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Mathematical modelling of the chronoamperometric
response of an array of rectangular microelectrodes
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Abstract

A general mathematical model descrnibing the response of an array of flat amperometric electrodes with arbitrary
size and spatial distribution at the bottom of a measuring cell with rectangular walls and finite dimensions 1s outhined
It 1s based on the three-dimensional diffusion equation with mmtial and boundary conditions corresponding to the
physical situation which was numerically solved by the implicit alternating-direction finite-difference method The
accuracy of the numencal solution was confirmed by theoretical and experimental results obtained by other authors
By comparing the chronoamperometric curves of the individual electrodes and by examining the spatial concentration
distribution m the measuring cell conclusions can be drawn concerning the mutual mnfluence of the indmvidual
electrodes for a given geometry of the array and the dimensions of the measuring cell This will allow the designing of
arrays and selecting the proper measuring cell dimensions resulting in mimimal sensor interferences Chronoampero-
metric curves show the time required for attaiming quasi steady state and the corresponding current value Illustrative

examples are presented
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In static solutions mucroelectrodes exhibit a
number of advantages related to then size (e g,
in vivo measurements [1D) and electrochemical
properties [2-24] m companson with conven-
tional macroelectrodes The most important elec-
trochemical properties are the followmg (1) en-
hanced current densities due to non-linear diffu-
sion [2-13]} which results 1n a rapid estabhishment
of the quast steady-state in chronoamperometry
[6-8,11,12], sigmodal cychic voltammograms with
reversible couples for moderate scan rates [2,14—
171, and increased sensitivity to small deviations
from reversibility, allowing the measurement of
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high rate constants (e g, up to 400 cm s—! [18]),
{n) low ohmic potential drop which allows meas-
urements to be performed in highly resistive me-
dia [19-24], () reduced double-layer capaci-
tance due to the small surface area which, to-
gether with the low ohmic drop, allows measure-
ment of faradaic currents at very short times and
the extension of cychic voltammetry to high scan
rates [21]

The currents measured by microelectrodes, de-
spite the non-linear diffusion effects, remamn sub-
stantially lower 1n absolute values (e g, down to
the order of femtoamperes) than those of conven-
tional macroelectrodes This drawback, though
not crucial 1in view of the modern instrumentation
availlable nowadays, can easily be overcome by
usmg ensembles of microelectrodes connected n
parallel [25-29] Depending on the method of
manufacturing, (ultra)microelectrode arrays can
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have regular (e g , microlithography [27]) or irreg-
ular (e g, composite electrodes [29]) geometry In
addition to the valuable properties of single m-
croelectrodes mentioned above the arrays of m-
croelectrodes offer some additional advantages
worth mentioning It has been established both
theoretically and experimentally that an array of
microelectrodes mn the long-time range (1 e, when
the non-linear diffusion fields of the individual
microelectrodes overlap) behaves like a macro-
electrode (Cottrelian diffusion) with an area
equal to the total geometric area of the array, not
only to the sum of the areas of the individual
microelectrodes comprising the electroactive area
of the array [30-34,36-38] This effect results on
one hand 1n a considerable improvement n the
signal-to-noise ratio of the array because despite
the fact that the faradaic signal 1s proportional to
the total geometric area (electroactive and non-
electroactive area), the noise remams propor-
tional only to the electroactive area of the array
[34,39,40] On the other hand 1t allows a consider-
able economy of the electroactive material which
very often 1s a nobel metal [26-28] The possibil-
ity to address individually each microelectrode 1n
an array can be used for simultaneous multicom-
ponent analysis or for study of reaction mecha-
nism by simultaneously detecting the participat-
g species 1n the reaction The effectiveness of
this approach can be further enhanced by modify-
ing the mdmvdual microelectrodes 1 order to
improve the selectivity

