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The Propagation Characteristics of 
Wave-Guiding Structures with Very Thin 
Superconductors; Application to Coplanar 

Waveguide Y B A ~  C U ~ O ~ - ~  Resonators 
Boele B. G. Klopman, Gerrit J. Gerritsma, and Horst Rogalla 

Abstrucf- We have analyzed the propagation characteristics 
of wave-guiding structures with superconductors which are thin 
compared to the magnetic penetration depth. The complex prop- 
agation constant is evaluated within the framework of the mod- 
ified spectral domain method without the need for numerical 
calculations in the complex plane. Good agreement is found 
with the results of other methods. The numerical analysis is 
instrumental in deducing results for the penetration depth and the 
surface resistance of Y B a 2 C ~ 3 0 7 ~ ~  thin films on sapphire with 
a PrBa2Cu307--s buffer layer. We confirm recent observations 
of a non-single-gap BCS temperature dependence. 

I. INTRODUCTION 
HE SURFACE impedance of superconductors is charac- T terized by a low resistance and a relatively high reactance. 

This makes superconductors suitable for microwave applica- 
tions, which are impossible if normal conductors are used. 
As a result of the low surface resistance, the power losses 
in superconductors are low, which offers the possibility of 
low-loss filters with a sharp frequency response [ 11, [2]. The 
surface reactance represents the stored energy in the supercon- 
ductor. If the stored energy is increased at a constant level of 
transmitted microwave power, the phase velocity is reduced, 
since the energy flux remains the same. Therefore, the surface 
reactance has the effect of slowing down the electromagnetic 
wave. Transmission lines exhibit a high slowing factor if the 
geometry favors the stored energy relative to the transmitted 
energy. The stored kinetic energy of the charge carriers in 
a superconducting film increases as the thickness of the film 
is reduced below the magnetic penetration depth. This is a 
consequence of the increased current density necessary to 
support the same current or magnetic field. The transmitted 
energy on the other hand is reduced by choosing a small 
geometry. In this way very compact microwave devices, such 
as filters and delay lines, can be fabricated [3], [4]. The 
miniaturization is also made possible by the low surface 
resistance. In addition, the influence of the surface reactance 
also can be used to determine the penetration depth. 
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Both the design of microwave devices and the characteriza- 
tion of the superconductors rely on the accurate calculation of 
the propagation characteristics of superconducting transmis- 
sion lines. Superconducting microstrip lines with very slow 
phase velocities have been analyzed by a spectral domain 
method, modified by complex resistive boundary conditions 
[ 5 ] .  The modification is necessary because of the coupling 
of the electromagnetic field from one side of the film to 
the other side. We will show that the complex propagation 
constant (attenuation and wave number) of different wave- 
guiding structures can be evaluated within the framework 
of the modified spectral domain method without numerical 
calculations in the complex plane. Expressed in transmission 
line components, this corresponds to the calculation of the re- 
sistance and kinetic inductance of the structure. The numerical 
analysis is applied to coplanar waveguide transmission lines. 

The suitability of the method is demonstrated by the inves- 
tigation of experimental YBa2Cu307-z coplanar waveguide 
resonators. It is not possible to obtain a high slowing factor 
using a coplanar waveguide with reasonable dimensions. The 
uniplanar metallization makes the transmitted energy much 
less sensitive to the separation of the strips than in the case of 
microstrip lines. However the effect of the surface reactance on 
the resonance frequency of the resonator is significant enough 
to determine the penetration depth. Results for the surface 
resistance are obtained from the observed quality factor of 
the resonator. Investigations of the surface impedance (surface 
resistance and penetration depth) are of importance, since 
these can help to clarify the nature of the high-temperature 
superconductors. The lack of a detailed picture of the coupling- 
mechanism of the electrons in these superconductors is accom- 
panied by observations of non-BCS behavior [6], [7 ] .  

We start with an analysis of the surface impedance of a su- 
perconducting or normal film of arbitrary thickness. This also 
naturally leads to the complex resistive boundary conditions 
in the case of very thin films. 

11. THEORY 

A. Surface Impedance of a Film of Arbitrary Thickness 
To investigate the surface impedance of a superconducting 

film, we first demonstrate how the Maxwell equations have 
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to be modified, assuming the two-fluid model and the London 
equations give a valid description of the superconductor. De- 
spite the phenomenological nature, much of the characteristic 
features of the electrodynamics is easily visualized by this 
approach, at least qualitively. 

The electrons in a superconductor can be divided in normal 
and superconducting electrons, according to the two-fluid 
model. Therefore the total current density J = J, + J ,  
consists of a dissipative normal part J ,  and a superconducting 
dissipationless part J , .  The normal part J ,  corresponds to the 
conductivity of the normal electrons: 

J ,  = a,E. ( 1 )  

giving rise to power losses. The superconducting electrons 
are described by the London equation [8]: 

which represents the free acceleration of the electrons in an 
electric field. The magnetic penetration depth is denoted by X. 

For time-harmonic electric fields, ( 1 )  and ( 2 )  can be incor- 
porated in the first Maxwell equation V x H = Y E ,  provided 
y is written as: 

y = O + j W & .  (3) 

Here the complex conductivity is defined as: 

u = (T, - J ( T s .  (4) 

with: 

In (3) the last term represents the displacement current. The 
case of a normal conductor is obtained by setting us = 0. 

