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Quasi-1Dunsteady bubbly cavitating nozzle flows are considered by employing a homogeneous bub-
bly liquid flow model, where the non-linear dynamics of cavitating bubbles is described by a modified
Rayleigh—Plesset equation. The various damping mechanisms are considered by a single damping coef-
ficient lumping them together in the form of viscous dissipation and by assuming a polytropic law for
the expansion and compression of the gas. The complete system of equations, by appropriate uncoupling,
are then reduced to two evolution equations, one for the flow speed and the other for the bubble radius
when all damping mechanisms are considered by a single damping coefficient. The evolution equations
for the bubble radius and flow speed are then perturbed with respect to flow unsteadiness resulting in a
coupled system of linear partial differential equations (PDESs) for the radius and flow speed perturbations.
This system of coupled linear PDEs is then cast into an eigenvalue problem and the exact solution of
the eigenvalue problem is found by normal mode analysis in the inlet region of the nozzle. Results show
that the steady-state cavitating nozzle flow solutions are stable only for perturbations with very small
wave numbers. The stable regions of the stability diagram for the inlet region of the nozzle are seen to be
broadened by the effect of turbulent wall shear stress.

Keywords bubbly cavitating flows; steady-state solutions; temporal stability.

1. Introduction

Cavitating flows through converging—diverging nozzles seem to be the simplest configurations for anal-
ysis in hydrodynamic cavitation. They have direct applications in cavitation in ducts and venturi tubes as
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well as in diesel injection nozzles. The first model of bubbly liquid flow through a converging—diverging
nozzle was proposed fangreret al. (1949) using a barotropic relation. The problem was reconsidered

by Ishii et al. (1993) by taking into account unsteady effects, but still neglecting bubble dynamics. A
summary of barotropic models can be found in the boolBBNnnen(1995). For cavitating flows, it is
essential to consider bubble dynamics together with the equations of nozzle flow. A continuum bubbly
mixture flow model that couples spherical bubble dynamics, as described by the classical Rayleigh—
Plesset equation, to the flow equations was propose@ubyVijngaarderf1968). Steady-state solutions

of bubbly cavitating flows through converging—diverging nozzles have been investigat®dryy &
Brennen(1998) andDelaleet al. (2001) using the continuum bubbly liquid flow model. Assuming that

the gas pressure inside the bubble obeys the polytropic law and lumping all damping mechanisms, in
a crude manner, by a single damping coefficient in the form of viscous dissipation, both investigations
have demonstrated bifurcation of steady-state solutions to flashing flow instabilities by varying the inlet
void fraction (or inlet bubble radius or inlet cavitation number). A numerical investigation of unsteady
bubbly cavitating flows in converging—diverging nozzles based on the same model has been carried ou
by Prestoret al. (2002). They show that the instabilities encountered in the steady-state solutions of
guasi-1D bubbly nozzle flows may correspond to unsteady bubbly shock waves formed in the diverging
section of the nozzle and propagated downstream.

The aim of this investigation is to present a detailed analysis of quasi-1D unsteady bubbly cavitating
flows in converging—diverging nozzles with the inclusion of bubble/bubble interactions as discussed in
Delaleet al. (2001). The description is, therefore, restricted solely to the investigation of the interplay
between the overall compressibility of the continuum bubbly mixture and the flow unsteadiness using a &
damping coefficient which lumps all damping mechanisms, in a crude manner, in the form of viscous
dissipation. From these model equations, the evolution equations for the flow speed and bubble radiu
are derived. The local pressure field, in this model, then follows exactly by its relation to the bubble
radius, flow speed and its partial derivatives, showing explicitly the contributions arising from area
change, two-phase mixture compressibility and flow unsteadiness.

The evolution equations obtained are then applied to the stability of steady-state quasi-1D bubbly
cavitating nozzle flow solutions. Although the stability of both inviscid and viscous bubbly parallel flows
have been investigated layAgostinoet al. (1997) andd’Agostino & Burzagli(2000), it is important
to investigate the temporal stability of cavitating nozzle flows in the quasi-1D approximation to find out
whether such steady solutions are stable with respect to temporal perturbations. For the range of nozzl@
inlet conditions, where steady-state solutions exist, the temporal stability is examined by perturbing 2 u
the two evolution equations for the flow speed and bubble radius using the corresponding steady- state<
solutions as base fields. A coupled system of linear partial differential equations (PDEs) is obtained for &
the temporal stability of the steady-state solutions. In particular, a normal mode analysis is carried out 2 8
in the inlet region and stability diagrams are obtained by varying the cavitation number or inlet void
fraction against the perturbation wave numkeResults show that steady-state solutions of the model
equations are temporally stable only for very small wave numbers. The effect of damping mechanisms
on the stability of the steady-state solutions seems to be negligible in the inlet region because of the
very small growth rate of the bubbles. However, the stable regions of the stability diagram are seen to
be broadened when the wall shear stress is taken into account.
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2. Model equations for bubbly cavitating flows

