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� Abstract
To better understand the impact of changes in nuclear architecture on nuclear func-
tions, it is essential to quantitatively elucidate the three-dimensional organization of
nuclear components using image processing tools. We have developed a novel image
segmentation method, which involves a contrast enhancement and a subsequent thresh-
olding step. In addition, we have developed a new segmentation method of the nuclear
volume using the fluorescent background signal of a probe. After segmentation of the
nucleus, a first-order normalization is performed on the signal positions of the compo-
nent of interest to correct for the shape of the nucleus. This method allowed us to com-
pare various signal positions within a single nucleus, and also on pooled data obtained
from multiple nuclei, which may vary in size and shape. The algorithms have been
tested by analyzing the spatial localization of nuclear bodies in relation to the nuclear
center. Next, we used this new tool to study the change in the spatial distribution of nu-
clear components in cells before and after caspase-8 activation, which leads to cell
death. Compared to the morphological TopHat method, this method gives similar but
significantly faster results. A clear shift in the radial distribution of centromeres has
been found, while the radial distribution of telomeres was changed much less. In addi-
tion, we have used this new tool to follow changes in the spatial distribution of two
nuclear components in the same nucleus during activation of apoptosis. We show that af-
ter caspase-8 activation, when centromeres shift to a peripheral localization, the spatial
distribution of PML-NBs does not change while that of centromeres did. We propose
that the use of this new image segmentation method will contribute to a better under-
standing of the 3D spatial organization of the cell nucleus. ' 2008 International Society for

Advancement of Cytometry
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THE major function of the cell nucleus is to regulate gene activity, which depends

on well-studied molecular mechanisms such as transcription, pre-mRNA splicing,

and ribosome assembly. In contrast to what is known about the molecular regulation

of these mechanisms, far less is understood about the extent that the dynamics of nu-

clear components and the three-dimensional (3D) structural organization of the nu-

cleus contribute to the regulation of nuclear functions. Recent models of high-order

genome organization suggest a nonrandom spatial localization of chromosome terri-

tories in the interphase nucleus (1). Also subchromosomal domains are suggested to

be nonrandomly positioned. Centromeres containing pericentric satellite repeats

show a preferential peripheral orientation in G0-arrested human cells (2) as well as

in differentiated cells (2–4). Telomeres, which are satellite repeats at the ends of chro-

mosomes, reveal a cell cycle-dependent localization in B-lymphocytes. Throughout

the cell cycle, telomeres exhibit a spherical organization but in G2 they reorganize to

a disk shape (5). Together, these studies indicate a nonrandom organization of
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heterochromatic regions in the nucleus, and suggest that a

functional correlation exists between the spatial organization

of heterochromatic regions and gene activity (4,6,7).

The mechanism by which heterochromatic regions are

organized in the cell nucleus is currently unknown. There are

emerging genomic and biochemical evidences that give a role

for the nuclear lamina proteins (which support the structure of

the nucleus) in chromatin organization and control of gene

activity (8–10). Thus, if changes in lamina organization lead to

changes in chromatin organization, correlation should be found

using quantitative image analysis. In a recent study, we found

that in cells, which are activated for apoptosis via the caspase-8

pathway, changes in lamina organization are followed by

changes in the spatial organization of telomeres and centromeres

(11). Here, we have developed a new quantitative image analysis

tool, which facilitates our studies at the 3D localization of multi-

ple (e.g., two or three) nuclear components relative to the

lamina structure in a single cell. To test whether this tool is able

to quantify changes in spatial localization, we have compared

the spatial organization of different nuclear components (i.e.,

telomeres, centromeres, and PML-NBs) in human mesenchymal

stem cells (hMSCs) before and after caspase-8 activation. Image

processing and analysis have been carried out in four basic steps:

(1) segmentation of the nuclear bodies, (2) segmentation of the

nucleus, (3) normalization of the nuclear body positions, and

(4) analysis of the nuclear body radial distribution.

