes to the distance
known nodes is calculated. In case of a triangular mesh,
as used in this research, the distance between two neigh-
bouring nodes equals the edge length of the element they
both belong to.

3. The minimum of the calculated distances for every flow
front node is taken as the distance from this node to the
inlet.

4. The distance of the flow front nodes is now known and
therefore these nodes are defined as distance known
nodes. Their neighbours are defined as flow front nodes.

5. With this new set of flow front nodes the calculation
continuous with step 2 until the distance of all nodes
in the model are known.

This process is depicted in Fig. 2. Significant errors can
occur between this calculated distance and the geometrical,
direct, distance. Looking at node 2 of Fig. 2, it can easily be
seen that the distance directly from the start node and the
calculated distance, using the interlying node 1, differ quite
a lot. This mesh-structure dependent error should be borne
in mind when creating the mesh for a model. Ideally, every



Fig. 2. Calculation of the distance from the start node.
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node in the mesh should have connections to the other
nodes in every quadrant and at different angles than its sur-
rounding nodes. Modern preprocessors, such as MSC-
PATRAN as used here, have the possibility to generate
such meshes, which reduces this error significantly.

On 2D parts, the direct distance could be used, like Jiang
et al. [11] did, but it would restrict the model to the use of
geometrically described surfaces. Techniques have been
developed to compute geodesics between two points on tri-
angular meshes (e.g., the algorithm presented by Martinez
et al. [13]), but are, since they are based on iterative
schemes, time consuming and would reduce the advantages
of using a mesh distance-based model instead of a physi-
cally based flow model.

The calculated distances by the mesh distance-based
model were verified with the geometrical, direct, distances
for several geometries, similar to the cases presented by
Jiang et al. [11]. In general, the relative error between the
geometrical distance and the mesh based distance for a cer-
tain node decreases if the amount of nodes between the
inlet and that node increases. At the points furthest away
from the inlet (they are used to position the vents and
are only of interest), appropriately small errors (3%) were
obtained.
5. Definition of the flow pipes

If the model contains flow pipes, these have to be
defined in advance. Here, the flow pipes are defined by their
start and end node. The path of the flow pipes is defined by
the shortest path along the element edges between the start
and end node. This path is found with the same routine to
calculate the fill distances. The start node is defined as the
inlet and for every node the shortest distance to this inlet is
stored but also a ‘‘bread-crumb’’ containing the neighbour-
ing node ID where it gets its shortest distance from. For
example, assuming that the start node in Fig. 2b is the
beginning of a flow pipe, then for node 2, its shortest dis-
tance to the start node is being stored, but also where it gets
its distance from: in this case node 1.

At the end of the calculation routine this trail of bread-
crumbs is traced back, starting at the end node and ending
at the beginning of the pipe. This gives the shortest distance
(along the element edges) from the end node to the start
node, but also gives the intermediate nodes on the pipe (pipe
nodes). For example, assuming, again, that the start node in
Fig. 2b is the beginning of a flow pipe and node 2 is the end
node of the flow pipe, then the trail of bread-crumbs will go
from node 2 to node 1 and end at the start node.

As soon as all the pipe nodes are known, the fill distance
for every node can be calculated, using the routine pre-
sented in the beginning of this section. In order to accom-
modate the higher permeability of the pipe compared to the
permeability of the fibrous preform (in this case a factor
1 · 103), the distance between every pipe node is divided
by the same factor.

6. Positioning of the vents

Once the fill distance of every node is known, the posi-
tion of the vents is determined. Vents should be placed in
such a way that all the air can evacuate during the process
and no air gets trapped in a region. This is ensured if the
vents are positioned at the point which is last filled in a cer-
tain region. For the model, this can be interpreted such that
the vents should be positioned at the nodes which have a
higher fill distance than all their neighbouring nodes (local
maxima). This reduces the determination of the vent to a
simple matrix operation. This method of vent determina-
tion was verified with the cases presented by Boccard
et al. [10] and Jiang et al. [11] and showed 100% agreement.

