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Abstruct-We present Beam Propagation Method (BPM) stud- 
ies of Second Harmonic Generation (SHG) and nonlinear phase- 
shifts by cascading. Th,e studies concentrate on SHG by means of 
radiation modes; the Cerenkov regime. The presented modeling 
does take into account both depletion and nonlinear phase shifts 
of the fundamental fields. BPM results show that leaky waves 
play an important role offering possibilities for enhaecing the 
efficiency of SHG by orders of magnitude over general Cerenkov 
processes. Using a simple model and taking into account symme- 
try considerations, we identify the leaky modes that are important 
for the x(2)-processes in the structures that we investigated. 

I. INTRODUCTION 

HE interest in X(2)-materials and related nonlinear T wave-propagation effects has been driven for a long 
time by potential applications in efficient blue-light generation 
by Second Harmonic Generation (SHG) and electro-optical 
switching [ 11. In addition, recent advances in X(2)-materials 
allow for large nonlinear phase-shifts of the fundamental beam 
by the cascading of second-order effects [2]. This approach 
offers possibilities for tackling problems which have been 
traditionally thought to need third-order nonlinearities e.g., all 
optical switching [3]. 

From a practical point of view, the interest in SHG has 
been dominated by guided mode-guided mode interactions 
(here referred to as type A interactions) rather than by 
guided mode-radiation mode (type B )  interactions (also 
called Cerenkov radiation) since the latter cause problems 
for the collection of the SH light as well as for analytical 
investigations. Initial papers on cascading [4] naturally focused 
on type A interactions since these could easily be analyzed 
by Coupled Mode Analysis (CMA). One of the remarkable 
results of the CMA of second-order cascaded processes is that 
both the magnitude and sign of the nonlinear phase-shifts can 
be tailored by choosing appropriate wavevector mismatches 
[4]. In the case of type B interactions, analytical relations are 
far more difficult to obtain due to the problems associated with 
the normalization of radiation modes and, thus, expressions for 
the nonlinear coupling coefficients are derived more difficult, 
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Cerenkov SHG has been previously treated by a number of 
authors [5]-[9]. The emphasis has been solely on the problem 
of calculating the SHG efficiency as a function of waveguide 
and material parameters, and there are no existing treatments 
of the nonlinear phase shift for this geometry. In most cases, 
the Cerenkov “cross-section” has been evaluated for a number 
of waveguide geometries under the assumption of steady-state 
SHG, primarily with CMA [lo]. This is valid in the low de- 
pletion regime and far from the input facet where strong SHG 
can occur in a transition region before steady state is achieved 
[ 111. Maxima in the SHG efficiency have been predicted as 
a function of parameters such as the waveguide width, index, 
etc. Although their exact nature has not been elucidated, such 
oscillations have been attributed to some form of resonances in 
the SHG signal across the waveguide core [12]. Depletion of 
the fundamental with propagation distance has been calculated 
by Suhara et al. [13] using a CMA approach, predicting a 
logarithmic behavior for strong fundamental depletion. Finally, 
BPM has been applied previously to this problem by Hayata 
et al. [14], [15], where the variation in the cross-section with 
waveguide, etc. parameters were investigated. 

In this paper, we will describe a widely applicable method 
of analyses: the SHG Beam Propagation Method (SHG-BPM). 
This method is an extension of normal BPM’s and offers 
a general approach to dealing with waves rather than with 
modes. The method circumvents the problems associated with 
depletion and nonnormalizable radiation modes encountered 
in coupled mode approaches. Using the SHG-BPM, we in- 
vestigate the SHG efficiencies and nonlinear phase-shifts of 
both type A and type B interactions, and we also take into 
account the nontrivial case n:w < N:ff (where n;” is the core 
refractive index and NEff the guided wave effective index). 
We will first establish many of the recurring characteristics of 
these processes numerically and then interpret them physically. 