Several methods to detect spots, e.g., fluorescently

marked telomere, centromere, and chromosomal loci signals,

have been reported in the past. Most studies have been done

in 2D (12) or semi-3D (13); detection was done sequentially

on the 2D slices of the 3D image stack. Few studies have

implemented true 3D detection methods. In (14,15), a Gaus-

sian model driven segmentation algorithm has been used with

the assumption of a high intensity curvature and high inten-

sity. Previously, we segmented spots of varying intensities

using a TopHat algorithm (5,16,17). In this study, we applied

a model-driven segmentation approach, which is suitable for

spots with varying intensities. To segment the nuclear bodies

in three dimensions, we adapted a method developed by

Olivo-Marin (18) and extended it to 3D. Together with an

interactive correction step, this method allowed us to accu-

rately determine the spatial positioning of nuclear bodies. We

also present and compare three segmentation algorithms to

segment the nuclear volume. We show that the three methods

give comparable results. Since one of the segmentation meth-

ods does not require imaging of the nuclear lamina, it is tech-

nically easier and therefore preferable. Furthermore, as the

nucleus of hMSCs varies in size and shape; we introduce a

normalization of the nuclear size, which makes it possible to

perform quantitative image analysis on pooled data. After nor-

malization, the radial distribution of different nuclear compo-

nents within a single nucleus has been analyzed. This provided

means to compare different components in a single cell and

also to pool the different data from different cells, that is, a

cell population. Using this new image processing tool, we

show that changes in nuclear architecture can be monitored

after activation of apoptosis by caspase-8.

MATERIALS ANDMETHODS

Segmentation

Probe. The identification of all probe signals in an image has

been performed in two steps. First, a segmentation step has

been performed where the object pixels (the probe signals) are

distinguished from background pixels. As a result, a set of con-

nected pixels are now defined as an object. Second, the center

of the object has been determined using the fluorescence

intensities as a weighting factor.

To segment the probe signal of interest in the image, a de-

rivative scale-space method has been chosen. Previously (5,16)

we have used the morphological TopHat transformation (17)

to segment labeled telomeres in the mouse lymphocytes.

Although this algorithm gave satisfactory results, we chose to

implement a new and faster algorithm and compared it to the

TopHat method. This method is based on a robust method

developed by Olivo-Marin (18), where spots in a highly vari-

able and noisy background can be segmented. The kernel used

in (18) is [1/16,1/4,3/8,1/4,1/16], which is an approximation

of the B3-spline function and also an approximation of the 1D

Gaussian with standard deviation r5 1. We therefore propose

to adjust this method to find objects that resemble 3D Gaus-

sian intensity profiles of spots with a lateral size around 200

nm, as described below. This choice has been made because

the signals in the nucleus are smaller than the optical resolu-

tion of the microscope system, and therefore the intensity pro-

files resemble the point spread function (PSF). The 3D Gaus-

sian is an appropriate approximation of the 3D confocal PSF

(19). Furthermore, the 3D Gaussian has a number of the same

features as the proposed à trous wavelet algorithm in (18): it is

translation-invariant, the images after convolution with the

3D Gaussian are correlated, and the implementation is fairly

simple. The feature that it needs to be isotropic is let go, since

the 3D PSF is anisotropic.

The algorithm is implemented using 3D Gaussian profiles

with different widths characterized by the standard deviation,

r, of the Gaussian function. In the axial (z) direction, the width

is three times larger than that in the lateral (x, y) direction

because of the fundamental anisotropy in the 3D PSF. The PSF

is longer in the axial direction than in the lateral direction. The

image, g, is now convolved with Gaussian profiles with different

widths to produce a Gaussian scale space of the image:

gi ¼ g � GðriÞ ð1Þ
with i 5 0. . .2 and where � is the convolution operator, G is

the Gaussian profile with width ri in the lateral direction, and

3ri in the axial direction, where the factor 3 corresponds to

the typical ratio of axial to lateral dimensions in confocal

microscopy:

GðriÞ ¼ 1

3r3i ð2pÞ3=2
exp � 1

2

x2

r2i
þ y2

r2i
þ z2

9r2i

� �� �
ð2Þ

Next we choose a scale base to define the different widths:

ri ¼ base3
ffiffiffi
2

p i ð3Þ
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with base � 100 nm; so, we are looking for spots of size � 200

nm, which is approximately the full width at half maximum of

a confocal PSF with the high NA we use and will enhance the

contrast of small spots. We have tested the algorithm on simu-

lated images of two spots in close neighborhood with varying

spots sizes and concluded that the contrast enhancement

works for spot sizes within the range visually seen in our real

data (data not shown). After multiplying the differences in the

Gaussian scale space, we produce the result:

gproduct ¼ ðg � g0Þðg0 � g1Þðg1 � g2Þ ð4Þ
For further noise reduction, we convolve gproduct with a small