For better understanding of the processes oc-
curring at ensembles of microelectrodes and for
their optimal design an adequate mathematical
model 1s required Models based on analytical
{30,32,37] and numerical [31,33-36] solution of
the partial differential equation expressing Fick-
1an diffusion to arrays of disk, ring or square
microelectrodes under various simphfying as-
sumptions have been proposed before Linde-
mann and Landsberg [30] assumed uniform distri-
bution of microdisk electrodes 1n a rigid hexago-
nal array They reduced the diffusion problem for
such an ensemble to the diffusion to an array of
non-interacting semi-infinite contiguous cylindri-
cal unit cells with a concentrically situated circu-
lar active site at their bases The equation derived
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for the diffusion current was based on the Cot-
trell equation [40] in which the term for the
diffusion layer was corrected according to the
results of Smythe [41] However, those results are
valid for steady-state conditions only and their
application to the transient problem of chronopo-
tentiometry resulted m discrepancies between
theory and experment [30] Levart et al [31]
treated the diffusion to an array of periodically
distributed square active sites under steady-state
conditions and the results obtained are simlar to
those of Lindemann and Landsberg [30] Guesh
et al [32] developed a model using a representa-
tion of the microelectrode array similar to that of
Lindemann and Landsberg [30] and assumed a
steady-state radial diffusion The resulting system
of differential equations with thewr imtial and
boundary conditions corresponds exactly to that
for an electron transfer preceded by a first-order
chemical reaction The analytical solution of the
model gives accurate results for the current at
short (1e, sem-infinite linear diffusion to the
electroactive area) and long (1e, semu-infinite
linear diffusion to the total geometric area) times
For intermediate times (1 e, non-hnear diffusion
to the indmidual microelectrodes) the predicted
current was found to be too low, the deviation
increasing with decreasing the fraction of the
electroactive area Reller et al [33] numerically
solved the model proposed by Gueshi et al [32]
taking into consideration the transient character
of radial diffusion by an explicit fimite-difference
techmque Good agreement between reported ex-
perimental data [30] and results based on the
simulation for the whole time range was ob-
served Weisshaar and Tallman [34] denved a
model for carbon-based composite electrodes as-
suming that they consist of two ensembles of
microelectrodes with different geometrical di-
mensions behaving independently of one another
so that the total electrode current was simply a
weighted summation of the two contributions,
each described by the equation of Guesh: et al
[32] Shoup and Szabo [35] numencally solved the
problem treated in literature [30,32,33] using the
hopscotch algorithm They derived an empirical
expression based on the equation for the current
at an 1solated microdisk electrode [6], which accu-
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rately reproduced the results of the simulations
for all times and for all fractional coverages The
authors found that for very short times (¢t — 0)
the ensemble current should not comncide with
the Cottrell results [30-33] but be displaced from
them by m/4 No expermmental or simulation
proof for this theoretical prediction can be found
tn the literature Cassidy et al [36] extended the
problem treated 1n literature [30-34] to the case
of a reversible simple electron-transfer reaction
so that the concentrations of the reduced and the
oxidized species at each electroactive disk surface
were coupled by the Nernst equation The or-
thogonal collocation method was used for the
solution of the corresponding diffusion equations
for the electroactive species The simulation re-
sults agreed fairly well with those of Reller et al
[33] and those of Shoup and Szabo [35], and with
the experimental data presented [30] Scharnfker
[37] developed a simple analytical approach for
calculating the time-dependent diffusion current
to square, hexagonal and random arrays of mi-
crodisk electrodes using only the analytical ex-
pressions for the non-linear diffusion current to a
single microdisk electrode [3] and the Cottrell
equation {40] The approach 1s based on consider-
g the overlap of equivalent diffusion zones de-
fined by the author as the circular area incorpo-
rating a microdisk electrode to which linear diffu-
sion will produce the same effect as the actual
non-hinear diffusion to the same electrode The
overlap was calculated through the corresponding
exact geometrical constructions in the case of
square and hexagonal arrays or by applying the
Avramui-Kolmgorov theorem in case of random
arrays Despite the substantial simplifying as-
sumptions introduced by the author the analytical
expressions obtained are 1n fairly good agreement
with the theoretical results of Shoup and Szabo
[35] and the expermmental data presented by
Guesh et al [32]