Our analysis shows that SHG efficiencies can be strongly 
enhanced over general Cerenkov radiation near wavevector- 
matching with leaky modes. We find that large phase-shifts 
(>../a) and almost complete conversion (97%) are possi- 
ble with small input powers and short interaction lengths 
(254 mm). 

11. NUMERICAL METHOD 

For the numerical method employed in this paper, which 
we will refer to as SHG-BPM, we assume two-dimensional 
geometries with the 2- and z-axes normal and parallel to the 
propagation direction, respectively (an extension to three- 
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dimensional geometries is straightforward). Inserting the 
nonlinear polarization [ 161 into the wave-equation using 
~ ( ~ ) ( - 2 w ;  w ,  w )  = x ( ~ ) ( - w ;  2w, -w)  ~( '1 ,  applying 
the Slowly Varying Envelope Approximation (SVEA) and 
discretizing the fields in the transverse (x-) direction, the 
propagation equations become 

In (I), the subscripts f and s refer to the fields at w and 2w, 
respectively, ko is w / c ,  no is a suitable background refractive 
index, $f, & are vectors representing the discretized field 
envelopes along the z-direction, and M, and Mf are tri- 
diagonal discretization matrices. The equations are solved 
using a split-step approach; the first two linear operators are 
handled by an Enhanced Finite Difference Beam Propagation 
Method (EFDBPM) [17] whereas the third operator, which is 
given by the coupled differential equations 

is solved pointwise for all m discretization points and for 
each propagation step Az. For integration over small distances 
Az in which i$,il can be assumed to be a constant, (2) has 
eigenvalues +a I$> 1. The corresponding eigenvectors are 

where q5 is the phase of $;, i.e., $; I$>le34. The numerical 
accuracy of the solution of (2) is increased by integrating 
(2) in three steps for each step Ax of the EFDBPM. The 
accuracy of each of these three steps on its turn is improved 
by first predicting the values of $;(x + Az) and using $> = 
0.5($,i(x) + $ ) ( z  + Az)) in (3) (e.g., second-order Runge- 
Kutta integration, [18]). In principle, other BPM's can be used 
as well. Although (1) will be different, (2) can be solved in the 
same way. Here, the EFDBPM was chosen because of the high 
accuracy with which it calculates propagation constants [ 171. 

To keep calculation times reasonable and the accuracy of the 
simulations independent of the window size, we used trans- 
parent boundary conditions [ 191. This is extremely important 
since at 2w we are dealing primarily with radiation modes. 
In all the SHG-BPM calculations, the stepsizes in propagation 
( z - )  and lateral (2- )  directions are fixed at 1 and ~ 0 . 1  pm, 
respectively. In order to evaluate the power in the fields at w 
and 2w, we calculate the overlap of the field at w with the field 
of the launched guided mode. Since there is no radiative loss at 
w for a straight, linear waveguide, the difference between the 
launched power and the power in the guided mode at some 
propagation distance z is equal to the power that has been 
converted to 2w up to that position. 

111. NUMERICAL STUDIES 

A. Structures 

As an example, we studied a slab-waveguide, with claddmg 
refractive index ns = 1.6875, a 5 pm wide core with 
n: = 1.6992 and a x ( ~ )  of 54 pmN. The fundamental 
wavelength (A,) was set at 1.32 pm. The effective indices 
of the fundamental and first-order mode at w were TE;j' = 
1.696 72 and TEY = 1.690 23, respectively. We investigated 
three different cases in which the refractive indices at w are 
fixed whereas the indices at 2w are varied systematically (see 
Fig. 1). In Case I (see Fig. 1, top), the refractive indices are 
chosen in order to have guided modes at 2w, and a TE; mode 
is launched. This case shows a (classical) type A interaction, 
which can also be modeled by CMA and therefore enables us 
to check the accuracy of the SHG-BPM code. In Case I1 (see 
Fig. 1, middle), again the TE; mode is launched. However, 
the refractive index of the core at 2w (nzw) is varied around 
the value of the effective refractive index of the TE; mode 
whereas the refractive index of the cladding at 2w (n;,W) is 
fixed and higher than (nzw) so that no guided modes exist 
at 2w. Case IH (see Fig. 1, bottom) is similar to Case I1 but 
differs in so far that the TEY mode is launched whereas nzw 
is varied around the value of the effective refractive index of 
the TE? mode. The three different cases are summarized in 
Table I. 