The second Maxwell equation V x E = -zH remains 
unchanged: 

z = j w p o .  (6) 

So the two-fluid model and the London equations lead to 
the introduction of a complex conductivity. Although this 
complex conductivity is a result of the phenomenological 
London equations, a comparison can be made with more 
theoretically based results for the complex conductivity [9]. 
This yields values for on and X on the basis of the BCS theory. 
It is also possible to use the phenomenological Gorter-Casimir 
expressions [IO] for u, and A. 

The interpretation of the complex conductivity is made clear 
by manipulating the two Maxwell equations to obtain for the 
supplied time-averaged complex power density ps : 

1 
2 

p, = --V . ( E  x H * )  

= j5* + 2jw(%h7 + w.u - % E ) .  (7) 

So the normal (real) part of the conductivity corresponds 
to a dissipated power density P A .  while the superconducting 

(imaginary) part is related to the kinetic energy density TCK 
of the superconducting electrons. In (7) TCM and 203 are the 
stored magnetic and electric energy densities (all quantities 
time-averaged). 

Expression (7) will be used to evaluate the kinetic and mag- 
netic inductance of an infinite film of arbitrary thickness t .  First 
we develop expressions related to the complex power. In the 
following the displacement current will be neglected, which 
is a good approximation for most conductors at microwave 
frequencies. 

We consider plane waves, propagating in the z-direction, 
perpendicular to the film. The film boundaries are located at 
z = 0 and z = t .  The magnetic and electric field in the 
interior of the film are given by [ I  I]: 

The wave number IC and the intrinsic impedance 77 follow from 
the Maxwell equations: 

77 = &/Y. (1 1) 

In the case of a normal conductor this yields: 

q = & J i o / 2 G 4  + A  
- - -w/LoD(1+ j ) ,  (13) 

1 
2 

where 6 is the classical skin depth: 

For a superconductor IC and 77 are given by (assuming 
u, << ns): 

We will see that R, = Re ( 7 7 )  is related to power losses, 
while X ,  = Im(71) is a measure of the stored energy. So 
in superconductors the power losses are usually much smaller 
than the stored energy ( A  << 6 for (T, << ns). In addition, in 
this case the power losses are much smaller than in a normal 
conductor. 

Invoking tangential continuity of H at the boundaries, 
H,(O) = HI. H y ( t )  = f l y 3  yields: 

Hy(z) =[H~sin(IC(t  -z))+H2sin(ICz)] /s in(kt) ,  (17) 
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The complex power supplied to the film per unit area is 
evaluated as: 

where the effective surface impedances Z,I and Zs2 are 
defined: 

77 z,1 = 7 
J sin ( k t )  

cos ( k t )  - 1 
j sin ( k t )  2 9 2  =77 

Two limiting cases are of particular interest. Firstly, for a 
very thin film (Iktl << 1, Le., t << X,6) we have: 

z -L=- 1 
s1 - j k t  Ot ’  

z s 2  = p J P O t ,  ( t  << A, 6 )  (22) 
1 .  

while in the case of a relatively thick film: 

Zsl = 0, z s 2  = 77 ( t  >> A. 6) (23) 

Thus the second term in (19) is dominant if t >> X,6, 
which actually is the bulk material case. Indeed we find 
the well-known expression for the complex power [ 111, with 
the addition that the maghetic field at both film boundaries 
contributes. In this case the surface impedance equals the 
intrinsic wave impedance. For t << X,S only the first term 
in (19) survives. In this case the impedance depends inversely 
proportional on the thickness of the film. To be specific: 

R,1 = R,2X/t ,  ( t  << A, 6) (24) 
x,1 = X , X / t .  (25)  

Here R, and X ,  denote the surface resistance and reactance 
for bulk material: 77 = R, + j X , .  So for very thin films, the 
effective surface resistance is by a factor 2X/t  higher than 
the bulk value, the surface reactance by a factor Xlt. This 
correction should be kept in mind when data for very thin 
films are to be interpreted. 

In the intermediate range of thicknesses, the complex power 
depends on the exact values of H I  and H2. In general no 
overall impedance can be defined uniquely. An exception 
occurs if the field is confined to one side of the film ( H I  
or H2 = 0),  meaning that the film represents a real wall. Then 
the surface impedance reads as: 

2, = -jVcot ( k t ) ,  (HI orH2 = 0) (26) 

which is in agreement with the usual expression for this case 
[121. 

The general pattern of Z,1 and Z,Z is shown in Fig. 1 at a 
frequency f = 10 GHz, with a penetration depth X = 100 nm 
and skin depth 6 = 1OOX.  Clearly, Z,1 reaches its limiting 
value (see (24), (25)) not far below t/X = 1. For Zs2 to 
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Fig. 1. The effective surface impedances Z,I = R,1 + jX , l  (dominant 
if t << A) and Zs2 = Rs2 + j X S 2  (dominant if t >> A )  as a function of 
t / A .  The resistive and reactive parts are normalized to the quantities of bulk 
material ( t  >> A).  

reach its limiting value (23) for t > X a somewhat stronger 
condition on t/X is required; depending on the acceptable 
errors, the value of t / X  can be as high as approximately 5. 
The difference in the asymptotic behavior of Zsl and Z,2 can 
be understood, recalling that the current density at both sides 
of the film falls off as exp ( - d / X )  inside the conductor, where 
d is the distance from the boundary of the film. As soon as t 
becomes comparable to A or smaller, the current density inside 
the film is almost uniform. However, if the current density is 
to die out in the interior of the conductor, the distance to both 
sides of the film should be several penetration depths. 

We now tum to the calculation of the kinetic inductance 
LK and the magnetic inductance LM for an infinite film. Per 
unit length those inductances are related to the time-averaged 
kinetic and magnetic energy density through (cf. equation (7)): 

-(LK 4 1 + L&f)11(2 = TvK + WM = - 2w J ’ J I m ( D , ) d y d z .  