(1 pixel wide) 3D Gaussian profile. The resulting image is

thresholded at a value, T:

gbin ¼ 1 gproduct > T

0 gproduct � T

�
ð5Þ

We propose to define the threshold T by treating the high

intensity values in gproduct as outliers. This means that we will

define T using the mean, l, and the standard deviation, r, of
the intensity values of gproduct:

T ¼ lþ 3r ð6Þ
In most cases, this automatic thresholding gives a satisfactory

result, indicating that the signal-to-noise ratio is sufficient for

accurate segmentation of the probe. Otherwise, the user can

alter this threshold level. This gives a binary mask, gbin, with

objects representing probe locations. We compute the center

of gravity of intensities for every object in the resulting mask

to estimate the sub-pixel (xn, yn, zn) coordinate for the nth

probe signal. This algorithm for spot detection and localiza-

tion has been embedded in TeloView (16) (see ‘‘Image acquisi-

tion and processing’’ section). After spot detection, the opera-

tor can visually check the spot detection within a matter of

seconds, and manually add or remove the coordinates of

probe signals if needed. This interactive step can also be used

to manually separate touching objects as after segmentation

some objects still touch. For instance, if a larger object visually

looks like two smaller objects, one can delete the marker in the

user interface and add two markers on the centre coordinates

of the smaller objects.

Nucleus. To position the molecular markers within the nu-

cleus, we had to define the nuclear sphere. We have used three

methods to segment the nucleus (Fig. 1):

1. The lamina is labeled with lamin A or lamin B fused to a

fluorescent gene product and the segmentation of the nu-

cleus is carried out on the fluorescent signal of the lamina

protein (Fig. 1Ai, labeled as ‘‘la’’).

2. The lamina is labeled in the same way as in 1, but the seg-

mentation of the nucleus is carried out after a logarithmic

stretch of the lamina signal (Fig. 1Aii, labeled as ‘‘nla’’).

Figure 1. Comparison of three methods for segmentation of the nuclear sphere. (A) Image representations of the different segmentation

methods in one nucleus. The red line outlines the nuclear boundary, which was found by each of the segmentation methods. The n seg-
mentation is calculated from the logarithmic stretched image of the background of the probe signal (i). The nla segmentation is calculated
from the logarithmic stretched image of the lamina signal (ii). The la segmentation is calculated from the image of the lamina signal (iii).

(B) Cumulative distribution function plot of Trf1-DsRed spatial distribution. Plots show the distribution of pooled data from five cells after

activation of caspase-8 at passage 4 using the three segmentation methods, object background (n), lamina in background mode (nla), and
the lamina (la). (C) Linear regression analyses of the pooled data (B) reveals that the nla and la segmentation methods are statistically
equivalent. The nmethod, however, gives a good estimation of the spatial localization of the probes in the nucleus, as compared with the
other two methods.
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3. The lamina is not labeled, but a logarithmic stretch is per-

formed on the background signal of the probe. The back-

ground is probably caused by fluorescent molecules

unbound to structural nuclear elements. This logarithm

stretch highlights the probe background, which is sufficient

to define the shape of the nucleus (Fig. 1Aiii, named as

‘‘n’’); now, segmentation is carried out on this stretched

background.

In all three methods, we segment the nucleus with an iso-

data thresholding algorithm (20) after noise reduction by a

convolution with a Gaussian filter. This easy algorithm is suffi-

cient, because there is only one nucleus per image and we do

not need to separate touching objects.

While method 3 differs from method 1 and 2 by using a

different probe, methods 1 and 2 differ from each other

because the logarithmic stretch causes the isodata thresholding

algorithm to choose a different thresholding level. Although

method 3 is more sensitive to the signal-to-noise ratio com-

pared to the other methods, nuclear segmentation worked for

all our images with all three methods. This resulted in three

different segmentations of the nucleus.