7. Objective function

For a given pipe arrangement, the number of vents and
the maximum fill distance are calculated using the method
described above. These output parameters are coupled to
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the process properties, as process costs and process time,
using weighting functions. With these weighting factors,
the output parameters are fitted into an objective function.
A genetic algorithm (GA) is being used for the optimisa-
tion of this objective function, since the design space is
non-uniform and discrete. In genetics, the objective func-
tion is called the fitness function. The fitness function used
here to calculate the fitness value F for each scenario is:

F ¼
wdistance 1� x

xmax

� �
þ wpipes 1� Npipes

Nnodes

� �4

P vents � P distance

ð4Þ

whereX
w ¼ 1 ð5Þ

In Eq. (4), w are the weight functions with, respectively,
wdistance for the fill-distance and wpipes for the number of
pipe nodes. Nnodes is the number of nodes in the model
and hence the maximum number of pipe nodes and vents.
Because the total number of nodes in the model is usually
much larger than the number of pipe nodes, Npipes, the
term Npipes/Nnodes is not very sensitive to a change in the
number of pipe nodes. A 4th power was therefore applied
to the pipe evaluation in order to magnify a change in
the number of pipe nodes. Hsiao et al. [3] also used this
4th power to distinguish the good results from a batch of
results more clearly.

The parameter, xmax, is the maximum calculated dis-
tance (by the mesh distance-based model) between any
two nodes in the model.

The variables Pvents and Pdistance act as a penalty in case
an individual has, respectively, more vents or a higher fill
distance than allowed. For example, in case an individual
has more vents, Nvents, than the maximum allowable num-
ber of vents, Na, its fitness should be penalized and hence
Pvents was defined as:

P vents ¼ max
N vents � N a þ 1

1

� �
ð6Þ

The optimum of the fitness function is 1, when there is only
one vent, no pipe is being used and the fill distance is 0.

The values for the weight functions are chosen accord-
ing to the objective of the optimisation and the desired
optimum process properties. If a short fill time and hence
fill distance is important, the weight function wdistance will
be larger than in the case where the number of vents has
to be reduced or the costs of consumables has to be
reduced.

8. Genetic algorithm

As already mentioned, a genetic algorithm is being used
for the optimisation of the fitness function. The basic prin-
ciples of genetic algorithms (GAs) were proposed by Hol-
land [14]. It is based on the mechanism of natural
selection and natural genetics. The combination of design
parameters is represented by a single bit string, analogous
to the genes of a chromosome. Several of these bit strings,
also called individuals, generated by the different combina-
tions of design parameters, form a population. Here, each
population consisted of 20 of these individuals. The degree
of ‘‘goodness’’ or how well the individual fits into the envi-
ronment is represented by a fitness value. Throughout a
genetic evolution, the fitter chromosome has a tendency
to yield better quality offspring, meaning a better solution
to the problem. Through natural selection and reproduc-
tion, the population improves and only those who fit in
the environment best (highest fitness value) will survive
and represent the optimal solution. The main strength of
GAs is that they are robust, can deal with a wide range
of problem types and generally produce global optimal
solutions in a large search space.

A more detailed description of GA can be found in
[15,16]. The GA developed here, uses the Roulette Wheel
Scheme for selection and simple crossover and one point
random mutation for reproduction. The start and end
nodes of the flow pipe (which are the input parameters
for the mesh distance-based model) are the chromosomes
of every individual. The probability of mutation was set
to 0.2. The probability of crossover (Pcrossover) is normally
also a fixed value. The problem with a fixed crossover
probability, is that after the population evolves it becomes
quite homogeneous and offspring produced by crossover
are becoming clones instead of new samples. Booker [17]
presented a variable crossover rate, depending on the
spread of fitness. When the population converges, the
crossover rate is reduced to give more opportunity for
mutation to find new variations. DeJong and Spears [18]
showed that having such an ‘‘adaptive’’ crossover operator
enhances long term performance significantly. Here, the
crossover rate varied linearly from 1 to 0.3, depending on
the spread of the population.

