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Quasi-1Dunsteady bubbly cavitating nozzle flows are considered by employing a homogeneous bub-
bly liquid flow model, where the non-linear dynamics of cavitating bubbles is described by a modified
Rayleigh–Plesset equation. The various damping mechanisms are considered by a single damping coef-
ficient lumping them together in the form of viscous dissipation and by assuming a polytropic law for
the expansion and compression of the gas. The complete system of equations, by appropriate uncoupling,
are then reduced to two evolution equations, one for the flow speed and the other for the bubble radius
when all damping mechanisms are considered by a single damping coefficient. The evolution equations
for the bubble radius and flow speed are then perturbed with respect to flow unsteadiness resulting in a
coupled system of linear partial differential equations (PDEs) for the radius and flow speed perturbations.
This system of coupled linear PDEs is then cast into an eigenvalue problem and the exact solution of
the eigenvalue problem is found by normal mode analysis in the inlet region of the nozzle. Results show
that the steady-state cavitating nozzle flow solutions are stable only for perturbations with very small
wave numbers. The stable regions of the stability diagram for the inlet region of the nozzle are seen to be
broadened by the effect of turbulent wall shear stress.

Keywords: bubbly cavitating flows; steady-state solutions; temporal stability.

1. Introduction

Cavitating flows through converging–diverging nozzles seem to be the simplest configurations for anal-
ysis in hydrodynamic cavitation. They have direct applications in cavitation in ducts and venturi tubes as
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STABILITY OF STEADY-STATE BUBBLY NOZZLE FLOWS 231

well as in diesel injection nozzles. The first model of bubbly liquid flow through a converging–diverging
nozzle was proposed byTangrenet al.(1949) using a barotropic relation. The problem was reconsidered
by Ishii et al. (1993) by taking into account unsteady effects, but still neglecting bubble dynamics. A
summary of barotropic models can be found in the book byBrennen(1995). For cavitating flows, it is
essential to consider bubble dynamics together with the equations of nozzle flow. A continuum bubbly
mixture flow model that couples spherical bubble dynamics, as described by the classical Rayleigh–
Plesset equation, to the flow equations was proposed byvan Wijngaarden(1968). Steady-state solutions
of bubbly cavitating flows through converging–diverging nozzles have been investigated byWang &
Brennen(1998) andDelaleet al. (2001) using the continuum bubbly liquid flow model. Assuming that
the gas pressure inside the bubble obeys the polytropic law and lumping all damping mechanisms, in
a crude manner, by a single damping coefficient in the form of viscous dissipation, both investigations
have demonstrated bifurcation of steady-state solutions to flashing flow instabilities by varying the inlet
void fraction (or inlet bubble radius or inlet cavitation number). A numerical investigation of unsteady
bubbly cavitating flows in converging–diverging nozzles based on the same model has been carried out
by Prestonet al. (2002). They show that the instabilities encountered in the steady-state solutions of
quasi-1D bubbly nozzle flows may correspond to unsteady bubbly shock waves formed in the diverging
section of the nozzle and propagated downstream.

The aim of this investigation is to present a detailed analysis of quasi-1D unsteady bubbly cavitating
flows in converging–diverging nozzles with the inclusion of bubble/bubble interactions as discussed in
Delaleet al. (2001). The description is, therefore, restricted solely to the investigation of the interplay
between the overall compressibility of the continuum bubbly mixture and the flow unsteadiness using a
damping coefficient which lumps all damping mechanisms, in a crude manner, in the form of viscous
dissipation. From these model equations, the evolution equations for the flow speed and bubble radius
are derived. The local pressure field, in this model, then follows exactly by its relation to the bubble
radius, flow speed and its partial derivatives, showing explicitly the contributions arising from area
change, two-phase mixture compressibility and flow unsteadiness.

The evolution equations obtained are then applied to the stability of steady-state quasi-1D bubbly
cavitating nozzle flow solutions. Although the stability of both inviscid and viscous bubbly parallel flows
have been investigated byd’Agostinoet al. (1997) andd’Agostino & Burzagli(2000), it is important
to investigate the temporal stability of cavitating nozzle flows in the quasi-1D approximation to find out
whether such steady solutions are stable with respect to temporal perturbations. For the range of nozzle
inlet conditions, where steady-state solutions exist, the temporal stability is examined by perturbing
the two evolution equations for the flow speed and bubble radius using the corresponding steady-state
solutions as base fields. A coupled system of linear partial differential equations (PDEs) is obtained for
the temporal stability of the steady-state solutions. In particular, a normal mode analysis is carried out
in the inlet region and stability diagrams are obtained by varying the cavitation number or inlet void
fraction against the perturbation wave numberk. Results show that steady-state solutions of the model
equations are temporally stable only for very small wave numbers. The effect of damping mechanisms
on the stability of the steady-state solutions seems to be negligible in the inlet region because of the
very small growth rate of the bubbles. However, the stable regions of the stability diagram are seen to
be broadened when the wall shear stress is taken into account.