(27) 

Here I is the amplitude of the total current through the film: 

I = J’ 1 J ,  d y d z  = (HI  - H2)w, 

L~ =POX2J / IJ s12dyd .+2 ,  (29) 

L M  = P O  1 / IHI2 d y  d z / 1 2 .  

(28) 

where w is the width of the film. From (27) we obtain for 
L K  and L M :  

(30) 

Again two limiting cases are considered. The inductances 
LK and L M  are equal for t >> A, 6, because (neglecting nn): 

Evaluating the integrals yields in this transversely uniform 
case: 

(32) 
PO 
2w L K  = Lnr = -. ( t  >> t , 6 )  
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The property of equal LK and Lhf is generally valid for bulk 
superconductors [ 131. For a very thin film on the other hand, 
we obtain for L K :  

POX2 L - -. ( t <  A h )  
wt h’ - (33) 

while L,tl approaches zero. Thus in this range of thicknesses 
LK is a factor 2 A / t  higher than in the case of relatively thick 
films. The increased value of L K  results in a higher slow- 
ing factor of the electromagnetic waves. The accompanying 
increase in the losses is usually not a problem, since R, is 
very low for superconductors, cf. (24). Structures with a high 
slowing factor contribute to the realization of very compact 
microwave circuits [3], [4]. In addition, by measuring the slow- 
wave behavior it is possible to determine A, because of the 
role it plays in L K .  

B .  Propagation Characteristics of Wave-Guiding 
Structures with Non-Perfect Conductors 

In commonly used wave-guiding structures, we are not 
dealing with plane waves, as was supposed in the previous 
section. In general the modes are at best quasi-TEM, but 
generally hybrid of nature. We will analyze the influence 
of a non-perfect conducting (i.e., normal or superconducting) 
metallization with the restriction to the case of very thin films, 
where the thickness t of the metallization is much smaller than 
the penetration depth A and the skin depth 6: t << A. 6. In this 
limit it can be shown on the basis of (17) and (18) that the 
boundary conditions for plane waves can be expressed as: 

E1 = E2 = Rj .  
n X (HI - H 2 )  = j .  

(34) 
(35) 

with: 

(36) 
1 R = - = z  

at ,l‘ 

The subscripts 1 and 2 refer to both sides of the film. The 
quantity j denotes the total current density per unit length 
through the cross-section of the film, TI is a unit normal vector 
to the film. 

It is assumed that the complex resistive boundary conditions 
(34) and (35) locally remain valid for non-plane waves. This 
is an approximation, especially at the sharp comers of the 
metallization. However, the method has been proved to be 
quite accurate [5]. 

The spectral domain method can be applied for a full wave 
analysis of different wave-guiding structures, such as coplanar 
waveguide transmission lines (Fig. 2) [14]. The fact that the 
metallization strips are non-perfect very thin conductors is 
taken into account by a modification of this method through 
the complex resistive boundary conditions (34) and (35), as 
pointed out by Pond et al. [5]. Subsequent application of the 
modified spectral domain method can be found in several 
works [15], [16]. 

In short, the electric field at the strips interface ( J  = h l f h 2 )  
is expressed in terms of the current density in the strips by 
means of the so-called dyadic Green’s function. The Green’s 
function corresponds to the case of perfect conductors of zero 

X 
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Fig. 2. Geometry of a coplanar waveguide enclosed in a box with strips 
of thickness t .  Unless otherwise stated, the spectral domain calculations are 
performed at a frequency f = 10 GHz with geometrical parameters E~ = 10, 
and a = 18.6 = 10,s = 0 . 5 . ~ .  = 0 . 2 . h l  = 9 , h z  = 0.635, and 
h j  = 8.365 mm. 

thickness. In this limit the edge condition [ 171 implies that the 
tangential field and current components behave like p-’/’ for 
vanishing radial distance p from the edge. Invoking boundary 
condition (34) establishes a relation between the electric field 
in the slots and the currents in the strips. The electric field 
in the slots is expanded into a set of basis functions. If 
these basis functions are chosen to satisfy the edge condition, 
normally only a few basis functions are needed for an accurate 
description of the field pattem. The drawback of this approach 
is the appearance of a logarithmic divergence for quantities 
which involve the integration of the squared field or current 
components [ 181, [ 191. In the presentation of the numerical 
results we will discuss this problem in more detail. 

The electric field in the slots and the currents in the 
strips are non-zero in complementary regions. This means that 
Galerkin’s method can be applied to obtain a homogeneous 
system of linear equations with the weighting factors in the 
series of basis functions as unknown coefficients [20]. The 
propagation constant y of the structure corresponds with 
non-trivial solutions of this system of equations, meaning a 
determinant of zero: 

det [z(jy. jZ31)] = 0. (37) 

Here, z denotes the matrix corresponding to the system of 
equations. 

In general the propagation constant is a complex number 
with attenuation constant cy and wave number p: y = Q: + j p .  
This would imply the use of a root finding algorithm in the 
complex plane. However, in the lossless case (R,1 = 0 and 
u: = 0) the determinant is real, as is emphasized by the 
arguments jy and jZSl.  Then (37) becomes: 

det [Z( -/I, --XS1)] = 0. (38) 

In the case of a small amount of conductor losses in the 
strips, it is also possible to calculate the attenuation constant 
cy without explicit complex numerical computation. This is 
demonstrated as follows. If the losses are low, the solution of 
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(37) can be approximated by: 

0 = det [z(-P + j a ,  -X,I + j R S 1 ) ]  
d det [z(-P. --X,I)] . 