Case I: This case serves as a validity-check of our al- 
gorithm by comparing the results obtained by the SHG- 
BPM calculations to those of CMA. To this end, the index- 
distribution for this structure is chosen such that there exist 
guided modes at 2w. The refractive indices of the structure 
are shown in Fig. 1 (top) and Table I. Moreover, this case is 
used as a reference for the calculations on type B interactions 
of Cases I1 and 111, which are the actual topic of this paper. 

In a series of calculations, the index profile at 2w was 
shifted so that a variety of phase-matching conditions was 
encountered for varying An. Fig. 2 shows an example of the 
SHG-BPM results for a An value for which the TE; and 
TE;" modes are almost phase-matched (coherence length M 

1100 pm, ANe, = N:$ - NcE 6 . lop4). Fig. 3 (top) 
shows the transmission of the fundamental beam as a function 
of An at a propagation distance of 1 .O mm. The dashed vertical 
lines in Fig. 3 indicate the positions for which the TEt-mode 
is phase-matched to one of the TE2" modes. Narrow minima 
in the fundamental throughput are obtained at phase-matching 
to guided modes at 2w provided that the nonlinear overlap 
integral 

is nonzero for these modes. For the symmetrical structure 
studied, this was the case for the TE;" (Cnl = 1.395) and 
TEiw (C,l = -0.121) modes (An = -6.87 . and 
8.28 . respectively). The curves show the characteris- 
tic sinc' appearance with sharp minima at phase-matching. 
Fig. 3 (top) clearly shows that the SHG-BPM calculations 
are very accurately reproduced by CMA. Note that in the 
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Fig. 1. Graphical illustration of the structures used in Case I (top), Case 
I1 (middle), Case I11 (bottom). The dotted horizontal lines denoted TEo and 
TE1, indicate the effective refractive index levels of the guided modes at w. 
The dashed lines in the right parts of the graphs illustrate the parts of the 
refractive index profiles that are varied in the calculations. 

SHG-BPM calculations one does not have to include any 
specific information about the modes because this is taken into 
account automatically as evidenced by the shallow minimum at 
An = 8.28 corresponding to phase-matching between 
the TE; and TE;" modes. Interesting in Fig. 3 (top) is also 
the shallow minimum at An = 10 . which cannot be 
accounted for by phase-matching to any guided mode since at 
this An the structure is already in the Cerenkov-regime. Fig. 3 
(bottom) shows the nonlinear phase-shift of the fundamental 
at a propagation distance of 4.3 mm versus An. Again, the 

TABLE I 
DATA OF THE CASES STUDIED IN THIS PAPER 

731 

Cure IWidth/p"l n r  I n$ I 2" I n:? I Input 

I I  5 I 1.69920 1 1.68750 I 1.70450+An I 1.69000+An I TE?,SSMW/m 

II I 5 I 1.69920 I 1.68750 I 1.69672+An I 1.71000 I TE~, 8.5MW/m 

III 1 5 I 1.69920 I 1.68750 I 1.69023 +An I 1.71000 I TE?. 8.5 MW/m 
L I I I I I I 1' I 

Fig. 2. Example of results obtained with the SHG-BPM for Case I. 
An = -6.875. lOW3 (close to phase matching). Upper graph: Fundamental 
field. Lower graph: second harmonic field. The images correspond to an area 
of 25 pm * 4300 pm. The input power is 8.5 MW/m. 

results of the CMA and the SHG-BPM calculations agree very 
well with each other. From this graph, it is very clear that the 
nonlinear phase-shifts are dominated by the resonance of the 
TEg-TE;" interaction, a result which can be well understood 
from an approximate CMA analysis of the nonlinear phase- 
shifts which predicts a quadratic dependence on the nonlinear 
coupling constants [4]. 