2. Model equations for bubbly cavitating flows

We consider an unsteady quasi-1D cavitating nozzle flow and we assume that the initial distributions,
inlet conditions and nozzle geometry are such that cavitation can occur in the nozzle. We use a slightly
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modifiedversion of the continuum bubbly mixture model, introduced byvan Wijngaarden(1968) and
later employed byWang & Brennen(1998),Delaleet al. (2001) andPrestonet al. (2002), that couples
the unsteady nozzle flow equations to spherical bubble dynamics. In this model, the effect of the relative
motion between the bubbles and the surrounding liquid is neglected using a homogeneous two-phase
flow model for the bubbly mixture. This effect may become important in certain cases and should then
be taken into account (Noordzij & van Wijngaarden, 1974;Bieshuevel & van Wijngaarden, 1984;Zhang
& Prosperetti,1994;Wang & Chen,2002). Keeping this in mind, the conventional continuity and mo-
mentum nozzle flow equations for the bubbly mixture can be written as

A
′ ∂ρ ′

∂t ′ +
∂

∂x′ (ρ
′u′ A′) = 0, (2.1)

ρ′ du′

dt′
= −

∂p′

∂x′ −
P′

A′ τ
′
w, (2.2)

togetherwith

ρ ′ = ρ′
`(1 − β). (2.3)

In (2.1–2.3),ρ ′ is the mixture density (given by (2.3) where the contribution from the dispersed
gaseous phase has been neglected and where the liquid phase is assumed to be incompressible with
constant densityρ′

`), β is the void fraction,u′ is the flow speed,p′ is the mixture pressure andτ ′
w is the

wall shear stress, all presumably being functions of the axial coordinatex′ (with origin at the throat) and
the timet ′. Moreover,A′ is the nozzle cross-sectional area andP′ is the wetted cross-sectional perimeter.
It is also worthwhile to note that, in the momentum equation (2.2), the gravity effect is neglected and
d/dt′ = ∂/∂ t ′ + u′∂/∂x′ denotesthe material or total derivative. The system of equations (2.1–2.3) is
coupled to bubble dynamics through the void fractionβ. For a cloud of monodispersed spherical bubbles
of radiusR′, the void fractionβ is defined by

β =
4

3
πR′3n′, (2.4)

wheren′ is the bubble population density per unit volume of the mixture. If creation (nucleation and
bubble fission) and coagulation of bubbles are neglected, the bubble population densityn′ canbe related
to the void fractionβ by

n′ = η′
0(1 − β), (2.5)

whereη′
0 is the number density of bubbles per unit volume of the liquid and is constant throughout the

flow. It then follows from (2.4) and (2.5) that

R′3(1 − β)

β
=

3

4πη′
0

= constant (2.6)

throughout the flow. The system of equations (2.1–2.3) together with (2.6) is completed by a model
equation for spherical bubble dynamics. It is well known that various damping mechanisms including
viscous dissipation, liquid compressibility and thermal conduction through the gas/vapour bubble con-
tribute to bubble dynamics (Nigmatulinet al., 1981;Prosperetti & Lezzi,1986;Prosperettiet al., 1988;
Prosperetti,1991). In this investigation, the various damping mechanisms are lumped together, in an

 at U
niversiteit T

w
ente on July 16, 2013

http://im
am

at.oxfordjournals.org/
D

ow
nloaded from

 

http://imamat.oxfordjournals.org/


STABILITY OF STEADY-STATE BUBBLY NOZZLE FLOWS 233

ad hoc manner, in the form of viscous dissipation by an overall damping coefficient. Although the
detailed structure of the damping mechanisms can not be treated by such a crude model, it is useful in
providing information on the magnitude of the overall damping, relative to viscous damping. In particu-
lar, liquid compressibility and thermal damping dominate during violent collapse of cavitation bubbles.
Deformation of bubbles near boundaries (Blake & Gibson, 1987), shape instabilities (Brenneret al.,
1995) and bubble fission (Brennen,2002) also contribute significantly to energy losses within the bub-
ble that has to be taken into account separately (Delale & Tunç, 2004). In this case, bubble collapse is
non-spherical, and results using spherical bubble dynamics has to be interpreted statistically for a cloud
of bubbles by a mean radius related to the volume of the bubbles. Moreover, inside such a cloud of bub-
bles, bubble/bubble interactions can become important. A model for spherical bubble dynamics which
accounts for bubble/bubble interactions by a slightly modified local homogeneous mean field theory of
Kubotaet al. (1992) and for the various damping mechanisms by lumping them together, in anad hoc
manner, in the form of viscous dissipation with an overall damping coefficient has been employed by
Delaleet al. (2001) to study the bifurcation structure of steady-state cavitating nozzle flows. Here, we
use this model for spherical bubble dynamics, which provides a modified Rayleigh–Plesset equation for
the mean radius as

p′
v − p′

ρ′
`

=
[1 + (2/3)πη′

0(3Λ
2 − 1)R′3]

[1 + (4/3)πη′
0R′3]

R′ d
2R′

dt′2

+
3

2

[1 + (8/3)πη′
0(2Λ

2 − 1)R′3 + (16/9)π2η′
0

2Λ2R′6]

[1 + (4/3)πη′
0R′3]2

(
dR′

dt′

)2

+
2S′

ρ ′
`R′ +

4μ′
eff

ρ′
`R′

dR′

dt′
− p′

gi

(
R′

0

R′

)3k

. (2.7)

In (2.7), S′ is the surface tension coefficient,p′
v is the partial vapour pressure inside the bubble,p′

gi is
the initial gas pressure of the bubble at the inlet of the nozzle,k is the polytropic index (in particular,
k = 1 for isothermal expansion andk = γ for isentropic expansion of the gas, whereγ is the isentropic
exponent of the gas),μ′

eff is the overall damping coefficient andΛ is the bubble/bubble interaction
parameter defined by

Λ =
Δr ′

R′ (2.8)

with Δr ′ denotingthe range of interactions from the center of any fixed bubble (Kubotaet al., 1992;
Delaleet al.,2001). We now normalize the mixture density, the gas and mixture pressures and the flow
speed as