N det [z(-P, - X s l ) ]  + 3ff 
d( -P )  

d d e t  [z( -P, -XZl)] . + 3Rs1. 
d(-X,,)  (39) 

Here the first term in the right hand side corresponds to the 
lossless case, (38). It is assumed that /3 remains unchanged in 
the presence of losses, which is reasonable in the low-loss case. 
This assumption agrees with the usual perturbational approach 
in calculating the attenuation constant. As a result, the term 
for the lossless case still satisfies (38), from which we obtain: 

If the relation between /3 and X,1 is already known the 
last expression can be used. Otherwise it is advantageous 
to use the expression with the differentials of det. These 
differentials correspond to the zero-loss case, which implies 
that only real operations are involved in the calculation of cy. 

For compactness of notation we will use the last expression 
of (40) hereafter. If necessary, a P / d X s l  can be calculated on 
the basis of the determinant. 

Relation (40) is also useful in determining the kinetic 
inductance LK of structures with thin superconducting strips, 
which is not only dependent on X s l ,  but also on the current 
density distribution, cf. equation (29). Only for a uniform 
current density, LK is given by (33): 

where s denotes the width of the strip. Generally LK will 
be larger. To establish a relation between (40) and Lx .  cy is 
written as: 

- Here F d  is the time-averaged dissipated power in the strips, 
P ,  is the time-averaged power transmitted through the struc- 
ture, 20 is the characteristic impedance defined on the basis of 
power Pp and current I through one of the strips. In principle 
any of the strips can be used as the reference strip for the 
definition of LS and 20. It is common practice to use the strip 
which carries the signal for this purpose. In cases where it is 
not possible to identify the signal strip uniquely (e.g., slotlines) 
this can lead to a somewhat unconventional definition of 20. 
However the analysis remains valid as long as the same strip 
is used as the reference in Ls and 20. Comparing (42) with 
the definition of L K ,  (29), and using (40) yields ( J n  << .Is): 

(43) 

In L K  the contribution of all strips is included. The walls of 
the box are assumed to be perfectly conducting. 

__ 
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As an illustrative example of the foregoing we consider 
the case of the parallel-plate transmission line, which can be 
treated analytically [21]. For simplicity it is assumed that one 
of the plates is perfectly conducting. The separation between 
the plates is denoted by d, the permittivity by E .  Then, for 
t << X,S, (18) of Swihart [21] reads as: 

(44) p = W ( E p o ) l ' 2 J 1  + X , l / W P O d .  

Using Rsl = ( ~ p ~ ) ~ X ~ a , / t  ((14), (16) and (24)), evaluation 
of (40) yields: 

(45) 

which is in agreement with (37) of Swihart. Even in this 
analytical example it is profitable that we arrive at the correct 
expression for a ,  without manipulating complex numbers. 
Also, with the help of (43), we readily obtain: L K / L s  = 1, 
as it should be for an uniform current distribution. 

Concluding, the dependence of the complex propagation 
constant of different wave-guiding structures on the surface 
impedance of the strips can be evaluated by means of (38) 
and (40), without the numerical use of complex numbers. 
Equation (43) describes an efficient way of calculating the 
kinetic inductance of the structure. 

111. NUMERICAL RESULTS 
The modified spectral domain method, as formulated in Sec- 

tion 11-B, is applied for a full wave analysis of the propagation 
characteristics of coplanar waveguide (Fig. 2). Particularly 
the dependence of the complex propagation constant and the 
kinetic inductance on the surface impedance will be analyzed. 
We also pay attention to the convergence of the numerical 
solution. 

The walls of the box are perfectly conducting, whereas 
the thickness of the superconducting strips is much smaller 
than the penetration depth and the skin depth: t << A, 6. The 
components of the electric field in the slots are expanded in 
terms of the basis functions of [14]. As usual, these basis 
functions satisfy the edge condition for perfect conductors 
of zero thickness. This leads to a logarithmic divergence for 
quantities which involve integration of the current density 
squared, i.e., the attenuation constant a ,  (42), and the kinetic 
inductance L K .  (29). Since both quantities play an impor- 
tant role, and because it is easy to overlook a logarithmic 
divergence, a critical investigation of the convergence of the 
numerical solution is necessary. 

The convergence is studied as a function of the number of 
basis function terms A4 and as a function of the number of 
Fourier terms N .  The required number M is mainly dependent 
on the extent to which the basis functions resemble the actual 
field pattern. Evidently, fast variations of the basis functions, 
such as the divergence near the edge, are better approximated 
by increasing N .  

As usual no problems are encountered in finding the wave 
number p. if the surface impedance is neglected. This case 
corresponds to solving (38) with X,1 = 0. Fig. 3(a) shows 
the solution of the wave number 0, normalized to the wave 
number ICo in free space, for different A4 and N .  Values of 
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Fig. 3. The convergence of the numerical solution as a function of the 
number of Fourier terms N for different values of the number of basis function 
terms M : M  = 1(+).2(0).3(~),4(~),5(0). and 6 (A) .  Shown are the 
results of the normalized wave number O / k ,  for L s  = 0 (a) and L s  = 300 
nH/m (b). 

M higher than 3 give practically the same results as M = 2 
and M = 3 for even and odd M respectively. The solution 
converges to a limiting value, which is constant for M > 1. 
Using M = 1 and N = 100 introduces only an error of 0.1%. 
It tums out that the actual functional dependence of the basis 
functions is of little importance, as long as they incorporate the 
edge condition and satisfy the correct symmetry of the field 
pattem. These satisfactory results are in fact the justification 
for this established choice of the basis functions. 