Fig. 4 top shows the transmission of the TE;j' mode versus 
P;", and propagation distance ( 2 )  for An = -7.0 (close 
to the deep minimum at An = -6.87 . in Fig. 3 (top)) as 
calculated by the SHG-BPM. At low power (1 MW/m), there 
is already an appreciable amount of conversion. When the 
power is increased, this conversion becomes more complete, 
but at the same time, the coherence length shortens causing 
an increasing number of oscillations within a fixed length. 
This means that it is difficult to obtain complete conversion 
since the amount of SHG depends on both the length of the 
structure as well as the input power. Fig. 4 (bottom) displays 
the nonlinear phase-shift due to cascading as a function of 
P;", and propagation distance. It shows that at fixed An the 
nonlinear phase-shift per oscillation of the power between the 
fields at w and 2w is fixed giving the graph its staircase-like ap- 
pearance. However, as the input power increases, the number 
of oscillations increases and thereby the total nonlinear phase- 
shift at the output. These SHG-BPM results are consistent with 
CMA analyses of type A interactions published in [4] as well 
as with CMA calculations carried out for this structure (but 
not shown here). 

Case ZZ: Structure I1 resembles the waveguide properties of 
a DAN crystal-core fiber for which large nonlinear phase-shifts 
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Fig. 3 .  Power (top) and phase (bottom) versus detuning An for the TE$ 
mode in Case I. The dashed vertical lines indicate the An values for which 
the launched mode is wavevector-matched to one of the guided modes at 2w. 

have been measured recently [20]. In this case, the core index 
nzw, which is not well-known experimentally, was varied in a 
series of calculations. In all of the simulations, initially (i.e., 
at small propagation coordinate) a strong generation of SHG, 
followed by a steady outflow of power at 2w is observed, and 
simultaneously, the TE;;' -mode is quickly depleted, changing 
over to exponential decay at longer distances. This is illustrated 
in Fig. 5 which is obtained for An 3 nf" - N&, = 1 . lop3. 
In some simulations, the initial fields showed oscillations 
between apparently guided fields at w and 2w. However, these 
oscillations tend to damp out rather quickly. Fig. 5 (bottom) 
shows the transverse profile of the fields at w (left) and 2w 
(right) after 4.3 mm of propagation, plotted in logarithmic 
form. Since strong interaction with the field at 2w only takes 
place in the first 1-2 mm, the field at w decreases linearly in 
the cladding, neatly corresponding to a guided mode. The field 
profile at 2w will be discussed below. 

The depletion and phase shift of the TE;j' mode at a 
propagation distance of 4.3 mm, corresponding to the length 
of the DAN crystal-core fiber in [20], are shown as a function 
of An for Pg = 8.5 MW/m in Fig. 6 (top) and (bottom), 
respectively. Clearly, the depletion (i.e., SHG conversion- 
efficiency) and nonlinear phase shift are strongly dependent 
on An and, moreover, the sign of the nonlinear phase shift 
can be positive or negative, depending on An. These results 
are very similar to the nonlinear phase shifts obtained for type 
A interactions near phase-matching. Note that zero phase-shift 
and maximum depletion do not coincide with An = 0 but 
are shifted to positive An ( ~ 1  . a result which we 

I .  

00 
c'. 

Fig. 4. Fraction of power in the TE; mode (top) and the unwrapped (i.e., 
modulo 180') nonlinear phase-shifts (bottom) as a function of input power 
and propagation distance for Case I. An = -7.0 . lop3. Note that only the 
first 2 mm of propagation is shown. 

confirmed to depend neither on the accuracy of the SHG- 
BPM calculations nor on P z  (by calculations at smaller PK 
not shown here). 