ρ =
ρ ′

ρ′
`

= 1 − β, p =
p′

p′
i
, pv =

p′
v

p′
i
, pg =

p′
g

p′
i
, u =

u′
√

p′
i/ρ

′
`

, (2.9)

basedon the liquid densityρ ′
`, the initial pressure at the nozzle inletp′

i and a characteristic speed√
p′

i/ρ
′
`. We also normalize the axial coordinatex′ by a characteristic macroscale lengthH ′

i (chosen
as the nozzle inlet height), the cross-section areaA′ by the nozzle inlet areaA′

i , the time coordi-

natet ′ by the characteristic flow timeΘ ′ = H ′
i /
√

p′
i/ρ

′
` andthe bubble radiusR′ by a characteristic
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microscalelengthR′
i (chosenas the initial radius of bubbles, assumed to be monodispersed, at the inlet

height) as

x =
x′

H ′
i
, A =

A′

A′
i
, t =

t ′

Θ ′ =

√
p′

i/ρ
′
`t

′

H ′
i

and R =
R′

R′
i
. (2.10)

Equations(2.1–2.7) then take the normalized form

ρ = 1 − β, (2.11)

A
∂ρ

∂t
+
∂

∂x
(ρuA) = 0, (2.12)

ρ
du

dt
= −

∂p

∂x
− Cwϕρu2, (2.13)

R3
(

1 − β

β

)
=

1 − βi

βi
= κ3

i , (2.14)

pv − p

L2
=

[1 + (3Λ2 − 1)(R/κi)
3/2]

[1 + (R/κi)3]
R

d2R

dt2

+
3

2

[1 + 2(2Λ2 − 1)(R/κi)
3 +Λ2(R/κi)

6]

[1 + (R/κi)3]2

(
dR

dt

)2

(2.15)

+
S0

L2R
+

4

L2(Re)R

dR

dt
−

pgi

L2R3k
.

whereL is the ratio of micro scale to macro scale defined by

L =
R′

i

H ′
i
, (2.16)

Cw is the wall friction coefficient,ϕ is defined by

ϕ =
H ′

i P′

2A′ , (2.17)

κi is a parameter defined in terms of the initial inlet void fractionβi by

κ3
i =

1 − βi

βi
, (2.18)

S0 is the non-dimensional surface tension coefficient defined by

S0 =
2S′

p′
i R

′
i

(2.19)

andRe is a typical Reynolds number, based on the overall damping coefficientμ′
eff , and is defined by

Re=
ρ′
`H ′

i

√
p′

i/ρ
′
`

μ′
eff

. (2.20)
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STABILITY OF STEADY-STATE BUBBLY NOZZLE FLOWS 235

Equations(2.11–2.15) constitute the model equations for unsteady cavitating nozzle flows with
unknownsp, ρ, β, u andR and given area variationA = A(x).

3. Evolution equations for the flow speed and bubble radius

By eliminating the void fractionβ and the mixture densityρ between (2.11), (2.12) and (2.14), we
obtain that

dR

dt
−

R

3β(1 − β)

dβ

dt
=

dR

dt
−

R

3βA

∂

∂x
(uA) = 0. (3.1)

We can further eliminate the pressurep between the momentum equation (2.13) and the modified
Rayleigh–Plesset equation (2.15) by differentiating (2.15) with respect tox and by replacing the par-

tial derivatives ∂
∂x

(dR
dt

)
and ∂

∂x

(d2R
dt2
)

from (3.1). After cumbersome manipulations, we arrive at the
evolution equations for the bubble radiusR(x, t) and for the flow speedu(x, t) as

∂R

∂t
= −u

∂R

∂x
+

1

3R2
(R3 + κ3

i )

[(
1

A

dA

dx

)
u +

∂u

∂x

]
(3.2)

and

∂u

∂t
= a(x, t), (3.3)

wherethe unsteady accelerationa satisfies the linear PDE

∂2a

∂x2
+ g

∂a

∂x
+ ha = s, (3.4)

where the functionsg andh are functions ofR, ∂R/∂x andx, s is a function ofR, u, ∂R/∂x, ∂u/∂x,
∂2u/∂x2, ∂3u/∂x3 andx, and they are defined by

g =
F1

F2

∂R

∂x
+

1

A

dA

dx
, (3.5)

h =
F1

F2

(
1

A

dA

dx

)
∂R

∂x
+

F3

F2
+

d

dx

(
1

A

dA

dx

)
(3.6)

and

s= −

{

u
∂3u

∂x3
+
[

F1

F2
u
∂R

∂x
+

F4

F2

∂u

∂x
+

F4

F2
u

(
1

A

dA

dx

)
+

F5

F2

]
∂2u

∂x2

+
F6

F2

∂R

∂x

(
∂u

∂x

)2

+
[

F7

F2
u

(
1

A

dA

dx

)
− 3

F3F5

RF2

]
∂R

∂x

∂u

∂x
+

F4

F2

(
1

A

dA

dx

)(
∂u

∂x

)2

+

[
F8

F2
u

d

dx

(
1

A

dA

dx

)
+

F9

F2
u

(
1

A

dA

dx

)2

+
F5

F2

(
1

A

dA

dx

)
+

F3

F2
u

]
∂u

∂x
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+

[
F6

F2
u2
(

1

A

dA

dx

)2

− 3
F3F5

RF2
u

(
1

A

dA

dx

)
+

F1

F2
u2 d

dx

(
1

A

dA

dx

)
+

F10

F2

]
∂R

∂x

+
F9

F2
u2
(

1

A

dA

dx

)
d

dx

(
1

A

dA

dx

)
+ u2 d2

dx2

(
1

A

dA

dx

)