For X,1 # 0 the divergence near the edge is smeared out 
as a result of the finite penetration depth. Hence, the basis 
functions wiiich satisfy the edge condition are less suited to 
describe the field pattem. Therefore the convergence of p / k o  
with increasing M is slower (Fig. 3(b)), in comparison with 
the case of XS1 = 0. However the solution does converge as a 
function of both M an N .  An increase in M is more effective 
than the same increase in N .  A reasonable approximation of 
the solution is obtained using M = 4 and N = 400 to 800. 

.3 - 

C > 
g .2 

- 

Y 
Y 
\ 

‘I d 

0 
100 1000 10000 

N 
Fig. 4. The convergence of the numerical results for cy with in- 
creasing number of Fourier terms *\; for the different values of 
L s : L s  = 0(+).0.03(0).0.3(~).3(~).30(0). and 300 nH/m (A) .  The 
calculations are performed with four basis function terms ( M  = 4). 

The attenuation constant is calculated according to equation 
(40) for different values of LS = X S l / w s  (Fig. 4). For 
LS = 0 the results clearly exhibit a logarithmic divergence, 
as has to be expected. Of course the logarithmic divergence 
is a mathematical artefact. In reality the current density will 
be peaked near the edges, but never divergent. In general a 
practical argument is used to overcome this problem. It is 
stated that the relatively slow divergence is not a serious 
problem in view of the limited experimental accuracy in 
measuring a. Indeed, reasonable values of a are obtained 
[18], but the arbitrariness in the choice of N is questionable. 
On the other hand it can be argued that the peaked current 
densities make any kind of analysis very sensitive to small 
deviations from the model, such as material imperfections and 
geometrical tolerances. 

The rate of convergence steadily increases for higher values 
of LS and X has an increasing effect in smearing out the di- 
vergence near the edges. Because the current density becomes 
less peaked with increasing Ls the value of a decreases as 
well. For very small values of LS the value of a is bounded 
as N goes to infinity. However, it seems unrealistic that for 
instance as many as lo5 Fourier terms are needed to obtain the 
correct a. Presumably the validity of such a calculation breaks 
down because of a small amount of losses. Thus theoretically 
the calculation of a presents no problem for small L s ,  since 
a is bounded. However practically problems are encountered 
in much the same way as in the case of Ls = 0. It is clear 
from Fig. 4 that this ambiguity in the calculation of a ceases to 
exist for higher values of Ls .  As we will see, this corresponds 
exactly to the case of experimental interest. 

By virtue of (40), the slow convergence of a/R,1 for small 
Ls also causes p to be slowly convergent with N .  This is 
confirmed if we take a close look at the results for p. However, 
small values of LS cause a small change in p. Hence the slow 
convergence of this small change is only observed at a scale 
which is far beyond any practical demand of accuracy. For 
higher values of LS (= X , l / w s )  the quantity dp/dX,1 can 
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Fig. 5.  The kinetic inductance L K  of a stripline (see inset) as 
a function of the penetration depth X for different strip thicknesses 
t ( M  = 4 . N  = 800): t  = 0.1(+),0.2(0).0.3(~),0.4pm(x). The walls 
of the box are assumed to be perfectly conducting. The geometrical parameters 
are: a = 846 pm, b = 2000 pm. s = 150 pm. and h 1 = hz = 4.32 p m .  

be integrated to obtain p, which means that the resultant rate of 
convergence of /3 for a specific value of L s  is an accumulation 
of the rate of convergence of a for smaller values of Ls. 
This explains why 0 is converging slower with the number of 
Fourier terms N as LS increases (Fig. 3). 

In order to test the validity of the formulation of Section II- 
B for calculating a and L K ,  we will compare our results with 
two other works. Sheen et al. [22] have analyzed a stripline 
configuration with a metallization of arbitrary thickness. The 
conductors, which obey the two-fluid model, are subdivided 
in small patches. From the transmission line equation of the 
resultant system of coupled transmission lines, the current 
distribution, resistance and inductance of the transmission line 
are calculated. We can use the Green's function of a coplanar 
waveguide for an analysis of the stripline configuration by 
setting w = 1/2(b - s) and E, = 1. As mentioned before, 
the walls are assumed to be perfectly conducting. This is in 
contrast to the model of [22], in which the top and bottom 
wall are superconducting and the sidewalls are not present. 
However, the main contribution to the kinetic inductance LK 
will arise from the central strip, since the currents are most 
strongly peaked here. The influence of the sidewalls can be 
neglected, provided the distance b between these walls is not 
too small. To limit the number of Fourier terms needed we 
have performed the calculations with b = 2000 pni. The results 
for L K  on the basis of (43) are presented in Fig. 5 as a function 
of the penetration depth X for different thicknesses t ( X  > t )  
of the central strip. Despite the differences in geometry the 
agreement with the results of Sheen et al. [22] (Fig. 6) is 
good. This strongly indicates the validity of both methods, as 
both are based on a different computational scheme. 