All the models mentioned above possess sev-
eral drawbacks limiting their generality, the most
important of them being the following

(1) Only ordered arrays with a high degree of
symmetry (e g, square and hexagonal geometry)
are considered which allows the more compl-
cated diffusional problem to an array to be sim-
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plified to the case of diffusion to a single elec-
trode The equation of Scharfker [37] for the
diffusion current at randomly distributed overlap-
ping microdisk electrode arrays has not been
expertmentally confirmed and due to the consid-
erable simplifications made 1n 1ts derivation 1t 1s
difficult to predict its vahdity for real random
arrays Modern microhthographic techniques al-
low the manufacturing of arrays with various ge-
ometries and different degrees of symmetry which
cannot be described mathematically by the exist-
mg models

(2) Only microdisk arrays have been consid-
ered except for reference [31] where the treat-
ment of non-linear steady-state diffusion to an
ordered array of square microelectrodes 1s re-
ported

(3) The arrays are assumed to be infinitely
wide and long with constant concentration of the
electroactive species far from their surface These
simplifying assumptions do not allow to take into
account the effects of the walls of real electro-
chemical measuring cells on the response of the
arrays in them, 1¢, the models are not suitable
for the description of chronocoulometric meas-
urements accompamed by depletion of the elec-
troactive species m the whole volume of the
measuring cell or to predict to what extent a real
measuring cell can be mimaturized without af-
fecting the chronoamperometric response To-
gether with point 1, this assumption excludes any
mterference 1n the responses of the individual
mucroelectrodes, 1e, the electrodes should ex-
hibit 1dentical responses For this reason shield-
ing effects of electrodes, where because of the
geometry of the array the access of the electroac-
tive species 1s restricted, cannot be taken mto
account

In the present paper the development of a
model overcoming the drawbacks of the models
existing 1n the hiterature mentioned above 1s re-
ported

DEVELOPMENT OF THE MATHEMATICAL MODEL

The mathematical model proposed in the pres-
ent study 1s based on the following assumptions
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Fig 1 Scheme of the measuring cell with an array of 9
rectangular electrodes at 1ts bottom

(1) the mass transfer 1s the result only of Fickian
diffusion, 1e, no migration effects are consid-
ered, (1) the walls of the measuring cell, which
are assumed to be rectangles, are impermeable to
the electroactive species wnside 1t (Fig 1), (m) the
depletion of the chemical species 1s a result only
of the heterogeneous electrochemical reaction
taking place at the electrodes which are situated
at the bottom of the measuring cell (Fig 1), (iv) a
simple reversible charge-transfer reaction is con-
sidered and the potentials apphed at all micro-
electrodes, which are not necessarily the same,
are assumed to deviate from the formal potential
E, to such an extent that either the anodic or the
cathodic reaction predominates, (v) the micro-
electrodes were assumed to be rectangular in
shape and to he at the same level as the bottom
of the measuring cell

The mathematical model consists of the di-
mensionless Fick’s second law (Eqn 1) The sym-
bols and their definitions are given in Table 1

aC  ¥C #Cc PC

- 2x Ty T 37

¢ 9°X Y 0dZ

The mtial conditions of Eqn 1 are

C0,X,Y,Z)=1for 0 <X <X,,
0<Y<Y,and0<Z<Z, (2a)

The boundary conditions for the walls of the
measuring cell excluding the electrodes are

6

aC
(—) =0for0<Y<Y;and0<Z<Z,
80X ] x=0
(2b)
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aC
(—-——) =0for0<Y<Y,and0<Z<Z,
aX X-Xo
(2)
oC
(—) =0for0<X<X,and0<Z<Z,
¥=0

oY
(2d)

aC
(___) =0for0<X<X,and0<Z<Z,
Y [ y-y,

(2e)
iad Ofor (X,Y)eS
(a)bo— or (X,Y) & (2f)
aC
— =0for0<X<X,and0<Y<Y,
0Z | z-z,

(28)

where S 1s the electroactive area of the array
The boundary conditions for the electrodes in the
case of slow or moderate rate of the heteroge-
neous charge transfer with respect to the mass-
transfer rates are given by Butler-Volmer equa-
tion

oC C. K anF E—E!
for (X,Y) €S (2h)

while if the reaction 1s very fast the concentra-
tions at the electrodes can be assumed as 0, 1¢e,