Probe Distribution

Radial position with a segmented nucleus. To calculate the

radial distribution of the components inside the nucleus, a

method is required that eliminates the effect of the nuclear

size and the nonspherical shape. We use a method that pro-

duces a normalized distance of a probe, rnorm, from the center

of a nucleus to the nuclear boundary. Thus, rnorm 5 0 means

that a probe is at the center and rnorm 5 1 means that a probe

is at the boundary. Our method approximates the nucleus

shape of the hMSCs by an ellipsoid. To normalize the probe

position, we used the coordinates of the pixels obtained from

the segmented nucleus to find the center of the nucleus. We

also use these coordinates to transform the coordinates of the

probe signals (xi, yi, zi). From the nuclear coordinates, we cal-

culate the covariance matrix (the second-order moments of

inertia of the nuclear voxels). We then perform a singular

value decomposition on this matrix. This gives a rotation ma-

trix, Sn, and a matrix with the singular values, Vn. The singular

values represent the variances, ri
2, in the different principal

directions given by the rotation matrix. The principal direc-

tions are the directions in which the variances are largest.

The singular matrix has the form:

Vn ¼
r21 0 0

0 r22 0

0 0 r23

0
@

1
A ð7Þ

where

r1 > r2 > r3 ð8Þ

For a sphere with radius one, the unit sphere, all three singular

values will give 1
5
. Now, we rotate and normalize the variances

of the probe signal coordinates to the unit sphere:

xnew; ynew; znewð Þ ¼ ðxi; yi; ziÞ3Sn3
ffiffiffiffiffiffiffiffiffi
V�1
n

q
3

ffiffiffi
1

5

r
ð9Þ

A schematic presentation of this transformation is shown in

Figure 2. After this transformation, the normalized radius,

rnorm, is simply

rnorm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2new þ y2new þ z2new

q
ð10Þ

Cell Preparation and Molecular Labeling

Human MSCs were isolated from bone marrow samples

of adult donors and were cultured as described in (11).

To visualize nuclear proteins, we expressed lamin A,

lamin B (components of the nuclear lamina), Trf1, Trf2 (both

associated with the telomeres), and CenpA (associated with

the centromeres) as fusion proteins with GFP and DsRed in

hMSCs as previously described (11). PML-NBs were visualized

after fixation of the cells using a specific anti-PML antibody as

described in (11).

Image Acquisition and Processing

3D images from live or fixed cells were acquired using a

confocal microscope (Leica, model TCS-2) equipped with an

argon/krypton laser and a 1003/1.3 NA Apo objective. The

3D images were loaded in TeloView, a custom noncommercial

in-house developed analysis program for MatLab (The Math-

works, Natick, MA). TeloView makes use of DIPimage (21)

developed at the Quantitative Imaging Group (TU-Delft, The

Netherlands, http://www.diplib.org). The typical sampling dis-

tances in the lateral direction were on the order of Dx 5 Dy 5
40 nm and in the axial direction on the order of Dz 5 160 nm.

This anisotropy in the sampling distances makes weighing of

pixel values and distances necessary during segmentation and

analysis; we have solved this by interpolating the images to get

isotropic sampling distances. Typical image size was 512 3
512 3 40. Before segmentation, the images are interpolated

linearly in the z direction from Dz to Dz0 so that the sampling

distance in all three directions is the same: Dx 5 Dy 5 Dz0.
Note that our remark about the fundamental anisotropy in

the confocal PSF in the section on probe segmentation still

Figure 2. Schematic representation of the normalization proce-

dure. (A) 2D example of a nucleus (red) with a signal (black dot).

(B) The same nucleus (A) after normalization. The normalized ra-

dius, rnorm, is given by r/R. If R 5 1 (green circle, the unit sphere),

rnorm is given by Eq. (9).
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holds after this interpolation, since the PSF is an intrinsic

property of the microscope system and is therefore independ-

ent of the sampling.