We consider an unsteady quasi-1D cavitating nozzle flow and we assume that the initial distributions,
inlet conditions and nozzle geometry are such that cavitation can occur in the nozzle. We use a slightly
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modifiedversion of the continuum bubbly mixture model, introducedvay Wijngaarder{1968) and

later employed byVang & Brenner(1998),Delaleet al. (2001) andPrestoret al. (2002), that couples

the unsteady nozzle flow equations to spherical bubble dynamics. In this model, the effect of the relative
motion between the bubbles and the surrounding liquid is neglected using a homogeneous two-phase
flow model for the bubbly mixture. This effect may become important in certain cases and should then
be taken into accounNpordzij & van Wijngaardenl974;Bieshuevel & van Wijngaardett984;Zhang

& Prosperetti 1994;Wang & Chen2002). Keeping this in mind, the conventional continuity and mo-
mentum nozzle flow equations for the bubbly mixture can be written as

1 0p’ 0 i p

A—+—(@(pUuA)=0, 2.1
v T ax (p'U'A) (2.1)

du op P’
= 2 __ 7 2.2
Par = “ox T AW (2.2

togethemwith

p'=p(1=p). (2.3)

In (2.1-2.3),p’ is the mixture density (given by2(3) where the contribution from the dispersed
gaseous phase has been neglected and where the liquid phase is assumed to be incompressible with
constant density;), £ is the void fractiony’ is the flow speedp’ is the mixture pressure ang, is the
wall shear stress, all presumably being functions of the axial coordih&tsth origin at the throat) and
the timet’. Moreover,A’ isthe nozzle cross-sectional area dids the wetted cross-sectional perimeter.

It is also worthwhile to note that, in the momentum equatidr2), the gravity effect is neglected and
d/dt’ = o/0t’ + U'0/0x’ denoteghe material or total derivative. The system of equations (2.1-2.3) is
coupled to bubble dynamics through the void fraciforor a cloud of monodispersed spherical bubbles
of radiusR/, the void fractiong is defined by

4
p=m R3n, (2.4)

wheren’ is the bubble population density per unit volume of the mixture. If creation (nucleation and
bubble fission) and coagulation of bubbles are neglected, the bubble population deoaitige related
to the void fractiorng by

N =np(1=p), (2.5)

wherery is the number density of bubbles per unit volume of the liquid and is constant throughout the
flow. It then follows from .4) and 2.5) that

R°A-p) _
B 4zng

throughout the flow. The system of equatio2s1¢-2.3) together with2(6) is completed by a model
equation for spherical bubble dynamics. It is well known that various damping mechanisms including
viscous dissipation, liquid compressibility and thermal conduction through the gas/vapour bubble con-
tribute to bubble dynamicdNjgmatulinet al,, 1981;Prosperetti & Lezzi1986;Prosperettet al., 1988;
Prosperetti1991). In this investigation, the various damping mechanisms are lumped together, in an

= constant (2.6)
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ad hoc manner, in the form of viscous dissipation by an overall damping coefficient. Although the
detailed structure of the damping mechanisms can not be treated by such a crude model, it is useful in
providing information on the magnitude of the overall damping, relative to viscous damping. In particu-

lar, liquid compressibility and thermal damping dominate during violent collapse of cavitation bubbles.
Deformation of bubbles near boundaries (Blake & Gihst®87), shape instabilities (Brennet al.,

1995) and bubble fission (Brenne2)02) also contribute significantly to energy losses within the bub-

ble that has to be taken into account separatebigle & Tung 2004). In this case, bubble collapse is
non-spherical, and results using spherical bubble dynamics has to be interpreted statistically for a cloud
of bubbles by a mean radius related to the volume of the bubbles. Moreover, inside such a cloud of bub-
bles, bubble/bubble interactions can become important. A model for spherical bubble dynamics which
accounts for bubble/bubble interactions by a slightly modified local homogeneous mean field theory of g
Kubotaet al. (1992) and for the various damping mechanisms by lumping them togetheraith laoc
manner, in the form of viscous dissipation with an overall damping coefficient has been employed by
Delaleet al. (2001) to study the bifurcation structure of steady-state cavitating nozzle flows. Here, we
use this model for spherical bubble dynamics, which provides a modified Rayleigh—Plesset equation for
the mean radius as

p,—p  [1+@/3)an@B4%- 1R _ PR
Py [1+ (4/3)m R dt2

31+ 8/3)m (242 — DR + (16/9)7 22 42R'®] (dR/)Z

2 [1+ (@/3)7,R2 dt
28 4ulg dR Ry\ >
R R P (E) ~ @D

In (2.7), S is the surface tension coefficien, is the partial vapour pressure inside the bublple,is
theinitial gas pressure of the bubble at the inlet of the nozzlis,the polytropic index (in particular,
k = 1 for isothermal expansion atkd= y for isentropic expansion of the gas, wherés the isentropic
exponent of the gas) 4 is the overall damping coefficient and is the bubble/bubble interaction
parameter defined by