Czo=0for (X,Y)eS$§ (2)

The dimensionless current (/) monitored at each
individual electrode and for the whole array (I)
can be calculated by

1,=fs.j(§g-)z=0 dXdY/fs'dedY (3)

where s, 1s the area of the :th microelectrode

=T @)
1=1

NUMERICAL SOLUTION OF THE MODEL

The mmplicit alternating-direction finite-dif-
ference method [42] has been successfully applied
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TABLE 1

Symbols and definitions

Coefficients defined i Table 3

Coefficients defined 1n Table 3

Concentration (mol m~3)

Imtial concentration {(mol m~?)

= ¢ /c, Dimensionless concentration

Step coefficient (Table 2)

Daffusion coefficient (m? s~1)

Potential (V)

Formal potential (V)

= 96486 332 Faraday constant (C mol~1)

Current at the ith microelectrode (A)

=1,L /nFDs,c, Dimensionless current of the :th

electrode

= 1.1, Dimensionless current of the array

A = [,s, /L Normalized current of the :th microelec-

trode (m)

J =Y J, Normalized current of the array (m)

kg Standard heterogeneous rate constant (s 1)

K, = L2k, /D Dimensionless standard heterogeneous
rate constant

L Charactenistic length (m)

M Total number of gnd pomts in X (M,), Y (M,), or

Z (M,) direction of the spatial gnd (defined in

Table 3)

Number of electrons exchanged

Number of grd pomnts in X (N,), Y (N,), or Z (N,)

direction 1n a uniform or non-umform region of the

spatial gnd

= 83145 Gas constant (J K~! mol~1)

Area of the 1th microelectrode (m?)

Electroactive area of the array (m?)

Time (s)

Absolute temperature (K)

x, ¥, z Directed distances 1n a cartesian coordinate system
(m)

X,Y,Z =x/L, y/L, z/L Dimensionless directed dis-

tances 1n a cartesian coordinate system ®

MmO R QS S T

-

St

-

N a2 oy

Greek letters

a Transfer coefficient in Butler-Volmer equation
A8 Dimensionless time increment
Ay Dimensionless spatial increment in the uniform

space gnd region

AX, Dimensionless spatial increment in X direction
(Table 2)

AY, Dimensionless spatial increment 1n Y direction (Ta-
ble 2)

AZ, Dimensionless spatial increment in Z direction
(Table 2)

6 = D t/L? Dimensionless time

® The subscripts of X, Y, and Z are explamned in Figs 1 and
2
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for the numerical solution of partial differential
equations describing multidimensional mass
transfer [43,44] The method 1s unconditionally
stable and the corresponding sets of imphcit dif-
ference equations m the X, Y, and Z directions
have tridiagonal matrices and allow straightfor-
ward solution by a Gaussian elimination method
[42] The charactenstic length of an array (L) was
defined as the shorter length of the smallest
rectangle m which all the individual microelec-
trodes of the array are confined For the solution
of Eqn 1, which 1s a three-dimensional transient
diffusion equation, a modification of the two-di-
mensional mmplicit alternating-direction method
[42], proposed by Brian [45], was chosen In order
to reduce the computation time, a mixed um-
form/non-uniform space grid was used. In the
area where the electrodes were situated, 1e, X,
<Xx<X, Y,sY<Y, Z<Z (Fig 2), an
1sotropic and 1n all three directions uniform space
grid was used The spatial increment (A¢,) was
selected 1n such a way that the edges of the
electrodes coincide as much as possible with the
grid hines Qutside this area spatial increments
along all the three coordinate axes increase with
distance from the area where the electrodes are
located (Fig 2) The size of the mdividual mncre-
ments was determimned as elements of an arith-
metic progression with a basic element equal to
the spatial increment (A¢,) 1n the umform-gnd
region and step coefficients, d,, d,, and d, cho-
sen n such a way so that X,, Y, and Z;—-2Z,
(Fig 2) are subdivided by an integer number of
gnd points, N, N, and N}, respectively (Table
2) The finite-difference formulas for the first-
and second-order derivatives necessary for con-
structing the mmplicit fimte-difference equations
were obtamed from the Taylor expansion [42]
The finite-difference formulas for the X derva-
tives are given 1n Table 3 and they are similar to
those in the Y and Z directions The non-um-
form space grid outhned above allows the de-
scription of the concentration field to be made m
greater detail closer to the electrodes and in
lesser detall at a greater distance from them
where the variations in the concentration gradi-
ents are smaller and less grnd points are necessary
for their accurate determmation
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Fig 2 Spatial gnd in the measuring cell Left XY plane at
Z =0, nght XZ plane at arbitrary Y