Due to crossover and mutation, it is possible that the
best individual is not conserved. Therefore, the best indi-
vidual is reinserted after 20 steps, if in these 20 steps no
individual had a better fitness than this best individual.

The GA was terminated if the solution converged or the
maximum amount of iteration steps was achieved. The
solution was considered to be converged, if the fitness of
the best individual did not improve since the last 200 steps.
The maximum amount of iteration steps was set to 1000.
The results presented in the following section will show
that this number was never reached.

9. Design cases

The combination of the mesh distance-based model and
the genetic optimisation algorithm was implemented into
the MATLAB programming environment. The effective-
ness of the developed optimisation tool was validated with
a number of design cases. Two of these cases, a flat rectan-
gular plate and a glider seat will be presented here.

A flat rectangular plate, with dimensions 0.6 · 1.0 m,
was used to examine the influence of the fitness functions.
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Furthermore, the optimal solution for this plate was easier
to recognize, since it is a 2D product. The model of the
plate was meshed with 1581 nodes and 3000 first order tri-
angular elements.

Three scenarios were simulated. For the first two scenar-
ios, the objective of the optimisation was to minimise the
maximum fill distance. For the last scenario the amount
of consumables had to be minimised as well.

For the first scenario, the optimisation tool had to find
the minimum fill distance (thus maximising the fitness func-
tion F of Eq. (4), with wdistance=1 and Pdistance = 1) using
only one pipe. The pipe was defined by only its Begin-
and End node ID-number. One vent was allowed and
hence in Eq. (6), Na = 1.

Convergence was reached after 17 min on a 2.01 GHz
PC with 512 MB of RAM. The best solution, after conver-
gence was reached, is presented in Fig. 3. In this figure, and
also in the following figures, are pipe nodes, � marks
the position of a vent and x is the beginning of the flow
pipe and inlet. The intensity of the gray scale represents
the fill distance (m).

The solution presented in Fig. 3a confirms the obvious
result and corresponds with the design rules of Cai [8].
One would perhaps expect that the pipe should be posi-
tioned on the centerline of the plate (as depicted in
Fig. 1), since this would result in the minimum fill distance
for only one pipe. However, since the resin would spread
from this centerline to the sides, 2 vents would be required.
Fig. 3b shows the maximum, minimum and average fitness
of the population during the optimisation cycles. After 117
generations the optimal solution was found. Every genera-
tion consisted of 20 individuals, thus 2340 individuals (or
iteration steps) were calculated to obtain the optimal solu-
tion. With 1581 nodes in the model, there were 1,249,780
possibilities to position this pipe. This shows that the
genetic algorithm is over 500 times more effective than try-
ing all possibilities successively. However, as shown in
(a) Best solution

Fig. 3. Optimising the fill distance i
Fig. 3b, after the optimal solution was found, the algorithm
calculated another 200 generations to ensure convergence
and the solution obtained was the optimal solution. This
resulted in a total of 318 generations (6360 individuals),
which is still almost 200 times less than the total number
of possibilities.

The objective of the second scenario was still to mini-
mise the maximum fill distance. However, a total of 3 pipes
and 2 vents were allowed on the product. The first pipe was
defined by an extra middle point and two other pipes had
to connect to this main pipe. The same fitness function
and weighting factors were used, but in order to allow 2
vents on the product Na = 2.

The results after convergence are presented in Fig. 4.
The algorithm needed about the same number of iteration
steps (2640 individuals) to come to convergence compared
to the first scenario, although the number of possibilities
for this scenario is much larger. The figures show only
one case. Therefore, the first scenario was simulated 50
times, as well as the second scenario. On average the first
scenario converged after 326 generations and the second
scenario after 353 generations.

The result for this scenario also confirmed the obvious
solution but also gave rise to the question: Is this the opti-
mal solution with the minimum number of pipe nodes
required? It can be expected that for example, the middle
pipe could be shorter without reducing the maximum fill
distance of 0.14 m.

Therefore, the objective of the third scenario was to
minimise both the fill distance and the flow pipe length.
The same boundary conditions (number of pipes and vents)
applied as for scenario 2. By reducing the pipe length, the
amount and cost of consumables as well as the amount
of resin needed to fill the product will be reduced.