Statistics

The spatial distribution of the probe is plotted in a cumu-

lative distribution function (CDF) plot. We have chosen this

representation to avoid the problem of choosing a binning

size in a histogram (the conventional way of showing the em-

pirical data distribution function), which can heavily influence

the appearance of the distribution. The CDF of the radius,

F(r), is defined as

FðrnormÞ ¼ number of observations � rnorm

total number of observations
ð11Þ

Distributions were compared with the Wilcoxon rank-sum test

(22,23) and the two sample Kolmogorov–Smirnov test (24).

RESULTS

Probe Segmentation

We have compared the scale space segmentation algo-

rithm with a TopHat transformation method. For the scale

space segmentation we used three scales (i 5 0, 1, 2) and base

5 100 nm. The TopHat transformation uses parameters for

the structuring element (SE) as previously described in (16); a

spherical SE with radius 742 nm. A total of 14 images with 524

telomere signals have been analyzed. On average, we find 37

telomeres per cell. This number is lower than expected, since

not all telomeres are labeled with this method and also possi-

bly due to telomere merging. We have chosen a different

threshold for the scale-space method, T (see ‘‘Materials and

Methods’’ section), for each image separately, so that the num-

ber of interactive corrections (signals added and signals

removed) in each image is minimized. This resulted in 26 cor-

rections (�2 corrections per image). For the threshold in the

TopHat method, we chose a threshold for each image in the

same manner, resulting in 30 corrections (�2 corrections per

image). This amount of corrections is acceptable for practical

use. While no significant differences in the number of correc-

tions has been found between the two methods, the new

method gives significant advantages in computation time.

Typical computation time of the TopHat method is 5–15 min

versus 1–3 min with the scale space method on an AMD

OpteronTM 244 1.8 GHz processor with 8 GB RAM. Therefore,

we chose to use the scale-space method.

Nuclear Segmentation

We have used the fluorescent protein-tagged lamin A or

lamin B proteins to visualize the nuclear envelope. During ap-

optosis, before degradation of the lamina proteins, the nuclear

envelope changes from a round-flat to a convoluted shape. In

addition, as previously described, the spatial organization of

centromeres and telomeres changes (11). At this point, we are

interested in developing a more accurate quantitative image

analysis tool that will allow us to study the spatial distribution

of nuclear components with respect to the nuclear shape. We

therefore tested three methods for segmentation of the nucleus

(Fig. 1A). The segmentation methods are described in ‘‘Mate-

rials and Methods’’ section. The performance of the three seg-

mentation methods has been tested on telomere signals. 3D

confocal images were taken from hMSCs after activation of

caspase-8 at passage 4, expressing Trf1-DsRed and lamin

B-GFP. An example of a nucleus expressing both fluorescent

fusion proteins is shown in Figure 5A. After nuclear segmenta-

tion, using each of the methods, nuclear boundaries were indi-

cated by a red line (Fig. 1A, red line). The nuclear shape was

determined by segmenting the Lamin B-GFP signal without

contrast stretch (la), or after a logarithmic stretch (nla), or by

segmenting the nuclear background signal derived from Trf1-

DsRed (n) (Fig. 1Ai, ii and iii, respectively). Comparisons of

the three methods revealed little differences (Figs. 1B and 1C).

Therefore, when analyzing the change in distribution of nu-

clear bodies from the center of mass, it is possible to use the n

method for nuclear segmentation, as it is significantly faster

and simpler. During apoptosis, however, the shape of the nu-

clear envelope changes, and in addition, the lamina form

intranuclear structures (11). Thus, it would be interesting to

analyze the change in the spatial distribution relative to the

lamina. As changes in lamina organization precede changes in

the spatial organization of centromeres and telomeres (11), it

is possible that changes in lamina spatial organization affect

the spatial organization of nuclear bodies.

We emphasize that the images contain single nuclei, so

that more sophisticated segmentation algorithms (25–27),

where multiple cells or nuclei are present in one image, which

need to be segmented, are unnecessary in this study.