+
F5

F2
u

d

dx

(
1

A

dA

dx

)
+
∂pv/∂x + κ3

i Cwϕu2/(R3 + κ3
i )

F2

}

. (3.7)

The functionsFj , j = 1,2, ..., 10, entering (3.5–3.7), depend only onR and are given in Appendix
A. The evolution equations (3.2) and (3.3) together with (3.4) can then be solved for a given nozzle
configuration together with specified inlet and outlet boundary conditions for initially specified bubble
radius and flow speed distributions. The solution for the rest of the hydrodynamic variables can then be
related to this solution. In particular, the pressure field is given by

p = pv −
L2κ6

i

18R4
[(6Λ2 − 1)(R/κi)

6 + (6Λ2 − 2)(R/κi)
3 − 1]

[(
1

A

dA

dx

)
u +

∂u

∂x

]2

−
L2κ3

i

6R
[2 + (3Λ2 − 1)(R/κi)

3]

[
∂a

∂x
+
(

1

A

dA

dx

)
a + u

∂2u

∂x2
+
(

1

A

dA

dx

)
u
∂u

∂x
+ u2 d

dx

(
1

A

dA

dx

)]

−
S0

R
+

pgi

R3k
−

4κ3
i

3(Re)R3
[1 + (R/κi)

3]

[(
1

A

dA

dx

)
u +

∂u

∂x

]
. (3.8)

Equation(3.8) expresses the explicit dependence of the pressure field on the bubble radiusR, on the
flow compressibility and its spatial derivative, the temporal accelerationa and its spatial derivativeax,
showing clearly how the local pressure field is affected by the two-phase mixture compressibility and
flow unsteadiness. The last term that appears on the right-hand side of (3.8) is the contribution to the
local pressure arising from the various damping effects (all lumped together, in anad hocmanner, in the
form of viscous dissipation) of spherical bubble dynamics. Finally, the void fractionβ and the mixture
densityρ follow from the formulas

β = 1 − ρ =
R3

R3 + κ3
i

. (3.9)

4. Temporal stability of steady-state quasi-1D bubbly cavitating nozzle flows

In this section, we utilize the above evolution equations to study the temporal stability of quasi-1D
bubbly cavitating nozzle flow solutions of thevan Wijngaarden(1968). It has been shown byWang &
Brennen(1998) and byDelaleet al.(2001) that such steady-state solutions exist only for a certain range
of a particular parameter when the rest of the inlet conditions are kept fixed for a given nozzle geometry.
This parameter is usually chosen as the initial inlet void fractionβi or the initial inlet cavitation number
σi , defined by

σi =
p′

i − p′
v

(1/2)ρ′2
` u′2

i0

=
1 − pv

(1/2)u2
i0

, (4.1)
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whereu′
i0 andui0, respectively, denote the dimensional and normalized initial flow speeds at the nozzle

inlet. We herein study the temporal stability of these steady-state solutions for the range of parameters
they exist. For this reason, we perturb the steady-state quasi-1D bubbly cavitating flow solutions of the
normalized flow speed̄u(x) and the normalized bubble radiusR̄(x) in the form

u = ū(x)[1 + εw(x, t)], (4.2)

R= R̄(x)[1 + εφ(x, t)], (4.3)

whereε is a small parameter, assumed to be much less than unity in magnitude (ε � 1), and the time-
dependent flow speed and the bubble radius perturbation functions, respectively, denoted byw(x, t) and
φ(x, t) are assumed to be of O(1) in magnitude (linear stability). Substitution of the perturbed field given
by (4.2) and (4.3) into the evolution equations (3.2–3.4) yields to O(1) the steady-state quasi-1D bubbly
cavitating nozzle flow equations for the flow speedū(x) and the bubble radius̄R(x). These equations
can be shown to be equivalent to the third-order differential equation obtained byDelaleet al. (2001)
for the steady-state flow speedū(x). The linear PDEs for the perturbationsw(x, t) andφ(x, t), after
cumbersome manipulations, then follow as

A1
∂3w

∂x3
+ A2

∂3w

∂x2∂t
+ A3

∂2w

∂x2
+ A4

∂2w

∂x∂t
+ A5

∂w

∂x
+ A6

∂w

∂t
+ A7

∂φ

∂x
+ A8w + A9φ = 0 (4.4)

and

C1
∂3w

∂x3
+ C2

∂3w

∂x2∂t
+ C3

∂2w

∂x2
+ C4

∂2w

∂x∂t
+ C5

∂w

∂x
+ C6

∂w

∂t
+ C7w + C8φ −

∂φ

∂t
= 0, (4.5)

wherethe coefficientsAi , i = 1,2, ..., 9, are all the functions of̄u(x), R̄(x), the nozzle areaA(x) and its
derivatives and are given in Appendix C. The coefficientsCi , i = 1,2, ..., 8, entering (4.5) are defined
as

C1 = ū
A1

A7
, C2 = ū

A2

A7
, C3 = ū

A3

A7
, C4 = ū

A4

A7
, C5 = ū

A5

A7
+

ū2A

3(ūA − λi)
, (4.6)

C6 = ū
A6

A7
, C7 = ū

A8

A7
and C8 = ū

A9

A7
−

λi

(ūA − λi)

[
dū

dx
+
(

1

A

dA

dx

)
ū

]
(4.7)

with λi = (1 − βi)ūi , whereβi denotesthe inlet void fraction and̄ui is the normalized inlet flow speed
in steady flow.