Ar’
R/
with Ar’ denotingthe range of interactions from the center of any fixed bubble (Kubb#d., 1992;

Delaleet al.,2001). We now normalize the mixture density, the gas and mixture pressures and the flow
speed as

A=

(2.8)
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basedon the liquid densityp,, the initial pressure at the nozzle inlgf anda characteristic speed

/p//p;- We also normalize the axial coordinateéby a characteristic macroscale lengti (chosen
asthe nozzle inlet height), the cross-section akaby the nozzle inlet area\, the time coordi-

natet’ by the characteristic flow tim®’ = H//,/p{/p; andthe bubble radiusk’ by a characteristic
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microscaldength R’ (choseras the initial radius of bubbles, assumed to be monodispersed, at the inlet
height) as

/ A t p-//p/t/ R/
x=a A= t=—=Y""" and R=-. (2.10)
H AT e H R
Equationq2.1-2.7) then take the normalized form
p=1-4, (2.11)
op 0
— 4+ —(uA) =0 2.12
ot T PUA =0, (2.12)
du op 2
—=—-——-C 2.13
Par o~ Cwerus, (2.13)
1-4 1-5
R3 (—) = 3 2.14
B Bi ' @14
pv—p  [1+ @2 -1(R/K)32] @R
L2 [1 4+ (R/xi)3] dt?
2 _ 13 2 6 2
L3I +2@4% - DR/ + A2(R/ki)°] (dR (2.15)
2 [1+ (R/xi)3)2 dt
S 4 dR Pgi
JrL2R + L2(Re)R dt  L2R3Kk’
whereL is the ratio of micro scale to macro scale defined by
R
L=-—, (2.16)
H/
Cw is the wall friction coefficientyp is defined by
_HP (2.17)
T |
ki is a parameter defined in terms of the initial inlet void fractigy
1-—pi
3 i
K> = ——, 2.18
' Bi (2-18)
S is the non-dimensional surface tension coefficient defined by
28
= (2.19)
PR

andRe is a typical Reynolds number, based on the overall damping coeffigignand is defined by

peH\ B/ Py

Re= :
Hef

(2.20)
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Equations(2.11-2.15) constitute the model equations for unsteady cavitating nozzle flows with
unknownsp, p, f, u andR and given area variatioA = A(X).

3. Evolution equations for the flow speed and bubble radius

By eliminating the void fractiorp and the mixture density between (2.11),2.12) and 2.14), we
obtain that

dR R df dR R 0

a—ma—a‘%&(“’“zo' (3.1)

We can further eliminate the pressupebetween the momentum equation (2.13) and the modified
Rayleigh—Plesset equation (2.15) by differentiatidlb) with respect tax and by replacing the par-

. . . o (dR i iR . . .
tial derlvatlvesﬁ(m) and 5 ( a2 ) from (3.1). After cumbersome manipulations, we arrive at the

evolution equations for the bubble radiR¢x, t) and for the flow speed(x, t) as

oR oR 1 1dA ou
Ty R[22 )ur & 2
ot - Yax tare! +K')[(Adx)u+ax] (3.2
and
ou
 _axt 3.3
5 = ah, 3.3)

wherethe unsteady acceleratiarsatisfies the linear PDE

o%a  oa
S tos, t ha=s, (3.4)

where the functiong andh are functions ofR, 9R/dx andx, sis a function ofR, u, dR/éx, du/ox,
0%u/ox?, 5°%u/ox® andx, and they are defined by

FroR 1dA
9d=———"+ 7
F>ox = Adx

F1 /1dAYoR Fs3 d /1dA
h=—-"—)—+="+—-— 3.6
Fz(Adx)ax+F2+dx (Adx) (3:6)

[a3u [Fl oR  Fiou Fq4 (1dA) F5}62u
S=—jU—+|—U—+——+—ul=—)+=

(3.5)

and

ox3 F> ox F> 0% F_z A dx F> ox2
_FeoR (ou 2+ F7, (L19AY _ 5FsFs 0RO Fa 1dAY [ou)?
F> ox \ ox Fo \Adx RF, | ox ox  F> \Adx ox

N Fgud 1dA +Fgu 1dA 2+F5 1dA +F3u au
F, dx \ A dx F A dx F, \ A dx F, | ox
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F 1dA FsF 1dA F 1dA F R
+ _Guz -3 3 5u _d_ +_lu2£ _d_ +_lO a_
F Adx RF> A dx F, dx \ Adx F, | ox