The double mtegral in Eqn 3 was calculated
by the consecutive application of Simpson’s rule
[42]

An mmportant step in the model simulation 1s
the accurate calculation of the flux of the elec-
troactive species towards the surface of the mi-
croelectrodes, 1e, (3C/3Z);., at (X,Y)ES
This task could pose severe difficulties because 1t
1s well known that numerical differentiation 1s an
inherently less accurate process than numerical
integration utilized for solving Eqn 1 Another
reason to be cautious 1n this particular case 1s the
fact that the concentration gradient in the Z
direction (Eqn 3) changes very rapidly with Z 1n
the neighbourhood of the microelectrodes Two
different approaches for calculating (3C/32),_,
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TABLE 3

Fimite-difference representation of (3C /38X ) and (3°C /X ?)
1n the case of non-uniform space grid
(Subscripts 7 and k are omtted for ssmplicity)

X Fimite-difference formulas
0<X<X, (BC/aX)X_X‘ =(C,-C,_)/AX,

X=0" @?C /X3 )yo0=2C, — Cp) /(A X)?

0<X <Xy B*C/8X¥)y.x =(a,C,_1—2C,+b,C,,1)/
(AX1 AX'H'l)

BC/3X Dyox,=AChy, -1~ Cp )/ (B Xpg _1)*
a,=2AX ., /(AX,+AX, )

b=2AX,/(AX,+AX,,,)
M, =N2+ N}+ N2

X=X0

where

 Refers only to inactive area of the array where (3C /8X )¢
=0

at (X, Y)eS were mvestigated for finding the
most appropriate one According to the first ap-
proach the function C(X, Y, Z)=f(Z) was
smoothed 1 the umiform space grid region G e,
Z < Z,, Fig 2) by the Savitzky-Golay algorithm
[46] using a quadratic polynomual The derivative
(8C/9Z), .., was obtained by subsequent analyti-
cal differentiation of the least-square quadratic
polynomial The second approach was based on
approximating the function C(X,Y, Z)=f(Z)
with an interpolating polynomial of nth degree
[42] To decide whether the flux should be calcu-
lated by a smoothing or interpolating polynomial
and with what degree a comparison was made

TABLE 2
Calculation of the X, Y, and Z increments 1n the mixed uniform/non-umiform spatial gnd
Number of points Region Increment
0 - NP1 0-X, AX, . =[1+(N°—:1-1)d,] Ad,
]
N? - NP+N!-1 XX, AX,, =49,
X
NO+N! - NP+N'+N2-1 X,-X, AX, ., =[1+G—N2-NDHd ]Aé,
0 - N2-1 0-Y, AY, =1+ (N2 —;-1)d,] Adg
J
1\/',0 - N,° +N! -1 Y,-Y, AY) ;1 =A¢,
Y
NP+N} ~ NP+N}+N2 -1 Y,-¥, AY, =[1+(-N?-NDd,] A,
k 0 - NP-1 0-Z, AZ, ., =Ady
z NP - NP+N}-1 Z,-Z, AZ, . =[1+(k—-N)d,] Ad,
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with an existing analytical solution for the flux
As such Cottrell’s equation [40] was chosen