If a reduction of consumables and costs is desired, the
genetic algorithm can easily be adjusted to minimise the
flow pipe length, simply by modifying the weighting factors
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Fig. 4. Optimising the fill distance if 2 vents and 3 pipes are allowed.

Fig. 5. Optimising the fill distance and the amount of consumables if 2
vents and 3 pipes are allowed.
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of the fitness function. The weighting factors wdistance and
wpipes were, respectively, set to 0.1 and 0.9 in order to
emphasise the optimisation of the flow pipe length.

The penalty function, Pdistance, was defined in such a way
that it reduced the fitness if the fill distance was larger than
the allowable fill distance, which was arbitrarily set to
0.2 m.

P distance ¼
10; x > 0:2

1; x 6 0:2

�
ð7Þ

The result with the highest fitness factor after convergence
is depicted in Fig. 5. All three horizontal pipes were shorter
and the length of the flow pipes was reduced by 0.34 m
compared to the previous case. The maximum fill distance
was 0.2 m, as could be expected due to the penalty
function.

The final design case was a pilot seat for a glider. Where
the previous design cases were only 2D, this product was
3D and had a more complex shape. The seat is basically
a bath-tub shape with a back rest and armrests on the side.
Opposite the back rest there are two leg rests with a gap in
between for the control stick. The arm rests are on different
levels, thus the product is not symmetrical. The CAD
model is depicted in Fig. 6a. This CAD model was meshed
Fig. 6. The CAD and finite elem
with MSC-Patran using 1463 first order triangular elements
and 807 nodes. The meshed finite element model is pre-
sented in Fig. 6b.

The seat consists of a combination of woven carbon-
and Kevlar fibres and production numbers are only a few
per year. Since the permeability of this carbon/Kevlar
ent model of the glider seat.



Fig. 7. Optimal pipe position on a glider seat if 3 pipes are allowed.
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combination is quite low, infusion times and thus the
maximum fill distance had to be as short as possible. The
number of vents was kept free (Na =1) and the fitness
function of Eq. (4) was used with wdistance = 1 and
Pdistance = 1. Due to the two leg rests, it was clear that at
least two pipes should be used, otherwise one of the two
leg rests would not contain a pipe which will increase the
fill distance by at least the full length of the leg rest
(�0.5 m). Therefore, three pipes were allowed.

Convergence was reached after 551 generations and
14 min of calculation time. The solutions with the best
and second best fitness after convergence are depicted in
Fig. 7. The maximum fill distance was 0.21 m. The solution
with the highest fitness required a total of 9 vents, whereas
with the solution with the second best fitness only 8 vents
were necessary. Therefore, the second best solution was
favoured over the best solution.
Fig. 8. The flow pipe and inlet position and predicted vent position
calculated by the flow model.
10. Verification with a physically based flow model

Fig. 7b shows the required position of the vents for this
flow pipe set up. Since the mesh distance-based model is
only geometrically based, the position of the vents were
verified with a simulation, using a physically based flow
model. Here, the flow model presented by Kessels et al.
[6] was used, without the preform compaction, but with
an extension to accommodate the 1D flow pipes.

Fig. 8a shows the meshed model of the seat with the flow
pipes and Fig. 8b shows a 3D view. The resin viscosity and
the isotropic preform permeability were both normalised to
unity (l = K = 1). The flow pipe had a permeability which
was a factor 1000 higher than the rest of the preform. This
is the same factor as used by the genetic based optimisation
tool.

The simulation of the mould filling with the physically
based flow model took 4 min. The simulated propagation
of the flow front is depicted in Fig. 9, where tn is the nor-
malised time, which is defined by the time at that moment,
t, divided by the total filling time, ttotal.
The prediction of the position of the vents by the phys-
ically based flow model can be derived from the flow-front
propagation by looking at the nodes which are not filled
yet, while all their neighbouring nodes are already filled.
At these nodes, vents should be positioned, as presented
in Fig. 8a.