ML 1dA) d (1dA +u2d_2 1dA
F, Adx ) dx LA dx dx2 \ A dx

Fs d (idA) 8p\,/ax+zci3CW¢u2/(R3+xi3)}

ThefunctionsFj, j = 1,2,..., 10, entering (3.5-3.7), depend only &and are given in Appendix

A. The evolution equations3(2) and 8.3) together with §.4) can then be solved for a given nozzle
configuration together with specified inlet and outlet boundary conditions for initially specified bubble
radius and flow speed distributions. The solution for the rest of the hydrodynamic variables can then be
related to this solution. In particular, the pressure field is given by

2,6 2
p=pv— |1_8R4[(6A2 1)(R/xi)® + (642 — 2)(R/xi)® — 1] [( 1 dA) u+ 5_“}

A dx ox
_L2 3[2 @42 - DR 3] 1dAY) u  (1dAY ou  ,d (1dA
+ Y(R/w) (Adx) +ua +(Adx)u +u dx (Adx)
S, Poi SHFELL T
Rt R ~ 3[Re )R3[1+(R/;c.) | [(Adx)lH_ ax] (3.8)

Equation(3.8) expresses the explicit dependence of the pressure field on the bubbleRadiushe

flow compressibility and its spatial derivative, the temporal acceleratiand its spatial derivativay,
shaving clearly how the local pressure field is affected by the two-phase mixture compressibility and
flow unsteadiness. The last term that appears on the right-hand si@8pfq the contribution to the
local pressure arising from the various damping effects (all lumped togetherathtamcmanner, in the

form of viscous dissipation) of spherical bubble dynamics. Finally, the void fragtiand the mixture
densityp follow from the formulas

R3

:1— = ——. 3.9
F=l=r=mra (39)

4. Temporal stability of steady-state quasi-1D bubbly cavitating nozzle flows

In this section, we utilize the above evolution equations to study the temporal stability of quasi-1D
bubbly cavitating nozzle flow solutions of tlvan Wijngaarderf1968). It has been shown Wang &
Brennen(1998) and byDelaleet al. (2001) that such steady-state solutions exist only for a certain range
of a particular parameter when the rest of the inlet conditions are kept fixed for a given nozzle geometry.
This parameter is usually chosen as the initial inlet void fragtioor the initial inlet cavitation number

oi, defined by

p| pv 1-p
(1/2)p2u2 ~ (1723

(4.1)

0 =
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whereuj, anduip, respectively, denote the dimensional and normalized initial flow speeds at the nozzle
inlet. We herein study the temporal stability of these steady-state solutions for the range of parameters
they exist. For this reason, we perturb the steady-state quasi-1D bubbly cavitating flow solutions of the
normalized flow speed(x) and the normalized bubble radi&x) in the form

u=0X)[1+ ew(x, t)], 4.2)
R=R(X)[1 + ep(x, )], (4.3)

wheree is a small parameter, assumed to be much less than unity in magnitudel], and the time-
dependent flow speed and the bubble radius perturbation functions, respectively, denotzdthwnd

$(x, t) are assumed to be of O(1) in magnitude (linear stability). Substitution of the perturbed field given
by (4.2) and 4.3) into the evolution equations (3.2—3.4) yields to O(1) the steady-state quasi-1D bubbly
cavitating nozzle flow equations for the flow speaget) and the bubble radiuR(x). These equations

can be shown to be equivalent to the third-order differential equation obtainBelaieet al. (2001)

for the steady-state flow spe@dx). The linear PDEs for the perturbationgx, t) and¢(x, t), after
cumbersome manipulations, then follow as

a3w 3w 2w 02w ow o¢
Al—s + A As— — + A— A 0O (4.4
15t 6x26t+A36x2 A46xat+ 58x+A6 2 = + Agw + Agp = (4.4)
and
3w 03w o%w o%w ow o
Ci—= +Ch—— +C3 C— Cg— C— C Cgp— — =0, 4.5
15x8 T 2ozt T Cogxa T Caagar T Coax T Co TETw HCed — (4.5)
wherethe coefficients;,i = 1,2, ..., 9, are all the functions ai(x), R(x), the nozzle are&(x) and its

derivatives and are given in Appendix C. The coefficigitsi = 1,2, ..., 8, entering (4.5) are defined
as

Ay A _As _Aq _As a2A
Ci=lt—, C=0—, C3=0—, C4=0—, Cg=0—+————— 4.6
1=04, G=07, CG=07, Ca=0r, GCs A7+3(L]A—/1i)’ (4.6)
_As _Asg _Ag Ai da 1dA\ _
Ce=0—, C;=0— and Cg=0————|— ——)a 4.7
6=t TS 8= T WA= 4 [d +(Adx @.7)
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with A; = (1 — Bi)Ui, wherep; denoteghe inlet void fraction andi; is the normalized inlet flow speed
in steady flow.