In order to investigate the dependence of the depletion and 
nonlinear phase shift on Pg, a series of calculations with 
increasing input power was performed at An = 2.5 . lop3. 
This is where the nonlinear phase-shift is maximum in Fig. 6 
(bottom). Fig. 7 (top) shows the fraction of power remaining in 
the TE; mode as a function of Pg and propagation distance 
( E ) .  At low power, the depletion (i.e., SHG-conversion) is 
modest. However, on increasing the power, the coupling 
between the fields at w and 2w increases (like for a type 
A interaction) and the conversion becomes more complete 
leading to almost entire depletion (conversion) of the TE; 
mode at longer propagation distances. At the highest input 
powers, there is a (damped) oscillation discernible in the 
first few hundred microns. This oscillation corresponds to 
forward and backward coupling between the fields at the 
two wavelengths. This result is not expected on the basis of 
the general notion that Cerenkov radiation is automatically 
phase-matched. Fig. 7 @ottom) shows the nonlinear phase- 
shift by cascading as a function of P,", and propagation 
distance. Clearly, the nonlinear phase-shift increases with both 
P,", and propagation distance. However, combining the results 
displayed in Fig. 7 (top) and (bottom), it appears that for this 
value of An large nonlinear phase-shifts can only be obtained 
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Fig. 5.  Example of results obtained with the SHG-BPM for Case I1 and 
An = 1 lor3 .  Top: Intensity profiles at w (upper part) and 2w (lower part). 
The profiles are plotted on a 60 dB scale, and the figures correspond to an 
area of 25 p m  * 4.3 mm. Bottom: Field profile at the output of the structure 
on a logarithmic scale. The field profiles at w (left) and 2w (right) are both 
shown. The dotted line shows the index profiles. 

at the expense of losing considerable power from the TE;;' 
mode to the 2w field, thereby continuously slowing down the 
rate of change of the nonlinear phase-shift. 

A closer examination of Fig. 6 shows that large nonlinear 
phase-shifts in the Cerenkov regime are not always accom- 
panied by large fundamental depletion. At An  = 9.5 . lop3, 
the transmission at 4.3 mm is >99% while a nonlinear phase- 
shift of 53' is still obtained. Calculations with varying input 
power for this An  value are shown in Fig. 8. The upper 
graph shows the transmission of the TE;;' mode versus power 
and propagation distance. Clearly, even at the highest input 
power (100 MW/m) and at the longest calculated propagation 
distance (4.3 mm), the depletion is less than 10%. However, 
Fig. 8 (bottom) shows that the nonlinear phase-shift is as high 
as ~540 ' .  Note that this is larger than the largest nonlinear 
phase-shift obtained with An = 2.5 1 lop3, despite the fact 
that this latter value produced the largest nonlinear phase-shift 
at P;", = 8.5 MW/m. Fig. 8 (bottom) also shows an approxi- 
mately linear dependence of the nonlinear phase-shift on both 
the input power and propagation length. This is important 
since it means that large nonlinear phase-shifts can be obtained 
for long propagation lengths. This is clearly not the case 
when most of the input power is depleted. Furthermore, it is 
beneficial for many applications in which a linear dependence 
of the nonlinear phase-shift with input power is desirable. 
We believe that this fortunate combination of low depletion 
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Fig. 6. Power (top) and nonlinear phase shift (bottom) versus detuning An 
for Case 11. The dotted vertical lines indicate the effective index levels of 
leaky modes. 

and a nonlinear phase-shift that is proportional to the input 
power and propagation length can occur only whenever the 
propagation constant of the launched mode lies between two 
phase-matching resonances. 

In conclusion, we observed nonlinear phase-shifts and de- 
pletion in the Cerenkov regime which show a behavior as 
function of An = n2w - N&, that strongly resembles regular 
type A interactions. Depending on An, these interactions 
can produce almost complete conversion of the fundamental 
beam into (unguided) SHG or they can produce large nonlin- 
ear phase-shifts that are nearly linear with input power and 
propagation length while showing very low depletion. 