5. Normal mode analysis in the inlet region

The coefficientsAi , i = 1, .., 9, andCi , i = 1, .., 8, entering (4.4) and (4.5) are all functions of the
steady-state flow speed and the radius distributionsū(x) andR̄(x) and of the nozzle area and its deriva-
tives. The perturbationsw(x, t) andφ(x, t), on the other hand, enter the equations up to first order in
the time derivative. Therefore, one can in principle cast the system into an eigenvalue problem using the
transformation

w(x, t) = w̃(x)est and φ(x, t) = φ̃(x)est (5.1)
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to arrive at the generalized eigenvalue problem

L1ψ = sL2ψ (5.2)

with

ψ =

(
w̃(x)

φ̃(x)

)

, (5.3)

L1 =








A1
∂3

∂x3
+ A3

∂2

∂x2
+ A5

∂

∂x
+ A8 A7

∂

∂x
+ A9

C1
∂3

∂x3
+ C3

∂2

∂x2
+ C5

∂

∂x
+ C7 C8








(5.4)

and

L2 =








−A2
∂2

∂x2
− A4

∂

∂x
− A6 0

−C2
∂2

∂x2
− C4

∂

∂x
− C6 1







. (5.5)

Temporal stability then demands that the real partssR of the eigenvaluess are negative(sR < 0) pro-
videdthat the eigenvaluess are obtained by the solution of the eigenvalue problem given by (5.2). The
generalized eigenvalue problem can, in principle, be solved by discretization or using spectral methods.
Even if the complete spectrum of the generalized eigenvalue problem is obtained, it would be difficult
to establish a physical criterion to sort out the physically relevant eigenvalues from the rest. Thus, the
numerical solution in this case does not seem to be feasible, despite the difficulties in obtaining the
complete spectrum. Fortunately, in regions where all the coefficientsAi , i = 1, .., 9, andCi , i = 1, .., 8,
entering (4.4) and (4.5) remain constants, the temporal stability problem can be solved exactly by nor-
mal mode analysis. In quasi-1D bubbly cavitating nozzle flows, we find these coefficients to be almost
constant in the nozzle inlet region where variations in both flow and area variations are relatively small.
Thus, we can carry a normal mode analysis of the temporal stability of the steady-state solutions in the
nozzle inlet region. For this reason, we let

w(x, t) = ŵ ei(kx−ωt) and φ(x, t) = φ̂ ei(kx−ωt)) (5.6)

in the inlet region of the nozzle, wherek denotes the wave number,ω denotes the angular frequency,ŵ
andφ̂, respectively, denote the amplitudes of the flow speed and the radius (both much less than unity
in magnitude) and where all the coefficients entering the linear PDE system given by (4.4) and (4.5) are
nearly constants. Substitution of (5.6) into (4.4) and (4.5) leads to the dispersion relation

Lω2 + Mω + N = 0, (5.7)

wherethe complex coefficientsL ,M andN are given by

L = LR + iL I = (A6 − A2k2)+ i A4k, (5.8)

M = MR + iMI
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= [(A4C8 − A5 − A9C4 − A7C6)k + (A1 + A7C2)k
3]

+i[( A8 − A6C8 + A9C6)+ (A2C8 − A3 − A7C4 − A9C2)k], (5.9)

N = NR + iNI

= [(A8C8 − A9C7)+ (A7C5 + A9C3 − A3C8)k
2 − A7C1k4]

+i[( A5C8 − A7C7 − A9C5)k + (A7C3 + A9C1 − A1C8)k
3] (5.10)

with subscripts R and I denoting the real and imaginary parts of complex numbers. For temporal
stability, the wave numberk is real and given. The angular frequencyω, on the other hand, is com-
plex (ω = ωR + iωI). Therefore, for temporal stability, the imaginary partωI of the angular frequency
must be negative(ωI < 0). From the dispersion relation (5.7), we obtain the fourth-degree polynomial
equation

ε4ω
4
I + ε3ω

3
I + ε2ω

2
I + ε1ωI + ε0 = 0 (5.11)

for ωI , where the coefficientsεi , i = 0, . . . , 4, are all polynomials in the wave numberk and are given
in Appendix D. To investigate the sign ofωI given by (5.11) for a given wave numberk, we first note
that all the coefficientsεi , i = 0, . . . , 4, are even functions of the wave numberk. Therefore, one only
needs to investigate the sign ofωI for k > 0. Settingε0 = 0, which results in a polynomial of degree
5 in k2, we find those real positive rootski , i 6 5, for which ωI vanishes. From the sign of−ε1/ε4,
we determine the sign ofωI in the immediate vicinity of eachki , i 6 5. We then identify those regions
whereωI < 0 as the stable regions of quasi-1D steady-state cavitating nozzle flows.

6. Results and discussion

We now consider a two-phase bubbly flow with bubbles containing water vapour and air in water at an
isothermal temperature of 20◦C, implying a constant partial vapour pressurep′

v = 0.0234bar, a constant
surface tension coefficientS′ = 7.1 × 10−2 N/m and a constant water viscosityμ′

` = 10−3 kg/ms.The
inlet pressure is set at the fixed valuep′

i = 1.013bar. The nozzle geometry employed byPrestonet al.
(2002), as shown in Figs1 and2, and whose area in our normalization is given by

A(x) = 1 − 0.25 exp

[

−
(

x − 150L

30L

)2
]

(6.1)

is considered. Furthermore, for a quasi-1D nozzle, we haveϕ = 1/A. The wall friction coefficient is
evaluated for a smooth wall using the turbulent correlation

1

C1/2
w

= 1.768ln[(Ref )C
1/2
w ] − 0.94 (6.2)

which was verified experimentally (for details seeWard-Smith, 1980) where the Reynolds number Ref

is related to Re of (2.20) by

Ref = 2uA(Re)
μ′

eff

μ′
`

. (6.3)

The inlet bubble radius is fixed atR′
i0 = 40 μm together withL = 8 × 10−4. Here, we neglect

bubble/bubble interactions so thatΛ = 1 since they are not important in the inlet region. We set the inlet
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240 Ş. PASINLIOĞLU ET AL.