5. Normal mode analysis in the inlet region

The coefficientsAj, i = 1,..,9, andC;, i = 1,.., 8, entering (4.4) and (4.5) are all functions of the
steady-state flow speed and the radius distributii$ and R(x) and of the nozzle area and its deriva-
tives. The perturbations (x, t) and¢(x, t), on the other hand, enter the equations up to first order in
the time derivative. Therefore, one can in principle cast the system into an eigenvalue problem using the
transformation

w(x, 1) = D) and @(x,t) = H(x)et (5.1)
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to arrive at the generalized eigenvalue problem

Liy = slay (5.2)
with
(X
_ (™) (5.3)
#(X)
o8 82 0
Al + A3 2+A5—+A8 A7—+Ag
oX OoX
Ly = (5.4)
o3 82 o
Cl 3+ C3 >+ C5— +Cy Cs
and
02 0
—A—-A——-~As O
ox?2 X
Ly = : (5.5)
C o° C 0 Cs 1
2ox2 4ox 6

Temporal stability then demands that the real pgstef the eigenvalues are negativedsg < 0) pro-
videdthat the eigenvaluesare obtained by the solution of the eigenvalue problem giverbl®).(The

generalized eigenvalue problem can, in principle, be solved by discretization or using spectral methods.

Even if the complete spectrum of the generalized eigenvalue problem is obtained, it would be difficult
to establish a physical criterion to sort out the physically relevant eigenvalues from the rest. Thus, the
numerical solution in this case does not seem to be feasible, despite the difficulties in obtaining the
complete spectrum. Fortunately, in regions where all the coefficianis= 1, ..,9, andC;,i =1, .., 8,
entering (4.4) and4(.5) remain constants, the temporal stability problem can be solved exactly by nor-
mal mode analysis. In quasi-1D bubbly cavitating nozzle flows, we find these coefficients to be almost
constant in the nozzle inlet region where variations in both flow and area variations are relatively small.
Thus, we can carry a normal mode analysis of the temporal stability of the steady-state solutions in the
nozzle inlet region. For this reason, we let

wx, t) = e and @(x, t) = kD) (5.6)

in the inlet region of the nozzle, whekedenotes the wave number,denotes the angular frequendy,

and¢, respectively, denote the amplitudes of the flow speed and the radius (both much less than unity
in magnitude) and where all the coefficients entering the linear PDE system givémibwaiid 4.5) are

nearly constants. Substitution ¢&.6) into @.4) and §.5) leads to the dispersion relation

Lw? 4+ Mw+ N =0, (5.7)
wherethe complex coefficients, M andN are given by
L=Lr+iL; = (Ag — Ak®) +iAsk, (5.8)

M=Mgr+iM
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=[(A4Cg — As — AgCsq — A7Ce)K + (A1 + A7C)K%]

+i[(Ag — A6Cg + AgCp) + (A2Cg — Az — A7C4 — A9Co)K], (5.9)
N=Ng+iN
=[(AgCs — AoC7) + (A7Cs + AgC3 — A3Cg)k? — A7C1k"]
+i[( AsCg — A7C7 — AgCs)k + (A7C3 + AgC1 — A1Cg)k’] (5.10)

with subscripts R and | denoting the real and imaginary parts of complex numbers. For temporal
stability, the wave numbek is real and given. The angular frequensyon the other hand, is com-

plex (w = wr + iw)). Therefore, for temporal stability, the imaginary partof the angular frequency
must be negativéw;, < 0). From the dispersion relatio®(7), we obtain the fourth-degree polynomial
equation

g4a)|4 + gga)l?’ + eza)|2 + 10 +e9=0 (5.11)

for ), where the coefficients,i =0, ..., 4, are all polynomials in the wave numbeand are given
in Appendix D. To investigate the sign af given by 6.11) for a given wave numbég, we first note
that all the coefficientsj,i = 0, ..., 4, are even functions of the wave numike herefore, one only
needs to investigate the sign of for k > 0. Settingeg = 0, which results in a polynomial of degree
5 in k2, we find those real positive rooks, i < 5, for which w vanishes. From the sign efeq /¢4,
we determine the sign ab; in the immediate vicinity of eack, i < 5. We then identify those regions
wherew, < 0 as the stable regions of quasi-1D steady-state cavitating nozzle flows.