Case ZZZ: The calculations performed for Case I11 were very 
similar to those for Case II. The principal difference was that 
the TE'f-mode was launched instead of the TEr-mode. Fig. 9 
(top), obtained for An = 10 . shows an example of the 
SHG-BPM results. At this value of An, there is considerable 
conversion of power to the 2w field. However, the 2w field 
profile differs strongly from the one displayed in Fig. 5 which 
was obtained in Case I1 and, moreover, the field is much 
smaller. This is very well shown in Fig. 9 (bottom) where the 
fundamental (left) and SHG (right) fields are shown. It should 
be emphasised though, that SHG field profiles similar to the 
one shown in Fig. 5 are obtained for An-values of about 1 

The nonlinear phase shift and depletion of the TEY mode at 
the output of the structure as a function of An nzw - N&, 
are shown for P;", = 8.5 MW/m in Fig. 10 (top) and (bottom), 
respectively. Obviously, like in Case 11, the nonlinear phase 

. 10-3. 
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Fig. 7. Fraction of power in the TEY mode (top) and the unwrapped 
nonlinear phase-shifts (bottom) as a function of input power ( P z )  and 
propagation distance (z-coordinate) for Case 11. An = 2.5 . 

shift and depletion are strongly dependent on An. Fig. 10 
(top) shows three distinct minima in the transmission curve 
(corresponding to three maximums in the SHG output) of the 
TEY mode at An-values of 1 . lop3 (32.3% transmission), 
10 . lop3 (73.5%) and 32 . lop3 (98.7%). The deepest 
minimum obtained in this case is not as wide and deep 
as the one obtained for Case I1 at An  = 1. lop3 (2.9% 
transmission) implying that SHG is less efficient. Dispersion in 
the nonlinear phase-shift, centred at two of the three minima 
was found, again very similar to the nonlinear phase-shifts 
obtained for type A interactions when tuning through phase- 
matching conditions. 

Iv. ANALYSIS OF NUMERICAL STUDIES 

The simulations of Cases I1 and I11 suggest that there exist 
certain phase-matching conditions in the Cerenkov regime that 
behave as if type A SHG (i.e., to guided modes at 2w) takes 
place. This is evidenced by deep dips in the transmission 
and large nonlinear phase-shifts of the TE" modes. Since 
the radiation modes form a continuum, this discrete behavior 
is somewhat unexpected (although other authors [6]-[ 101, 
[13], [14] have shown similar maxima in the SHG power 
via Cerenkov processes, e.g., as a function of waveguide 
layer thickness). However, within the radiation modes there 
exist a class of discrete modes that have a relatively low 

Fig 8 Fraction of power in the TEf mode (top) and the unwrapped 
nonlinear phase-shlfts (bottom) as a function of input power ( P i )  and 
propagation &stance (z-coordinate) for Case I1 An = 9 5 lop3 

propagation loss (as compared to radiation modes in general): 
the so-called leaky modes. The existence of these modes stems 
from the constructive interference of waves that are weakly 
bound by incomplete reflections at the parallel interfaces 
[21]. Due to the lack of total reflection, leaky modes have 
propagation losses causing them to have complex propagation 
constants. In order to determine whether leaky modes can 
play an important role in the SHG processes studied, we 
calculated the effective indices and field profiles of these 
modes for the structures that were considered here. Since 
the field profiles of these leaky modes extend to infinity, 
they cannot be normalized, but their basic shapes can be 
calculated easily, and their symmetry properties determined. 
These field profiles are shown in Fig. 11. Note that, although 
the modulus of the profiles is symmetrical for all of the four 
modes displayed, the actual field profile is not symmetric for 
all modes; the first- and the third-order mode are symmetrical, 
but the second and the fourth are anti-symmetric. From these 
symmetry considerations, some important conclusions can be 
drawn for the nonlinear overlap integrals (Cnl) which are 
proportional to 
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Fig. 9. Example of results obtained with the SHG-BPM for Case I11 and 
An = 1. lo-'. Top: Intensity profiles at w (upper part) and 2w (lower part). 
The profiles are plotted on a 60 dB scale, and the figures correspond to an 
area of 25 p m  c 4.3 mm. Bottom: Field profile at the output of the structure 
on a logarithmic scale. The field profiles at both w (left) and 2w (right) are 
shown. The dotted lines show the index profiles. 