FIG. 1. The steady-state non-cavitating bubble radius, flow speed (top figure) and pressure coefficient (bottom figure) distributions
of water with air bubbles along the axial coordinate of the nozzle employed byPrestonet al.(2002) (middle figure) with damping
coefficientμ′

eff/μ
′
` = 1.0, bubble/bubble interaction parameterΛ = 1.0, inlet bubble radiusR′

i = 40μm , micro to macro length

ratio L = 8 × 10−4, inlet pressurep′
i = 1.013 bar, inlet void fractionβi = 10−3 and cavitation numberσi = 0.85.
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FIG. 2. The steady-state cavitating bubble radius, flow speed (top figure) and pressure coefficient (bottom figure) distributions of
water with air bubbles along the axial coordinate of the nozzle employed byPrestonet al. (2002) (middle figure) with damping
coefficientμ′

eff/μ
′
` = 1.0, bubble/bubble interaction parameterΛ = 1.0, inlet bubble radiusR′

i = 40μm , micro to macro length

ratio L = 8 × 10−4, inlet pressurep′
i = 1.013 bar, inlet void fractionβi = 10−3 and cavitation numberσi = 0.79.
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void fraction at the valueβi = 10−3 and vary the cavitation numberσ in the range between 0.7 and 1.0
for both the inviscid(Cw = 0) and the turbulent flow case where the friction coefficientCw is given by
(6.2). All damping mechanisms of bubble dynamics are taken into account by a single damping coeffi-
cientμ′

eff/μ
′
` in the form of viscous dissipation (in particular,μ′

eff/μ
′
` = 1 corresponds to the case where

all damping mechanisms, except viscous dissipation, are neglected). It is well known from the work of
Wang & Brennen(1998) andDelaleet al. (2001) that steady-state solutions under specified conditions
exist only if the cavitation numberσi is above some critical valueσic. It follows that under the above
stated conditions,σic = 0.78 whenμ′

eff/μ
′
` = 1 andσic = 0.72 whenμ′

eff/μ
′
` = 30 for both the inviscid

case and the case where turbulent wall shear stress is taken into account. Typical steady-state solutions of
the flow speed̄u(x), the bubble radius̄R(x) and the pressure coefficientCp(x) are shown in Figs1 and
2 for non-cavitating (σi > −(Cp)min) and cavitating (σi < −(Cp)min) bubbly flows, respectively, where
(Cp)min denotes the minimum of the pressure coefficient (the effect of the turbulent wall shear stress is
negligible in this case). These results are in good agreement with the steady-state solutions obtained by
Prestonet al. (2002). When a normal mode analysis to the steady-state base field solutions is applied in
the inlet region, as described above, from the sign ofωI , we find the temporally stable ones correspond-
ing to real wave numbersk and construct the stability diagrams. Figure3 shows such a stability diagram
for the variation of the cavitation numberσi against the perturbation wave numberk under the condi-
tions stated above. As has been demonstrated byWang & Brennen(1998) andDelaleet al. (2001), we
note that there are no steady-state solutions below a critical cavitation number under the specified condi-
tions and nozzle geometry. As the steady-state solutions obtained above a critical cavitation number are
perturbed with respect to flow unsteadiness (temporal stability), we find that stable solutions exist only
for very small wave numbers of the perturbations (in fact, there exist stable regions for very large wave

FIG. 3. Stability diagram showing the variation of the cavitation numberσ , varied between 0.7 and 1.0, versus the perturbation
wave numberk for different values of the damping coefficientμ′

eff/μ
′
` in the inviscid case of quasi-1D bubbly (cavitating/

non-cavitating) nozzle flows, keeping the rest of the conditions specified in Fig.1 fixed.
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FIG. 4. Stability diagram showing the variation of the cavitation numberσi , varied between 0.75 and 1.0, versus the perturbation
wave numberk for the inviscid and turbulent wall shear stress cases in quasi-1D bubbly (cavitating/non-cavitating) nozzle flows,
keeping the rest of the conditions specified in Fig.1 fixed.

FIG. 5. Stability diagram showing the variation of the inlet void fractionβi , varied between 10−5 and 10−3, versus the perturbation
wave numberk for the inviscid and turbulent wall shear stress cases in quasi-1D bubbly cavitating nozzle flows, keeping the rest
of the conditions specified in Fig.2 fixed.
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numbersof the perturbations as well; however, these steady-state solutions are to be discarded on physi-
cal grounds as they correspond to limits where the continuum hypothesis breaks down). As the damping
coefficientμ′

eff/μ
′
` is increased, we observe no significant change of the stable region in the stability

diagram since the bubble growth rate in the inlet region is relatively small. However, when the effect of
the turbulent wall shear stress is taken into account, the stability region shown in Fig.4 is broadened as
expected. We should note that the effect of turbulence in this case is only considered for the steady-state
turbulent wall shear stress and turbulent fluctuations are not taken into account. We also can construct
stability diagrams at a fixed cavitation numberσi by varying the inlet void fractionβi in some range
where steady-state solutions can be observed. Figure5 shows such a stability diagram of the steady-
state solutions when the cavitation number is fixed atσi = 0.79 while the void fractionβi is varied in
the range 10−5–10−3. In this case, no steady-state solutions exist above the critical valueβc = 2×10−3.
Onceagain, physically stable steady-state solutions are observed for very small wave numbers and the
stability region is seen to be broadened when the effect of the turbulent wall shear stress is taken into
account.