6. Results and discussion

We now consider a two-phase bubbly flow with bubbles containing water vapour and air in water at an
isothermal temperature of 20, implying a constant partial vapour pressge= 0.0234bar, a constant
surface tension coefficie® = 7.1 x 10-2 N/m and a constant water viscosi#} = 10~ kg/ms.The

inlet pressure is set at the fixed valpe= 1.013bar. The nozzle geometry employed Byestoret al.
(2002), as shown in Figsand2, and whose area in our normalization is given by

2
AX)=1-0.25 exp[— (%) } (6.1)

is considered. Furthermore, for a quasi-1D nozzle, we lrawve 1/A. The wall friction coefficient is
evaluated for a smooth wall using the turbulent correlation

—5 = 1.768In[Rer)Cyy ] — 0.94 (6.2)
Co/

which was verified experimentally (for details S&fard-Smith 1980) where the Reynolds numberRe
is related to Re 0f4.20) by
Hef

Iy

Re; = 2uA(Re) (6.3)

The inlet bubble radius is fixed aR, = 40 um together withL = 8 x 104. Here, we neglect
bubble/bubble interactions so that= 1 since they are notimportant in the inlet region. We set the inlet
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FiG. 1. The steady-state non-cavitating bubble radius, flow speed (top figure) and pressure coefficient (bottom figure) distributions
of water with air bubbles along the axial coordinate of the nozzle employ&ddstoret al. (2002) (middle figure) with damping
coefficientu g/, = 1.0, bubble/bubble interaction parameter= 1.0, inlet bubble radiu®/ = 40 um , micro to macro length

ratioL = 8 x 1074, inlet pressurepi’ = 1.013 bar, inlet void fractiog; = 103 and cavitation number; = 0.85.
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FIG. 2. The steady-state cavitating bubble radius, flow speed (top figure) and pressure coefficient (bottom figure) distributions of
water with air bubbles along the axial coordinate of the nozzle employdttdstoret al. (2002) (middle figure) with damping
coeﬁicienty’eﬁ/y/é, = 1.0, bubble/bubble interaction parametee= 1.0, inlet bubble radiuiRi’ = 40um , micro to macro length

ratioL = 8 x 104, inlet pressurep] = 1.013 bar, inlet void fractior; = 103 and cavitation number; = 0.79.
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void fraction at the valug; = 10~2 and vary the cavitation numberin the range betweenDand 10

for both the inviscid Cy, = 0) and the turbulent flow case where the friction coefficiéptis given by

(6.2). All damping mechanisms of bubble dynamics are taken into account by a single damping coeffi-
cientug/u, inthe form of viscous dissipation (in particular,,/ ., = 1 corresponds to the case where

all damping mechanisms, except viscous dissipation, are neglected). It is well known from the work of
Wang & Brenner(1998) andDelaleet al. (2001) that steady-state solutions under specified conditions
exist only if the cavitation numbet; is above some critical valug.. It follows that under the above

stated conditionssic = 0.78 whenu ¢/ 1, = 1 andoic = 0.72 whenu ¢/ 1, = 30 for both the inviscid

case and the case where turbulent wall shear stress is taken into account. Typical steady-state solutions of
the flow speedi(x), the bubble radiu(x) and the pressure coefficie@p(x) are shown in Figd and

2 for non-cavitating (¢ > —(Cp)min) and cavitating (g < —(Cp)min) bubbly flows, respectively, where
(Cp)min denotes the minimum of the pressure coefficient (the effect of the turbulent wall shear stress is
negligible in this case). These results are in good agreement with the steady-state solutions obtained by
Prestoret al. (2002). When a normal mode analysis to the steady-state base field solutions is applied in
the inlet region, as described above, from the sigm ofve find the temporally stable ones correspond-

ing to real wave numbeisand construct the stability diagrams. Fig@rehows such a stability diagram

for the variation of the cavitation number against the perturbation wave numikeunder the condi-

tions stated above. As has been demonstratéd/doyg & Brenner(1998) andDelaleet al. (2001), we

note that there are no steady-state solutions below a critical cavitation number under the specified condi-
tions and nozzle geometry. As the steady-state solutions obtained above a critical cavitation number are
perturbed with respect to flow unsteadiness (temporal stability), we find that stable solutions exist only
for very small wave numbers of the perturbations (in fact, there exist stable regions for very large wave

G;
1~
B W /My
L —_— 1.0
= — — — 300
0.9 —
[ Stable Unstable Stable
I Region Region Region
L (Break-up of
r continuim
r hypothesis)
0.8
C | |
- No Steady-State Solution
o7 L I 1 I I 1
1012 108 103 107 107 10"