I=(w8)"""? (5)

To meet the conditions under which Eqn 1 1s
vahd, this equation was solved under the assump-
tion that the entire bottom of the measuring cell
was electroactive The smoothing of C(X, Y, Z)
=f(Z) for (X,Y)€ S was done using the con-
centration n the first 2-5 gnid points from the
bottom of the measuring cell in the Z direction
The quadratic approximating polynomial utilized
for calculating (3C/9Z),_, was of the order 1-5
In all cases very good agreement was observed for
longer times while at short times the accuracy of
the different approaches for calculating the flux
differed The lowest values of the mean relative
error and the square root of the mean squared
error between the chronoamperometric curves
calculated by Cottrell’s equation (Eqn 5) and the
numerical solution of Eqn 1 were obtamned 1n the
case of 4th order polynomial approximation

By varying the length of the spatial increment
(A¢,) while keeping the time increment constant
(1e, A0 =617 X 1073 corresponding to At =0 05
s) 1t was found that the numencal and analytical
solutions are practically indistinguishable from
each other for Ag, <0012 (Fig 3)

It should be taken nto consideration that the
values of the dimensionless currents (I,) of the
mdvidual microelectrodes in an array depend on

80
o

48
J x 1082

—0

+1 @

00 1 2 3
t[s]
Fig 3 Normalized chronoamperometric curve ( ) calcu-
lated by numencal solution of Eqn 1 with approximating
polynomial of order 4 and (O) results obtamed by Cottrell’s
equation (D=10%10""m? s~ 1)

5
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the characternistic length (L) This fact may cause
misunderstandings when chronoamperometric
curves of arrays with different characteristic
length are compared in figures To avoid this
problem, the socalled normalized current defined
as J,=1Is5,/L and which does not depend on L 1s
used 1n the the present paper for graphical repre-
sentation of the calculated current-time depend-
ences

The computer program solving numerically
Eqn 1 was wnitten m ANSI C and run on
VAX/VMS A program written in Microsoft®
QuickC® Version 2 0 was developed for graphi-
cal representation of the simulated chronoamper-
ometric results and the concentration distribution
of the electroactive species as contour or three-
dimensional plots Qutputs of this program will
be presented below

VERIFICATION OF THE MODEL

As was already mentioned above the current
measured by an array of microelectrodes at short
times can be calculated by the equation assuming
semu-infinite linear diffusion to the electroactive
area of the array (Eqn 5) For sufficiently long
times the current-time dependence also obeys
Cottrell’s equation (Eqn 5) if the whole geomet-
rnic area of the array 1s considered as electroac-
tive These theoretical results [30-37], confirmed
expermmentally by various authors, were used for
checking the vahdity of the model outlined in the
present paper The chronoamperometric curve
for an ordered square distribution array of 16
square-shaped mucroelectrodes with an area of 10
pm? each was determmed by numenical solution
of the model The results presented in Fig 4
exactly follow the theoretically and experimen-
tally established behaviour of microarray elec-
trodes This result together with the excellent
agreement between the chronoamperometric
curves calculated by Cottrell’s equation and by
numerical solution of the model 1n the case of a
single electrode confirm the validity of the model
presented mn the present study
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Fig 4 Normalized chronoamperometric curves for a micro-
electrode array of 16 square distributed square microelec-
trodes calculated by (— — —) Cottrell’s equation using the
electroactive and the total area of the array and ( ) by
the model proposed mn this study (D =10x10""m? s~ 1)