7. Conclusions

In this investigation, we have considered model equations for quasi-1D bubbly cavitating nozzle flows
and their application to the temporal stability of the corresponding steady-state solutions. The model
equations benefit the classical unsteady nozzle flow equations for a bubbly mixture in the homogeneous
two-phase flow model. These equations are supplemented by a modified Rayleigh–Plesset equation that
takes bubble/bubble interactions into account in the mean field theory. All damping mechanisms, in an
ad hocmanner, are lumped together in the form of viscous dissipation by a single damping coefficient
and a polytropic law for the growth and collapse of the bubbles is assumed. The complete system of
equations is then uncoupled leading to two evolution equations, one for the flow speed and the other
for the bubble radius. For the range of nozzle inlet conditions, where steady-state solutions exist, the
temporal stability is examined by perturbing the two evolution equations for the flow speed and bubble
radius using the corresponding steady-state solutions as base fields. A coupled system of linear PDEs is
obtained for the temporal stability of the steady-state solutions. In particular, a normal mode analysis is
carried out in the inlet region and stability diagrams are obtained by varying the cavitation number or
inlet void fraction against the perturbation wave numberk. Results show that steady-state solutions of
the model equations are temporally stable only for very small wave numbers. The stable regions of the
stability diagram for the inlet region of the nozzle are seen to be broadened by the effect of turbulent
wall shear stress.

This investigation has enlightened the difficulty in achieving real steady-state cavitating bubbly
flows, even in the inlet region of the nozzle. Real cavitating flows are spatially multidimensional;
therefore, the model equations have to be considered in two or three dimensions. For real cavitat-
ing nozzle flows, the model equations should also be supplemented by a realistic thermal damping
model by considering the energy equation for each phase replacing the polytropic law, especially in
regions of bubble collapse. These issues are beyond the present work and will be considered in future
investigations.
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Appendix A

The functionsFj , j = 1,2, . . . , 10, entering (3.5–3.7) are defined as

F1(ζ )= −
L2κi

3ζ2[1 + ζ 3]
[(3Λ2 − 1)ζ6 + (3Λ2 − 2)ζ3 − 1], (A.1)

F2(ζ )= −
L2κ2

i

6ζ
[2 + (3Λ2 − 1)ζ3], (A.2)

F3(ζ )=
1

[1 + ζ 3]
, (A.3)

F4(ζ )= −
L2κ2

i

18ζ4
[(21Λ2 − 5)ζ6 + (12Λ2 + 2)ζ3 − 2], (A.4)

F5(ζ )= −
4

3(Re)ζ3
[1 + ζ 3], (A.5)

F6(ζ )= −
L2κi

18ζ5(1 + ζ 3)
[(12Λ2 − 2)ζ9 + 6Λ2ζ 6 − 6(Λ2 − 1)ζ3 + 4], (A.6)

F7(ζ )= −
L2κi

9ζ5(1 + ζ 3)
[(21Λ2 − 5)ζ9 + (15Λ2 − 6)ζ6 + (−6Λ2 + 3)ζ3 + 4], (A.7)

F8(ζ )= −
L2κ2

i

18ζ4
[(39Λ2 − 11)ζ6 + (12Λ2 + 14)ζ3 − 2], (A.8)

F9(ζ )= −
L2κ2

i

18ζ4
[(12Λ2 − 2)ζ6 + (12Λ2 − 4)ζ3 − 2], (A.9)

F10(ζ )=
S0

κi
2ζ 2

−
3kpgi

κi
3k+1ζ 3k+1

, (A.10)

whereζ is defined by

ζ = ζ(x, t) =
R(x, t)

κi
. (A.11)

Appendix B

The functionsf j , j = 1,2, . . . , 10, entering (C.8) and (C.9) are defined as

f1(ζ̄ )=
L2κi

3(ζ̄ )2[1 + (ζ̄ )3]2
[(3Λ2 − 1)(ζ̄ )9 + 6Λ2(ζ̄ )6 + (3Λ2 + 3)(ζ̄ )3 + 2] (B.1)

f2(ζ̄ )=
L2κ2

i

3ζ̄
[(3Λ2 − 1)(ζ̄ )3 − 1] (B.2)
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f3(ζ̄ )=
3ζ̄ 3

[1 + (ζ̄ )3]2
(B.3)

f4(ζ̄ )=
L2κ2

i

9(ζ̄ )4
[(21Λ2 − 5)(ζ̄ )6 − (6Λ2 + 1)(ζ̄ )3 + 4] (B.4)

f5(R̄)= −
4

(Re)(ζ̄ )3
(B.5)

f6(ζ̄ )=
L2κi

18(ζ̄ )5[1 + (ζ̄ )3]2
[(12Λ2 − 2)(ζ̄ )12 + (36Λ2 − 8)(ζ̄ )9

+(36Λ2 − 30)(ζ̄ )6 + (12Λ2 − 44)(ζ̄ )3 − 20] (B.6)

f7(ζ̄ )=
L2κi

9(ζ̄ )5[1 + (ζ̄ )3]2
[(21Λ2 − 5)(ζ̄ )12 + (54Λ2 − 8)(ζ̄ )9

+(45Λ2 − 21)(ζ̄ )6 + (12Λ2 − 38)(ζ̄ )3 − 20] (B.7)

f8(ζ̄ )=
L2κ2

i

18(ζ̄ )4
[(78Λ2 − 22)(ζ̄ )6 − (12Λ2 + 14)(ζ̄ )3 + 8] (B.8)

f9(ζ̄ )=
L2κ2

i

18(ζ̄ )4
[(24Λ2 − 4)(ζ̄ )6 − (12Λ2 − 4)(ζ̄ )3 + 8] (B.9)

f10(ζ̄ )=
2S0

κi
2(ζ̄ )2

−
3k(3k + 1)pgi

κi
3k+1(ζ̄ )3k+1

, (B.10)

whereζ̄ is defined by

ζ̄ =
R̄(x)