k

FiG. 3. Stability diagram showing the variation of the cavitation numhevaried between @.and 10, versus the perturbation
wave numberik for different values of the damping coeﬁiciepgﬁ/yg in the inviscid case of quasi-1D bubbly (cavitating/
non-cavitating) nozzle flows, keeping the rest of the conditions specified i Figd.
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FIG. 4. Stability diagram showing the variation of the cavitation nunhevaried between @5 and 10, versus the perturbation
wave numbek for the inviscid and turbulent wall shear stress cases in quasi-1D bubbly (cavitating/non-cavitating) nozzle flows,
keeping the rest of the conditions specified in Ridixed.
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FiG. 5. Stability diagram showing the variation of the inlet void fractinvaried between 10° and 10°3, versus the perturbation
wave numbek for the inviscid and turbulent wall shear stress cases in quasi-1D bubbly cavitating nozzle flows, keeping the rest
of the conditions specified in Fi@.fixed.
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numbersf the perturbations as well; however, these steady-state solutions are to be discarded on physi-
cal grounds as they correspond to limits where the continuum hypothesis breaks down). As the damping
coefficientu,g /1) is increased, we observe no significant change of the stable region in the stability
diagram since the bubble growth rate in the inlet region is relatively small. However, when the effect of
the turbulent wall shear stress is taken into account, the stability region shown igigroadened as
expected. We should note that the effect of turbulence in this case is only considered for the steady-state
turbulent wall shear stress and turbulent fluctuations are not taken into account. We also can construct
stability diagrams at a fixed cavitation numbegrby varying the inlet void fractiong; in some range

where steady-state solutions can be observed. Figgteows such a stability diagram of the steady-
state solutions when the cavitation number is fixed;at 0.79 while the void fractiong; is varied in

the range 10°-10-3. In this case, no steady-state solutions exist above the critical gake2 x 102,
Onceagain, physically stable steady-state solutions are observed for very small wave numbers and the
stability region is seen to be broadened when the effect of the turbulent wall shear stress is taken into
account.

7. Conclusions

In this investigation, we have considered model equations for quasi-1D bubbly cavitating nozzle flows
and their application to the temporal stability of the corresponding steady-state solutions. The model
equations benefit the classical unsteady nozzle flow equations for a bubbly mixture in the homogeneous
two-phase flow model. These equations are supplemented by a modified Rayleigh—Plesset equation that
takes bubble/bubble interactions into account in the mean field theory. All damping mechanisms, in an
ad hocmanner, are lumped together in the form of viscous dissipation by a single damping coefficient
and a polytropic law for the growth and collapse of the bubbles is assumed. The complete system of
equations is then uncoupled leading to two evolution equations, one for the flow speed and the other
for the bubble radius. For the range of nozzle inlet conditions, where steady-state solutions exist, the
temporal stability is examined by perturbing the two evolution equations for the flow speed and bubble
radius using the corresponding steady-state solutions as base fields. A coupled system of linear PDEs is
obtained for the temporal stability of the steady-state solutions. In particular, a normal mode analysis is
carried out in the inlet region and stability diagrams are obtained by varying the cavitation number or
inlet void fraction against the perturbation wave numkeResults show that steady-state solutions of

the model equations are temporally stable only for very small wave numbers. The stable regions of the
stability diagram for the inlet region of the nozzle are seen to be broadened by the effect of turbulent
wall shear stress.

This investigation has enlightened the difficulty in achieving real steady-state cavitating bubbly
flows, even in the inlet region of the nozzle. Real cavitating flows are spatially multidimensional;
therefore, the model equations have to be considered in two or three dimensions. For real cavitat-
ing nozzle flows, the model equations should also be supplemented by a realistic thermal damping
model by considering the energy equation for each phase replacing the polytropic law, especially in
regions of bubble collapse. These issues are beyond the present work and will be considered in future
investigations.
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Appendix A
The functionsFj, j = 1,2, ..., 10, entering (3.5-3.7) are defined as
2,
Fi(0) = (347 = 1)¢° + (347 - 2)% - 1],

"L

L2 2
Fa(0) = ——[2 + @42 -1,

1
F3(C)=m,
L2 2
Fa(0) = —@[(21/12 —5)0+ 124 +2) 2 -2,
_ 4 3
F(g):—i[(lblz )2+ 6428 —6(4%2 - 1) 2+ 4]
6 1875(1+ ¢3) ’
2
A 2 9 2 B a2 3
Fr(0) = “5F (1+C3)[(21A —5)% 4+ (1547 — 6):% + (=642 +3) 2 + 4],
2 2
Fe(0) = _W[(SQAZ —11)B + 1242 +14)2 -2,

2.2
Fo(¢) = —;37[(12A2 )%+ (1242 — 4)2 - 2],

S 3kpgi
K202 poktl 3k+1

F1o0(0) =

where¢ is defined by

R(x,t
=it = 20D
Ki
Appendix B
The functionsfj, j = 1,2, ..., 10, entering (C.8) and).9) are defined as
- L2 - - -
f (B -1+ 6420+ B2 +3)()3+2
O=35m s (()3]2[< @) ©°+( )2 +2]

2 2
f2(0) = C' (342 1)) -1]

(A1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A7)

(A.8)

(A.9)

(A.10)

(A.11)

(B.1)