1.693242 1558 Anti-Symmetric 

1.687276 3368 symmetric 

where E,"(x) and E;"-'(Z) are the fieldprofiles of the ith guided 
mode at w and the j th  leaky mode at 2w, respectively. Since 
the structures investigated have symmetrical index profiles, 
the guided modes are either symmetrical or anti-symmetrical. 
Hence, the square of the field-profile in (5) will always be 
symmetrical. This means that the overlap of the guided modes 
with any of the antisymmetric leaky modes will always be 
zero ruling out SHG for these modes. The properties of the 
five lowest order leaky modes are summarized in Table 11. 
Note that the An values for which wavevector matching to 
leaky modes occurs, are already indicated in Figs. 6 and 10 
by dotted vertical lines. 

Now combining the symmetry argument with phase- 
matching constraints, the results in Fig. 6 can be put into 
perspective. Due to the shape of the TEtf' field profile, the 
overlap with the second and fourth leaky mode will be zero. 
However, the overlap with the first and third leaky modes is 
nonzero, with the overlap with the first leaky mode being much 
larger than the overlap with the third. This explains the large 
depletion at wavevector-matching with the first leaky mode 
and the dominance of this resonance in the nonlinear phase- 
shift (Fig. 6 (bottom)). The similarity of the field profile at 
2w in Case I1 (Fig. 5 (bottom)) with the first leaky mode 
(Fig. 11 (left, top)) is consistent with this interpretation. 
Similar remarks can be made for Case 111. The major difference 
here is that the nonlinear overlap of the TEY mode with the 
first and third leaky mode at 2w is much smaller, and the two 
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Fig. 10. Power (top) and nonlinear phase shift (bottom) versus detuning An 
for Case 111. The dotted vertical lines indicate the effective index levels of 
leaky modes. 

TABLE I1 
PROPERTIES OF THE LEAKY MODES OF CASES 11 AND 111 

I 5 1.667476 8471 Symmetric 

nonlinear coupling constants are closer in value. Hence, at 
the fixed power of 8.5 MW/m, the TEY mode will experience 
less loss (i.e., the SHG efficiency is smaller) than the TE; 
mode resulting in a sharper and shallower dip. Additionally, 
the nonlinear phase-shifts are less dominated by the resonance 
of the first leaky mode (especially well illustrated in the 
nonlinear phase shift, Fig. 10 (bottom)). Again, the mode 
profile at 2w (Fig. 9 (bottom, right)) shows good similarity 
with the calculated leaky mode (Fig. 11 (left, bottom)). 

The observed resonances for Case I are also consistent 
with the proposed scheme as can be seen from Fig. 12 which 
displays the logarithm of the generated SHG versus An for 
a propagation length of 2 mm as calculated by the SHG- 
BPM. In this case, the nonlinear overlap integrals of the TEtf' 
mode with the guided modes at 2w are much larger than the 
overlap with the leaky modes at 2w. Hence, in this case, the 
nonlinear response is dominated by type A interactions with 
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Fig. 12. Generated SHG on a logarithmic scale for Case I as calculated by 
the SHG-BPM. The dotted and dashed lines show the positions where the 
TEg mode is phase-matched to, respectively, guided and leaky TE2" modes. 

the exception of a small peak near the position of the first 
leaky mode (An = 11.43 . This leaky mode has four 
lobes causing the overlap with the TE; mode to be fairly small 
resulting in very small SHG. We speculate that the small shift 
of the SHG peak away from the position of the leaky mode 
is due to the nonlinear detuning caused by the much stronger 
resonance of the TE; -TEp interaction. 