Pond et al. [5] have calculated the complex propagation 
constant y of microstrip lines with very thin superconductors 
( t  << A), by means of solving equation (37). No numerical 
operations in the complex plane are necessary if we use 
the altemative expression (40). The results for a. based on 
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Fig. 6.  The normalized attenuation constant of a microstrip line (see in- 
set) with a strip of thickness t = 14.5 nm at a frequency f = 1 
GHz (.I1 = 4 . S  = 800).  The microstrip line is enclosed in a per- 
fectly conducting box. The geometrical parameters are: E,. = 10.5. and 
n = b = 1 0 0 p m . s  = 25pm. h l  = 2.25pm. and h2 = 97.75pm. 
The two-fluid model of Gorter and Casimir is used with T, = 12.15 K, 
Xo = 320 nm, and uric = lo6  ( O m - ' .  

(40), are shown in Fig. 6 and are seen to be in excellent 
agreement with Fig. 9 of [SI. Again a different configuration 
is handled within the framework of coplanar waveguide, this 
time by setting w = 1/2(b - s) and hl + 0. In order to 
make the results directly comparable, we have calculated the 
absolute value of a by inserting the dependences of the two- 
fluid model of Gorter and Casimir, on = o ~ ~ ( T / T ~ ) ~  and 
X = X o / ( l  - ( T / T , - ) ~ ) ~ / ~ .  in R , ~  = ( w p o ) 2 ~ 4 a n / t .  The 
conductivity just above the critical temperature is denoted by 
orLC, the zero-temperature penetration depth by XO. 

The foregoing demonstrates that the results of the formula- 
tion described in Section 11-B and those of other methods are 
similar. For everyday use it is convenient to have the disposal 
of an empirical relation between the surface impedance and 
the propagation constant. For this purpose a description of 
L K / L s  as a function of L s  is sufficient: 

= F ( L s ) .  (46) 
LS 

Fig. 7 shows the numerical results of L K / L s ,  calculated 
according to (43), for different values of w .  These data are 
very well represented by the function: 

where A .  B. and C are geometry-specific fitting parameters. 
For quasi-TEM modes the parameters A , B ,  and C depend 
only weakly on the dielectric constant (and therefore h2) and 
frequency, because the dielectric constant has little effect on 
the inductance and because the dispersion is relatively low for 
these modes. The parameters also depend on the number of 
Fourier terms N .  However, in the cases of practical interest, 
meaning an appreciable magnitude of L s ,  the value of F ( L s )  
is changing slowly with N .  
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A transmission line model is applicable for structures, which 
support a quasi-TEM mode (e.g., microstrip lines and coplanar 
waveguides). From such a model we obtain: 

with the wave number Po of the structure with perfect met- 
allization ( L s  = 0): and the geometrical inductance L = 
(Po/ko)Zo/co, which is only moderately dependent on L s ;  co 
is the phase velocity in free space. Closed-form expressions 
are available for the wave number PO and the characteristic 
impedance ZO [23], [24]. From (48) it also is clear that the 
influence of LK is only significant if it is an appreciable 
portion of L. 

The equations (46) to (48) establish a relation between P 
and LS or, equivalently, X,1. Then, invoking (40), a/R,1 is 
also known for a particular X,1. 

IV. EXPERIMENTAL RESULTS 

We have measured the resonance frequency f o  and the 
unloaded quality factor QO of Y B a p C ~ 3 0 7 - ~  coplanar wave- 
guide resonators, as described in [25]. The measurements 
are performed in the temperature range of 4.2 to 80 K 
at excitation levels for which the data are independent of 
incident microwave power (-30 dBm). The thin films are 
deposited on sapphire substrates by off-axis rf magnetron 
sputtering [26]. A c-axis oriented YBazCu307-, layer is 
separated from the substrate by a PrBapCu307-, buffer layer, 
both layers having a thickness of 50 nm. The buffer layer 
blocks the interdiffusion between Y B a p C ~ 3 0 7 - ~  and sapphire 
effectively [27]. Moreover, the P r B a p C ~ 3 0 7 - ~  material has 
similar lattice constants and the same perovskite structure as 
Y B a p C ~ 3 0 7 - ~ ,  resulting in an improved lattice-match. 

The normalized wave number P / k o  = c 0 / 2 l f o  follows from 
the resonance frequency f o .  the length 1 of the resonator, and 
the phase velocity co in free space. The relevant length of 
the resonator is slightly different from its physical length (5.4 
mm) by open-end effects. The wave number /3 is influenced 
by the field penetration into the superconductor or by the 
kinetic inductance of the transmission line. From the numerical 
analysis of Section I11 we have an empirical relation between 
/3 and LS = k o X 2 / s t .  which can be inverted to obtain X from 
P. We are dealing with small values of L s / L  of the order 
of a few percent; the geometrical inductance is evaluated as 
L = (Po/ko)Zo/co  = 377 nH/m ( s  = 0.5 mm, 'w = 0.2 mm), 
using the closed-form expressions of [24], and Ls  is estimated 
as LS = p o X 2 / s t  zz 2 nH/m for X M 200 nm, s = 0.5 mm, 
and t = 50 nm. If LS is only a small fraction of L,  relatively 
small changes in P correspond to significant changes in Ls ,  cf. 
(48). This illustrates the difficulty that for small L s / L  both the 
wave number for Ls  = 0, PO. and the length 1 of the resonator 
need to be known with high accuracy. The former quantity 
(PO)  is not known experimentally ( L s  # 0 for T --f 0). while 
it is non-trivial to calculate the latter (1) accurately, since this 
involves open-end effects. Moreover, there are more sources of 
uncertainty, such as the dielectric anisotropy of sapphire [28]. 