κi
. (B.11)

Appendix C

The functionsAj , j = 1,2, . . . , 9, entering (4.4) and (4.5) are

A1 = F2ū2, (C.1)

A2 = F2ū, (C.2)

A3 = 3F2ū
dū

dx
+
{

F1ū
dR̄

dx
+ F4

[
dū

dx
+
(

1

A

dA

dx

)
ū

]
+ F5

}
ū, (C.3)

A4 = 2F2
dū

dx
+
[

F1
dR̄

dx
+ F2

(
1

A

dA

dx

)]
ū, (C.4)
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A5 = [3F2 + F4]ū
d2ū

dx2
+ 2F4

(
dū

dx

)2

+
[
(F1 + F6)ū

dR̄

dx
+ 2F4

(
1

A

dA

dx

)
ū + F5

]
2

dū

dx
+
[

F7

(
1

A

dA

dx

)
ū −

3F3F5

R̄

]
dR̄

dx
ū

+

{

F8ū
d

dx

(
1

A

dA

dx

)
+ F9

(
1

A

dA

dx

)2

ū + F5

(
1

A

dA

dx

)
+ F3ū

}

ū, (C.5)

A6 = F2
d2ū

dx2
+
[

F1
dR̄

dx
+ F2

(
1

A

dA

dx

)]
dū

dx
+
[

F1

(
1

A

dA

dx

)
dR̄

dx
+ F2

d

dx

(
1

A

dA

dx

)
+ F3

]
ū, (C.6)

A7 = F1ūR̄
d2ū

dx2
+ F6R̄

(
dū

dx

)2

+
[

F7ū

(
1

A

dA

dx

)
−

3F3F5

R̄

]
R̄

dū

dx

+

[

F1
d

dx

(
1

A

dA

dx

)
ū2 + F6

(
1

A

dA

dx

)2

ū2 −
3F3F5

R̄

(
1

A

dA

dx

)
ū + F10

]

R̄, (C.7)

A8 = −F5
d2ū

dx2
+
[

3F3F5

R̄

dR̄

dx
− F5

(
1

A

dA

dx

)]
dū

dx

+
[

3F3F5

R̄

(
1

A

dA

dx

)
dR̄

dx
− F5

d

dx

(
1

A

dA

dx

)]
ū − 2F10

dR̄

dx
− 2

∂pv

∂x
, (C.8)

A9 = − f2ū
d3ū

dx3
+
{
(F1 − f1)ū

dR̄

dx
− f4

[
dū

dx
+
(

1

A

dA

dx

)
ū

]
− f5

}
d2ū

dx2

+
[
(F6 − f6)

dR̄

dx
− f4

(
1

A

dA

dx

)](
dū

dx

)2

+
[
(F7 − f7)

(
1

A

dA

dx

)
ū +

3

R̄
[F3 f5 + F5 f3]

]
dR̄

dx

dū

dx

+

[

− f8
d

dx

(
1

A

dA

dx

)
ū − f9

(
1

A

dA

dx

)2

ū − f5

(
1

A

dA

dx

)
− f3ū

]
dū

dx

+

[

(F6 − f6)

(
1

A

dA

dx

)2

ū2 + (F1 − f1)
d

dx

(
1

A

dA

dx

)
ū2

+
3

R̄
[F3 f5 + F5 f3]

(
1

A

dA

dx

)
ū + (F10 − f10)

]
dR̄

dx
− f2

d2

dx2

(
1

A

dA

dx

)
ū2

− f9

(
1

A

dA

dx

)
d

dx

(
1

A

dA

dx

)
ū2 − f3ϕCwū2 − f5

d

dx

(
1

A

dA

dx

)
ū, (C.9)

wherethe functionsFi , i = 1,2, . . . , 10, are all evaluated atζ = ζ̄ = R̄(x)/κi .
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Appendix D

The functionsε j , j = 0,1, . . . , 4, entering (5.11) are

ε0 = L2
RL I N

2
I − 2LRL2

I NRNI + L3
I N2

R + LRL I M
2
I NR

−LRL I MRMI NI + L2
I M2

RNI − L2
I MRMI NR, (D.1)

ε1 = 4L2
RL I MI NR − 4LRL2

I MRNR − 4L3
I MRNI + 4LRL2

I MI NI

+L2
I MRM2

I − LRL I M
2
RMI + L2

I M3
R − LRL I M

3
I , (D.2)

ε2 = 8LRL2
I MRMI − 5L2

RL I M
2
I + 4L3

RL I NR + 4L4
I NI − L3

I M2
I

−L2
RL I M

2
R + 4LRL3

I NR + 4L2
RL2

I NI − 5L3
I M2

R, (D.3)

ε3 = 8L I(L
2
R + L2

I )[L I MR − LRMI ], (D.4)

ε4 = −4L I(L
2
R + L2

I )
2, (D.5)

whereLR, L I,MR,MI, NR andNI aregiven by (5.8–5.10).
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