With respect to the growth of the second harmonic waves 
with propagation distance, the SHG-BPM calculations show 
that at x = 0, many (radiation) modes are excited (see e.g., 
Figs. 5 and 9). However, since most of these modes are 
not wavevector-matched and since the flow of power out of 
the core is very large (i.e., very high losses), there is no 
considerable buildup in these radiation modes. Therefore, these 
modes only cause some loss of power in the initial few hundred 

wavelengths of propagation after which coherent conversion 
processes become dominant. The lower order leaky modes 
with relatively low attenuation and large nonlinear overlaps 
qualify especially well to take part in these coherent processes. 

We emphasize that at the power levels at which the sim- 
ulations were done, virtually no SHG was found to either a 
guided or a leaky mode when the systems were far from phase- 
matching. In our opinion, this means that phase matching to 
leaky modes is of prime importance for SHG in the Cerenkov 
regime, enhancing the SHG efficiency by orders of magnitude. 

V. DISCUSSION 
Our calculations have shown that, for comparable structures, 

type A interactions exhibit I) sharper resonances, 11) stronger 
SHG, and UI) larger maximum nonlinear phase-shifts than type 
B interactions. This basically means that type A interactions 
qualify better for both SHG and nonlinear phase-shift applica- 
tions, provided that one can precisely control the waveguide 
structure and the experimental conditions. However, type B 
interactions do have some important advantages: 

I) Due to the large losses of the leaky modes, type B inter- 
actions are far less critical to phase-matching constraints. 
The benefits are that small deviations in waveguide 
structure, device length, input power, and wavelength do 
not dramatically change the fundamental and harmonic 
wave outputs. Thus, although SHG may be less efficient 
for type B than for type A,  it can still be competi- 
tive since the conversion of fundamental to hannonic 
waves increases monotonically with propagation distance 
enabling large conversion at larger device lengths. There- 
fore, type B interactions are preferable for SHG provided 
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it is possible to satisfactorily collect the light emitted via 
the leaky modes at 2w. 

11) Our calculations have shown that for carefully chosen 
phase-mismatch conditions, the nonlinear phase-shifts 
are proportional to input power and propagation length 
concurrent with very small fundamental power conver- 
sion to 2w. We note that this is a very desirable condition 
for devices in which one tries to exploit nonlinear phase- 
shifts. 

Of course, the potential of type B interactions can only 
be realized when appropriate materials, e.g., materials with 
very dissimilar dispersion, large birefringence, or anomalous 
dispersion, are available. It has recently been shown that 
DAN [20], E221 and doped PMMA [23] are in principle such 
materials. Moreover, our calculations have shown (see Fig. 12) 
that one can utilize leaky modes even if the structure at 2w 
is a guiding structure albeit that the nonlinear interaction with 
leaky modes is strongest when the number of guided modes 
is small (due to larger overlaps for lower order modes). 

VI. CONCLUSION 

In conclusion, we have described a method (SHGBPM) 
for evaluating the interaction of propagating fields in #)- 

materials and devices. We have shown that the SHGBPM takes 
into account both the depletion and the nonlinear phase-shifts 
of the fundamental fields. We have employed the SHGBPM 
to investigate SHG and cascading in a range of waveguide 
geometries including the Cerenkov regime. Our calculations 
predict that the SHG conversion in this regime (Cerenkov) can 
be enhanced by orders of magnitude when there is wavevector- 
matching with leaky modes, resulting in near complete con- 
version of the fundamental beam into the second harmonic. 
As in the case of type A interactions, the nonlinear phase- 
shift changes sign when tuning through wavevector-matching. 
For some structures, the conversion of the fundamental beam 
can be quite low while still obtaining large nonlinear phase- 
shifts that are approximately proportional to input power and 
propagation length. Type B interactions seem especially useful 
for applications that require noncritical structures and working 
conditions. 
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