Next, the spatial distribution of the telomeres was quanti-

fied within each of the segmented nuclei and the frequency of

telomeres was plotted against the nuclear radius. To perform

statistical tests on pooled data, it was essential to first normal-

ize the radius of the nuclei, as described in Figure 2 and in the

‘‘Materials and Methods’’ section [Eq. (9)]. The pooled data

from five nuclei, representing 343 Trf1-DsRed fluorescent

dots, revealed no significant differences between the three seg-

mentation methods (Figs. 1B and 1C). However, a detailed

comparison revealed that the la and the nla methods show a

high level of correlation, R 5 0.99 (Fig. 1C). This is not sur-

prising since both the la and the nla methods are based on the

lamina signal. The correlation of the la or nla methods with

the n method was less, R 5 0.78 and R 5 0.77, respectively

(Fig. 1C). We suggest that the n method for nuclear segmenta-

tion gives a good estimation for the spatial localization of nu-

clear components. This method, however, does not outline the

nuclear envelop as precisely when we visually evaluate the

resulting segmentation and compare it to the lamina segmen-

tation methods. Finally, some general notes on the effect of

radial positioning with respect to the accuracy of the segmen-

tation. The segmentation might give two kinds of errors: with

and without a bias. Statistically, these errors will not affect the

final results in our application. For the nonbiasing errors, this

is trivial: the ellipse fitting as explained in the section on probe

distribution will reduce this error to a very small contribution.
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When a bias exists, it will not affect differences in radial posi-

tion distributions we report. The accuracy of the nuclear seg-

mentation should be further explored, depending on the spe-

cific application. Nevertheless, as the n segmentation method

is the fastest and requires significantly less work, it can be used

to estimate the nuclear shape.

Changes in Spatial Distribution During

Activation of Apoptosis

To test whether the n segmentation method can be used

to study changes in the spatial organization of multiple nu-

clear components, we applied it to images from cells expres-

sing both CenpA-GFP and Trf1-DsRed (Fig. 3A). These cells

Figure 3. Distribution analysis of centromeres and telomeres in a single nucleus. (A) Maximum intensity projections of single hMSC

expressing CenpA-GFP (green) and Trf1-DsRed (Red), before (mock-treated) and after caspase-8 activation (1AP20187, 4 h treatment). (B)
Cumulative distribution function plots showing changes in the relative distribution of CenpA and Trf1 signals during caspase-8 activation

in a single representative cell. Analyses were carried out in cells expressing the FKC8 vector before and after caspase-8 activation

(1AP20187). Four hours after AP20187 treatment, the nucleus showed a round shape and after 6 h a convoluted shape. The plots show
that in normal hMSCs, the spatial distribution of CenpA is more central compared with that of Trf1. Upon caspase-8 activation, the cumula-

tive distribution function plots reveal a clear shift in CenpA localization towards the periphery in round-shape nuclei. A very similar distri-

bution of CenpA and Trf1 is found in convoluted nuclei. The P values of the Wilcoxon rank-sum test and the two sample Kolmogorov-

Smirnov test are given by P(W) and P(KS) respectively.
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were induced to go into apoptosis by expressing the FKC8

gene, which was activated after AP20187 treatment (11,28). To

study eventual differences between centromere and telomere

spatial organization, we developed a method that finds the

radial distribution of multiple nuclear components in a single

nucleus. Live hMSCs were imaged before and 4 and 6 h after

AP20187 treatment.

First, we tested this method on single living cells. For a

mock-treated cell, the CDF plots show that the centromeres

have a higher preference for a central localization as compared

with telomere positioning (Fig. 3B, mock-treated). This obser-

vation confirms previous studies done on fixed cells, showing

a more central localization of centromeres as compared to

telomeres in interphase nuclei in various cell types (29,30).

The CDF plot revealed that few telomeres are localized at the

nuclear periphery in untreated hMSCs (Fig. 3B). This observa-

tion is consistent with previous studies showing that few telo-

meres are physically associated with the nuclear lamina (31).

After apoptosis activation by AP20187 treatment, we

observed in the round-shaped nucleus that the centromeres

were positioned near the nuclear periphery [Fig. 3B, round,

and (9)]. At that time, in the same nucleus, the spatial distri-

bution of telomeres was more central than that of the centro-

meres (Fig. 3B, round). At a later stage, in the convoluted-

shaped nucleus, the radial distribution of centromeres and

telomeres did not differ, as shown by the statistical tests. These

analyses suggest that both centromeres and telomeres change

position within the three-dimensional space of the cell nucleus

at different rates. In addition, the shift in centromere localiza-

tion is more significant than the telomere shift.