(B.2)
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- 33
3(0) TGRS (B.3)
_ L2x2 - _
O =3 @'4[<21A2 —-5)° - 64+ 1)()° +4] (B.4)
- 4
(R =~ =0 577 (B.5)
fo(0) = —— L3 [(1242 —2)()*? + (36 42 — 8)(0)°
18()°[1 + ()32
+(36.4%2 — 30)()® + (1247 — 44)(F)® — 20] (B.6)
— 2}{‘ - -
f72(0) = ——————[(21 2 = 5) ()2 + (5442 — 8)(7)°
"= 555 Ol YO+ ( )©)
+(454% — 21) ()8 + (1247 — 38)(F)® — 20] (B.7)
@)= 5 {782 — 22061 — (122 4 14)F)P + 8 B.8
s(q)—18(5)4[( - 22)¢)° = ( +14H©)° + 8] (B.8)
fo(F) = Lox? (2482 — 4)F)® — (1242 — 4)(¢)% + 8 B.9
95)—18@4[ -4 () —( -4 +98] (B.9)
_ 29 3KEKk+ 1)py
f10(0) = K202 Ki3k+1(éi)3k+gl’ (B.10)
where is defined by
= R(X). (B.11)
Ki
Appendix C
The functionsAj, j = 1,2, ..., 9, entering (4.4) and4(5) are
A1 = Foli, (C.1)
A> = o0, (C.2)
da dR di  [1dA
A3=3qu£ + iFlﬁ& +Fa [£ + (K&) u} + Fs] a, (C.3)

da dR 1dA\7
A=2Fp + I:Fla + R (——)] a, (C.4)

€102 ‘9T AINC Lo 31Uam | 1B1SBAIUN T2 /BI0'S jeuIno(pioxo Telrewl//:dny WwoJy pepeojumod


http://imamat.oxfordjournals.org/

248

d?a
As =[3F2 + F4]U

dx? dx

d?a _ (da)?
A7—F1URF+F6R(&) +[F7U(

da
2F
+ 4 (dx)

[(Fl + Fe)u dR T 2F4 (

d (1dA
[F8 dx (Adx)—H:9

o2 drR
As=F2—— + |:Fl_ + Fz(

Ad

1dA
A dx
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Lon)
(

da

1dA (i
A dx dx

1dA 3F3F5
A dx

_ da 1dA\ = 3R3Fs|dR_
U+F5i|2—x+|:F7(Kd—X)U——F_2i|d—XU

d

2l]+|: 1dA
5 A dx

dR d /1dA
— +F— (——) + Fa} u,
dx

+]r (298
1Adx

R

+ F3l]} a,

dx

du
dx

d (1dA) 1dA\? , 3FsFs (1dA
+|:F1d_x(Ad )” +F6(Adx) R (Ad )”+F1°}R
d’d  [3FsFsdR 1 dA\] da
— —Fs-— S R (22|
Re ®dx2 [ R dx 5(Adx)]dx
3F3Fs /1 dA) dR d /1dA\]. dR _opy
B E) 2 (222 ) [a - 2F0— — 22
+[ R (Adx) dx E’dx(Adx)}u 107x ox’
d3a drR da 1dA d?a
Ao =—Tfol— + | (Fy— fo — 1 sl
2ud 3+’( 1- fyd dx 4[dx—F(Adx)u] 5] dx?
1dA da 1dA
+ (Fe— f6)—— f4(Adx)} (d_x) [(F7— f7)(Ad )U+—[F3f5+ stsl]
+__fd 1dA) . (1dA Zu—f 1da) _ |do
8dx A dx ° A dx 5 A dx 3 dx
[ 1dA 2_2 1dAY
+ | (Fe — fe) (Z&) +(F1—f1)— (K&)U
1dA dR & (1dA) ,
—[F3f5+ F5f3](Ad )U+(F10— flO)j| sz (K&)U
¢ 1dA\ d /1dA  toCui? — f d /1dA i
9\ Aadx /) dx \Adx 3¢ %w *ax \Adx )
wherethe functionsF;, i = 1,2,..., 10, are all evaluated gt= ¢ = R(X)/x;.

(C.5)

(C.6)

(C.7)

(C.8)

dR di
X dx

(C.9)
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Appendix D

The functionszj, j = 0,1, ..., 4, entering $.11) are

¢0=LZLIN? — 2LrLZNRN; + L3N3Z 4+ LrLIMZNR
—LRLIMRMN; + LZM3N; — LZMgM| NR,

£1=4LEL M NR — 4LRLZMRNR — 4L3MRN; 4 4LrLZM|N,
+L2MrM?Z — LrRLIM3M; + LZM3 — LrL M7,

¢2=8LRLZMRM, — BLAL|M?Z + 4L3L NR + 4L{'N| — LEM?
—L&LIME + 4LRL3NR + 4LELEN, — 5L3M3,

e3=8LI(LE + L)ILIMR — LrMI],

eq=—4L1(LE + L?)2,

whereLRg, L, Mg, M|, Ngr andN; aregiven by 6.8-5.10).
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(D.1)

(D.2)

(D.3)

(D.4)

(D.5)
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