.1 1 10 100 1000 
L,(nH/m) 

Fig. 7. The normalized kinetic inductance L K / L s  as a function of Ls  
for coplanar waveguides (Fig. 2). The data points are the spectral domain 
results for 11' = O . l ( + ) . w  = 0 . 2 ( 0 ) .  and U I  = 0.5 mm ( x ) .  The lines 
are the result of a fit to (47) with parameters: A = 1.164,B = 2.096, 
and C = 3.666(w = 0.1 mm); .4 = 1.188,B = 1.497, and 
C = 3 . 6 6 1 ( ~ 7  = 0.2 mm); A = 1.173.B = 1.042, and 
C = 3.362(u. = 0 . 5  mm). 

Therefore a more practical procedure is applied to determine 
PO and 1. The results for X are fitted to the temperature 
dependence of the two-fluid model of Gorter and Casimir, X = 
&/(l - (T /Tc)4)1 /2 ,  with the free parameters 1, XO, and T,. 
Such a self-consistent treatment of the data is commonly used, 
even in cases of a small geometry (delay lines), where much 
higher values of L s / L  are possible [29]. The procedure tums 
out to be satisfactory, since slightly different values of ,&I lead 
to somewhat different values of 1, but to practically the same 
XO. The values of A ,  B,  and C from the empirical relation (47) 
are not very critical as well. We use ,f30/ko = 2.3367, which 
is the spectral domain result for s = 0.5 mm, w = 0.2 mm, 
hp = 1.135 mm, E, = 10, and f = 10 GHz. The value of h2 

follows from the thickness of the sapphire substrate (0.5 mm), 
which is surface mounted on an alumina motherboard (25 mil). 
The parameters A ,  B,  and C are only weakly dependent on hp, 
as mentioned before, which implies that we can use the values 
shown in Fig. 7 (hp = 0.635 mm): A = 1.188, B = 1.497, 
and C = 3.661. Within the same approximation we can ignore 
the difference between the frequency used in the calculations 
(10 GHz) and the observed resonance frequency ( ~ 1 1  GHz). 
In this way we obtain 1 = 5.695 mm, Xo = 250 nm, and 
T, = 86 K. The critical temperature T, is consistent with 
dc-resistance measurements. 

The temperature dependence of the inferred X is examined in 
more detail by plotting the relative change (X(T) -X(O))/X(O) 
versus temperature (Fig. 8). Also shown are the temperature 
dependencies of the two-fluid model (solid) and the Mattis- 
Bardeen (MB) theory [9], for two different values of the energy 
gap parameter: 2A0/kTc = 3.5 (dashed) and 2Ao/kT, = 4.8 
(dot-dashed). The MB temperature dependence of X changes 
slowly with the electron mean free path 1. The curves shown in 
Fig. 8 correspond to l / r [ o  = 2. The MB theory is used in the 
local limit [30], where the field variation across the size of the 
Cooper pairs can be neglected, because the zero-temperature 
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T/K 
Fig. 8. Experimental results of the relative change of the penetration depth, 
(X(T) - A(O) ) /A(O) .  with temperature T(U). The curves represent the 
two-fluid model (solid), and the MB theory with l / ~ &  = 2 . X o  = 140 
nm, and the gap parameters 2Ao/kTc = 3.5 (dashed) and 2&/kT, = 4.8 
(dot-dashed). 

coherence length &, is much smaller than the penetration depth 
XO at zero temperature. This limit is appropriate for high- 
temperature superconductors, since 60 is of the order of a 
few nm in these materials, while XO is of the order of several 
hundred nm. Less clear is the validity of isotropic pairing, as is 
assumed in the MB theory. However, a detailed picture of the 
coupling in high-temperature superconductors is not available. 

The experimental results agree with a gap parameter 
2Ao/kTc = 3.5 for lower temperatures (T 5 0.5T,). while 
the data for T 2 0.5Tc are better represented by 2Ao/kT, = 
4.8. The value of 3.5 agrees with the BCS weak-coupling 
limit [31], the value of 4.8 is comparable to results of other 
works, where values of 4.3 to 5 are reported for the same 
temperature range [6], [32], [33]. The two-fluid model closely 
resembles the MB theory for 2A,/kTc = 4.8, despite the 
usual application of this model to superconductors in the weak- 
coupling limit (2AO/kT, = 3.53) .  This is caused by the fact 
that the zero-temperature penetration depth A0 in the two-fluid 
model should be somewhat higher than A0 in the BCS weak- 
coupling limit in order to obtain agreement for temperatures 
near T,. 

Thus the results over the entire temperature range are not 
consistent with a single-gap BCS temperature dependence, 
which confirms the results of [6]. Possibly this can be at- 
tributed to the presence of weak links in the material [34], [351, 
which also explains the reduced critical temperature T, = 86 
K and the increased penetration depth Xo = 250 nm, compared 
to the more or less established intrinsic value A10 = 140 nm 
[6], [33]. The influence of weak links is accounted for in a 
model of Hylton et al. [36], which predicts that the resultant 
penetration depth X = (Aj+A'$)1/2 is modified by an effective 
penetration depth X J  3; of the weak lines alone. If we 
take the weak-link critical current temperature dependence of 
Ambegaokar-Baratoff [37], I ,  3: (A /&)  tarih (A/2kT) .  the 
temperature dependence of X J  is the same as the dominant 
low-temperature MB temperature dependence of XI. Therefore 
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Fig. 9. Experimental results of the surface resistance R,, absolute (0) and 
relative to zero-temperature (A) .  The curves represent the two-fluid model 
(solid), and the MB theory with / / j ~ < o  = 2 . A o  = 140 nm, and the gap 
parameters PAo/kT, = 3 .5  (dashed) and ZAo/kT, = 4.8 (dot-dashed). 

this temperature dependence does not improve the fit of the 
experimental results to a single-gap dependence. However, the 
precise change of I ,  with temperature is open to discussion. 