Unlike centromeres and telomeres that show changes in

spatial organization upon caspase-8 activation, PML-NB orga-

Figure 4. PML-NB and CenpA distribution in a single nucleus. (A) Maximum intensity projection of CenpA-GFP (green) and PML-NB (red)

within single hMSCs expressing FKC8, before (mock-treated) and after caspase-8 activation (1AP20187, 6-h treatment). (B) Histograms
show the fraction of centromeres (green) or PML-NBs (red) distributed in a normalized nucleus of a representative cell. Analyses were car-

ried out on mock-treated cells and on cells 6 h after AP20187 treatment. In mock-treated hMSCs, CenpA and PML-NBs have a similar spatial

distribution pattern, but upon caspase-8 activation, some CenpA molecules show a peripheral localization while the distribution of PML-

NBs is not affected.
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nization is initially unchanged, even in cells showing a convo-

luted nuclear shape. The distribution of PML-NBs is disrupted

only when the lamina shows massive degradation (11). Here,

we used our newly developed method to quantitatively com-

pare the spatial localization of centromeres and PML-NBs in

mock-treated cells showing a round nuclear shape and in cas-

pase-8-activated cells showing a convoluted nuclear shape. To

visualize PML-NBs, cells were fixed and incubated with the

appropriate antibodies (Fig. 4A). The frequency distributions

of both centromeres and PML-NBs were plotted in histograms

against radial rings. Representative results are shown in Figure

4B. The analysis of this one cell reveals a peripheral localiza-

tion of several CenpA molecules in caspase-8-activated cells,

while the spatial distribution of PML-NBs does not change.

This observation is consistent with previous results, showing

shift in CenpA distributions in apoptotic cells (11).

Next, we analyzed pooled data obtained from multiple

cells expressing both CenpA-GFP and Trf1-DsRed before or

4 h after caspase-8 activation. When we visually analyzed the

localization of centromeres with respect to the center of the

nucleus, centromeres were shown to be centrally localized,

while after caspase-8 activation, their spatial distribution shifted

towards the nuclear periphery (Fig. 5A). A clear shift in centro-

mere localization towards the nuclear periphery is also shown

by the CDF plot of the pooled data of four cells before and after

treatment with P\ 1e-7 calculated by the Wilcoxon rank sum

test, using the nuclear background segmentation method (Fig.

5B). In contrast, the P values calculated by the Wilcoxon rank

sum test did not show a significant change in Trf1 localization

between normal, nine cells, and convoluted-shaped nuclei, five

cells, in caspase-8-activated cells. From the CDF plot, we esti-

mated that 20% of the telomeres are localized to the nuclear pe-

riphery (r[ 0.8) in both untreated and AP20187-treated cells.

Thus, the radial distribution of centromeres shifts to the periph-

ery in convoluted-shaped nuclei, whereas the telomere distribu-

tion is not changed.

Figure 5. Changes in the spatial distribution of telomeres and centromeres during activation of apoptosis. (A) Left: maximum intensity

projection of a mock-treated cell expressing lamin A-DsRed (blue) together with CenpA-GFP (green). Right: maximum intensity projection

of a cell expressing Lamin B-GFP (green), Ttrf1-DsRed (red), and FKC8, after AP20187 treatment. Lamin A and B expression marks the inner

nuclear membrane. (B) Cumulative distribution function plot of the spatial distribution of CenpA-GFP before (blue line) and 4 h after cas-

pase-8 activation with 100 nM AP20187 (red line). Segmentation of the nuclear sphere was carried out using the nla segmentation. The
graph shows pooled data from four cells for each treatment. The P value of the Wilcoxon rank-sum test is given by P(W). (C) Cumulative
distribution function plot of the spatial distribution of Trf1-DsRed analyzed in cells expressing lamin B-GFP before (blue line) and 6 h after

caspase-8 activation (green line). Segmentation of the nuclear sphere was carried out using the nla segmentation method. The graph
shows pooled data from nine cells and five cells before and after caspase-8 activation, respectively. The P value of the Wilcoxon rank-sum
test is given by P(W).
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DISCUSSION