The number of vents and the area where these vents had
to be positioned agreed quite well with the results from the
mesh distance-based model. Only the exact positions dif-
fered slightly compared to the predicted positions by the
genetic based optimisation model.



Fig. 9. Simulated mould filling of a glider seat at different times, where normalised time tn = t/ttotal.
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11. Discussion

The flow pipe position on a rectangular plate was opti-
mised in the first scenario of the first design case. A total
of 2340 individuals were calculated to come to conver-
gence. The best solution after convergence agreed very well
with the obvious optimal solution. It also showed that the
genetic algorithm was more effective than the one used by
Jiang et al. [11]. They needed 3071 trials to optimise the
position of 2 inlets (which is similar to a pipe defined by
its begin and end point) for a 1036 node model. This is
mainly due to the variable crossover rate which allowed
the solution to converge faster to the optimal solution [18].

The second scenario of the first design case showed that
the genetic algorithm got more effective if the number of
design parameters, i.e., number of pipes, increased. The
reason can be found in the nature of the genetic algorithm
and the problem itself: the start and end positions of the
pipes can be optimised independently from each other
and. Furthermore, the solutions for the different pipes
can be interchanged as well due to crossover. Hence the
position for the different pipes is optimised simultaneously
(parallel and not serial) increasing the effectiveness of the
algorithm as the number of design parameters increases.

An isotropic preform permeability was assumed for the
optimisation tool. Anisotropic permeabilities can be
accounted for in the same way as the different permeability
of the flow pipe. The element edge lengths can virtually be
reduced or increased according to the permeability of the
preform in the direction of the element edge. However, in
most practical cases, woven fabrics and/or flow enhance-
ment layers, like the infusion mesh, are being used for
the RIFT process. In these cases, the preform permeability
can be assumed to be isotropic and the presented model
will be adequate.

The calculation of the total pipe length was simplified by
taking the number of flow pipes nodes as an indication for
the total flow pipe length for the third scenario. Although
this assumption saved significant calculation time, it
required a constant element edge length in the model. In
the case of the rectangular plate, the diagonal element
edges were a factor

ffiffiffi
2
p

longer than the horizontal and ver-
tical ones. Therefore, it could be expected that the model
would favour flow pipes along the diagonal edges since
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more distance is covered with fewer flow pipe nodes. In the
presented case, this phenomenon did not occur which jus-
tified the simplification.

On a more complex shape, like the glider seat in the sec-
ond design case, the optimal pipe position is not always
obvious and this is where the developed optimisation tool
becomes very useful. After the optimisation tool converges,
the final population contains the optimal solution, but also
a variety of sub-optimal solutions. The design case showed
that these solutions, which have a fitness close to the opti-
mal solution, can be different but still of interest. After an
optimisation cycle it is therefore recommended to consider
all individuals of the last population and a final solution
should be selected in the light of experience. For example
in this design case, the second best solution was better sui-
ted for a reason which was not included in the fitness
function.

12. Conclusion

The genetic based optimisation tool presented here is
based on a mesh distance-based model and a genetic opti-
misation algorithm. The mesh distance-based model gives a
fast prediction of the fill distance and position and number
of the vents and is therefore very well suited for optimisa-
tion purposes. Although differences between the geometri-
cal distance and the calculated distances occurred close to
the inlet, the error for the maximum fill distances at the
vents was within an acceptable range (3%). The position
and number of vents, predicted by the model, agreed
100% with the test cases known from literature.

As soon as different types of flow exist, as with the gilder
seat, the predicted positions of the vents differ from the
actual ones. This did not influence the optimisation pro-
cess, since the number and region were still correct, but
requires a final calculation with a physically based flow
model to give a more accurate vent position.

The genetic algorithm provides a stable and effective
optimisation method. A variable crossover rate increases
the effectiveness. Depending on the choice of fitness func-
tion, the algorithm is capable of optimising the different
production parameters as flow pipe position and length, fill
distance and number of vents. The genetic algorithm not
only provides the optimal solution but also the sub-optimal
solutions, which are also of interest.
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