Next we tum to the results of R,. which are deduced from 
the data Qo. By virtue of &O = p/2a and (40) we have; 
R, = ,l3t/4XQoap/aXSl, where R, is the surface resistance 
of bulk material, cf. (24). With the application of the empirical 
relations (46) to (48) between /3 and LS (or A), R, can be 
calculated from Qo. if X is known. In this case we will use 
the two-fluid model of Gorter and Casimir to determine X, 
which is reasonable over the entire temperature range (Fig. 8). 

Fig. 9 shows the results for R, as a function of temperature 
(0). As usual, R, decreases rapidly as the temperature is 
reduced below T,. For lower temperatures R, approaches 
a constant value, which is an indication of non-intrinsic 
behavior. The most likely reasons of this residual R, are the 
losses in the weak links [34], [35] or the dielectric losses 
[38]. In any event, the low-temperature value R, = 80pR 
is much lower than the textbook value of OFHC copper in 
the same frequency and temperature range, R, = 5mR. 
This illustrates the suitability of these films for microwave 
applications with a high demand on R,, such as delay lines and 
high-performance filters. Both the residual R, and T, are in 
remarkable agreement with the results of thin films on sapphire 
with a SrTiOy buffer layer, reported by Char er al. [39] 
( R ,  = 65pR at 10 GHz, which would imply R, = 80pR 
at 11 GHz according to a quadratic frequency dependence, 
and a superconducting transition at 87 K with a 1 K transition 
width). Also shown in Fig. 9 are the results for R, with the 
zero-temperature value subtracted, R, ( T )  - R, (0) .  ( A ) .  The 
aim of this operation is to cancel the non-intrinsic losses, 
although the temperature dependence of these losses is not 
necessarily negligible. The data of R,(T) - R,(O) at the lowest 
temperatures should be interpreted with some caution, since 
the relative errors become large for small differences. 

The solid curve represents the two-fluid model with the 
parameters A0 = 250 nm and onc = 3 . lo6 (Qm)-'. where 
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nnc is the conductivity just above T,. The other two curves are 
the results of the MB theory for l/n& = 2, Xo = 140 nm, and 
gap values 2Ao/tkT, = 3.5 (dashed) and 2Ao/kTc  = 4.8 (dot- 
dashed). The calculations are performed at 11  GHz; the 2% 
change of the observed resonance frequency with temperature 
is neglected. In order to match the two-fluid model and the 
MB theory near T,, we need a higher value of onc at 11 GHz 
than Drabeck et al. [32] at 100 GHz (1.5 . lop6 (hi)-’). 
This is caused by the additional MB frequency dependence 
ln(lcT/tLw) of the surface resistance (hw << IcT). which 
illustrates that we should not take the value of onc too serious. 
The experimental results close to T, are well represented 
by 2A0/lcTc = 4.8. In this temperature range the value 
of l/n<o = 2 is found to give the best agreement with 
the experimental results. The data at lower temperatures are 
better described by the other gap parameter 2Ao/IcTc = 3.5. 
although it can not be concluded decisively that this is the 
correct value of the gap for lower temperatures. However the 
discrepancy with the experimental results is limited in view 
of the margins of error and the neglect of the influence of 
temperature with respect to the weak links. 

V. CONCLUSIONS 

We have analyzed the surface impedance of an infinite 
normal or superconducting film of arbitrary thickness. The 
surface reactance X ,  of very thin superconducting films ( t  5 
A) is increased by a factor X / t  compared to X ,  of relatively 
thick films ( t  >> A). The surface resistance R ,  and the kinetic 
inductance L K  are increased by a factor 2Xlt .  The analysis 
also shows that in the case of very thin films the boundary 
conditions for the field agree with the complex boundary 
conditions [ 5 ] ,  which are used in a modification of the spectral 
domain analysis of different wave-guiding structures. 

The influence of the surface impedance 2, on the prop- 
agation constant y = cr + j,L? is investigated by means of 
the modified spectral domain method. We found expressions 
which allow an efficient calculation of the attenuation constant 
ct and the kinetic inductance L K .  An empirical model of the 
relation between the wave number /j and L k  is presented, 
which describes the exact results very well. 

This model is used to determine the penetration depth 
X and the surface resistance R, from the experimental re- 
sults for the resonance frequency and the unloaded qual- 
ity factor of Y B a 2 C ~ 3 0 7 - ~  coplanar waveguide resonators. 
The Y B a z C ~ 3 0 7 - ~  layers are deposited on sapphire with 
a P r B a 2 C ~ 3 0 7 - ~  buffer layer. The observation of a low 
residual surface resistance, R, = 8 0 ~ 0 .  supports the con- 
clusion from other work [27], that the buffer layer prevents 
interdiffusion, while constituting a suitable basis for epitaxial 
growth of YBa2Cu30;.-,. 

The results indicate that the temperature dependence of X 
and R, is not characterized by a single-gap BCS tempera- 
ture dependence. For lower temperatures a conventional BCS 
weak-coupling gap value 2A0/lcTc = 3.52 seems appropriate, 
while 2Ao/kTc = 4.8 describes our findings for higher 
temperatures. Our results suggest an electron free mean path 
value 1 / 7 r < O  = 2. The origins of non-BCS behavior have 

been interpreted in terms of weak links. However, other 
interpretations [40] can not be ruled out, since the coupling- 
mechanism for electrons in high-temperature superconductors 
is not clearly understood. 
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