We have presented a new segmentation method to ana-

lyze probe distribution in the cell nucleus. This method shows

a clear improvement over the conventional tophat method,

especially with respect to computation time. We have also

developed an improved segmentation method for the nucleus

itself, which is based on background signals derived from

expressed fluorescent fusion proteins. Using this method, the

preparation of samples and the acquisition of images is techni-

cally easier and therefore superior. Segmented images allow us

to quantify the spatial distribution of centromeres and telo-

meres relative to the nuclear center. This tool also allows us to

quantitatively relate the radial distribution between two or

three nuclear components in a single cell nucleus. It also

allows a quantitative comparison of the distribution of nuclear

components between cells and between treatments and various

biological situations. As an example, we showed here how the

distribution of centromeres and telomeres changes after acti-

vation of caspase-8, which results in cell death.

Nuclear architecture does not only describe the organiza-

tion of the nucleus, but recent studies indicate that the spatial

and temporal organization of the genome is likely to have

functional consequences. Changes in nuclear architecture are

amongst the most dramatic hallmarks of development and dif-

ferentiation processes and defects in architectural elements of

the cell nucleus are responsible for several human diseases.

Yet, it is not clear how the spatial localization of the various

nuclear structures is changed during change in cell function.

Two major models have been suggested (32). In the structural

scaffold concept, structural proteins, like the lamina proteins,

confine the activation regions of the genome. The self-reinfor-

cing concept suggests that the spatial organization of nuclear

structures reflects the transcriptional activity of the genome.

Following the self-reinforcing concept, we tested here the spa-

tial localization of nuclear probes relative to the center of

mass. However, it is possible that changes in the nuclear

lamina also contribute to the spatial localization of nuclear

structures, like in human diseases with mutation in lamina

genes (33) or in cell death (11,32,33). Therefore, it would be

interesting to test the change in the spatial localization of

nuclear probes using the distance transform approach (34),

where the smallest distance to the lamina will be found. The

distance from the center of the nucleus to the nuclear compo-

nent, as described in this study, and the distance from the

lamina to the nuclear component are fundamentally different

metrics and can give complementary information. Finally, it

would be mostly interesting to compare between the two

methods with respect to the biological models. A broad appli-

cation of both tools will eventually lead to a better under-

standing of the nuclear architecture and its relation to nuclear

function.
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26. Sarti A, Ortiz de Solórzano C, Lockett S, Malladi R. A geometric model for 3-D con-
focal image analysis. IEEE Trans Biomed Eng 2000;47:1600–1609.

27. Parvin B, Yang Q, Han J, Chang H, Rydberg B, Barcellos-Hoff MH. Iterative voting
for inference of structural saliency and characterization of subcellular events. IEEE
Trans Image Process 2007;16:615–623.

28. Carlotti F, Zaldumbide A, Martin P, Boulukos KE, Hoeben RC, Pognonec P. Develop-
ment of an inducible suicide gene system based on human caspase 8. Cancer Gene
Ther 2005;12:627–639.

29. Amrichova J, Lukasova E, Kozubek S, Kozubek M. Nuclear and territorial topography
of chromosome telomeres in human lymphocytes. Exp Cell Res 2003;289:11–26.

30. Weierich C, Brero A, Stein S, Hase Jv, Cremer C, Cremer T, Solovei I. Three-dimen-
sional arrangements of centromeres and telomeres in nuclei of human and murine
lymphocytes. Chromosome Res 2003;11:485–502.

31. Ludérus ME, van Steensel B, Chong L, Sibon OC, Cremers FF, de Lange T. Structure,
subnuclear distribution, and nuclear matrix association of the mammalian telomeric
complex. J Cell Biol 1996;135:867–881.

32. Misteli T. Concepts in nuclear architecture. Bioessays 2005;27:477–487.

33. Broers JLV, Ramaekers FCS, Bonne G, Yaou RB, Hutchison CJ. Nuclear lamins: Lami-
nopathies and their role in premature ageing. Physiol Rev 2006;86:967–1008.

34. Mullikin JC. The vector distance transform in two and three dimensions. CVGIP:
Graph Models Image Process 1992;54:526–535.

ORIGINAL ARTICLE

824 Segmentation and Analysis of the Three-Dimensional Redistribution of Nuclear Components in hMSC