ILLUSTRATIVE EXAMPLE

One of the conditions for proper performance
of arrays of amperometric microelectrodes used
for multicomponent analysis 1s mmmmal interfer-
ence between the individual microelectrodes This
condition will hold if the distance between the
electrodes with respect to their size and the diffu-
sion coefficients 1s big enough. Leaving too big a
distance, however, will hamper the mimaturniza-
tion of the arrays which 1s usually aimed at in
their construction Thus, the determination of the
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optimal distance between the electrodes appears
to be a key parameter in the desigming of the
corresponding arrays This can be performed by
constructing electrodes with various geometrical
dimensions and testing them experimentally Ob-
viously this 1s a costly and time consuming ap-
proach The model outlined above 1s an approprn-
ate tool for the fast and mexpensive solution of
this problem For ilustrating this fact the
chronoamperometric curves of the indvidual
electrodes of two square distributed arrays with
equal total electroactive area but with different
total area (Fig 5) were calculated For simplicity
it was assumed that the electrodes were poised at
a potential where the charge-transfer reaction 1s
very fast and the current generation 1s diffusion
controlled The results from the simulations are
presented in Fig 6 It can be seen that for array
A (Fig 5) there 1s a clear interference effect
resulting 1n different quas: steady-state currents
for the dufferent indvidual electrodes while for
array B (Fig 5) there 1s an equal accessibility of
the electroactive species to all the electrodes re-
sulting 1n 1dentical chronoamperometric curves
From the contour (Fig 5) and the three-dimen-
sional (Fig 7) plots of the concentration field
taken at the end of the chronoamperometric nu-
merical experiment at the bottom of the measur-
mgcell, 1e, Z =0, it can be seen that in the case

[ CONTOUR PLOT ot Z = 0.00 J (b)
30

/ comour conc
26 @ @ @ sensor Q00

<> fne
ine Q.40
050

Ine Q.60

O line a7
Ine 080
lne Q.90
" /) iwbal 100

3

0

3
N @ e W N

'@
08 bamsml

0.8 12 17 21 2.6

Fig 5 Contour concentration plots at the bottom of the measuring cell at the end of the chronoamperometric numencal
expeniment (¢ =50 s) (a) Array A, (b) array B (D=10x10""m? s~!) (It should be taken mto consideratton that the
mucroelectrodes of the two arrays are of the same size while the interelectrode gaps differ considerably 1n size )
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Fig 6 Normalized chronoamperometric curves for the individual electrodes Conditions are the same as i Fig 5

of array A there is very high degree of overlap-
ping of the diffusion fields of the mndividual m-
croelectrodes For array B only a slight overlap-
ping takes place far from the microelectrodes and
it can hardly affect under the conditions of the
experiment their behaviour as 1solated microelec-
trodes giving the same amperometric response

Conclusions

A general mathematical model describing the
response of an array of amperometric electrodes
with arbitrary distribution placed at the bottom of
a measuring cell with rectangular walls and finite
dimensions 1s outlined It consists of the three-di-
mensional 1sotropic diffusion equation with
boundary conditions corresponding to imperme-
able walls of the measuring cell and a charge-
transfer reaction with either the anodic or the

cathodic reaction predominating at the micro-
electrodes The model allows to take into consid-
eration the influence of the depletion of the
electroactive species mn the finite volume of the
measuring cell on the response of the individual
electrodes This feature of the model extends its
applicability also to chronocoulometry not treated
mn the present study Shielding effects due to
non-uniform accessibility of the electroactive
species to the individual electrodes can be pre-
dicted and geometries causing such effects m real
arrays can be prevented The simulated chrono-
amperometric curves show the time requred for
attaining quasi steady-state current and its value
for a given array and measuring cell, thus supply-
g the necessary information on the duration
and sensitivity of analysis

Though 1n the present study only rectangular

Fig 7 Three-dimensional concentration plots Conditions are the same as in Fig 5
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microelectrodes were considered this fact does
not confine the model only to this geometrical
shape The response of arrays with microelec-
trodes of any shape which can be represented as
a combmation of rectangles can be modelled The
model considers only the case of either the an-
odic or the cathodic reaction predominating which
Iimits 1ts application only to electroanalytical
techmques working under such conditions (e g,
chronoamperometry, chronocoulometry) but
there are no principle obstacles of extending 1t to
reversible and quasi-reversible charge-transfer re-
actions or to more complex kinetics
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