
Clin. Phys. Physiol. Meas., 1991, Vol. 12, Suppl. A, 83-87. Printed in the UK 

The use of the asymptotic expansion to speed up the 
computation of a series of spherical harmonics 

J C de Muncktf, M S Hamalainenf and M J Peterst 
tTwente University, Low Temperature Department, PO Box 217, 7500 Enschede, 
The Netherlands 
*Helsinki University of Technology, Low Temperature Department, Otakaari 3A, SF-02150 
Espoo, Finland 

Abstract. When a function is expressed as an infinite series of spherical harmonics the 
convergence can be accelerated by subrracting irs asymprotic expansion and adding it in 
analytically closed farm. In the present article this technique is applied to two biophysical cases: 

to the potential distribution in a spherically symmetric volume conductor and 10 the covariance 
matrix of biamagnetic measurements. 

1. Introduction 

In biophysical modelling a function is sometimes expressed as an infinite series of spherical 
harmonics. An example is the potential caused by a current source in an inhomogeneous 
spherical volume conductor representing the head. When this model is used to estimate 
sources on the basis of the measured potential distribution on the scalp, it is important to 
compute the potential as quickly as possible, because the potential has to be calculated on 
each iteration. However, without special precautions, many terms of the spherical 
harmonics expansion are needed to obtain accurate results. This is true for superficial 
sources, in particular. The technique we propose is based on the derivation of an asymptotic 
approximation of the function, which is known both in closed form and as a series of 
spherical harmonics. This approximation is then suhtractcd from the function as a series 
expansion and added in closed form. T h e  resulting series of differences converges much 
faster than the original series, provided that the asymptotic approximation is properly 
weighted. Another example of the use of a spherical harmonic expansion is the lead 
field covariance matrix, which is used for minimum norm estimation (Hamaliiinen 
and Ilmoniemi 1991). With the same technique as for the potential distribution in a 
spherical model, the computation time of these matrix elements can be reduced 
substantially. 

2. The potential in a spherical volume conductor 

T o  show how the proposed technique works, we will apply it to the special case of a dipole 
source in a three-sphere model. The  spheres represent the brain, the skull and the scalp and 
have outer radii r,, r2 and r,, respectively. It will he assumed that the conductivities of the 
brain and the scalp are equal and that denotes the ratio of the skull and the brain 
conductivities. The field point (r,, O,, @,) is located on the surface of the outermost sphere. 
For a dipole on the z-axis, lying in the X-z plane, we have the following expression for the 
potential + (Geselowitz 1967): 
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with 

Here, r, is the radial coordinate of the dipole, and Q, and Q ,  are its radial and tangential 
component, respectively. Finally, g1 G r, lri and g2 r2 Ir,, so that gl, g2< l. 
To  find the asymptotic approximation f,, is expanded as follows: 

The O ( K m )  result from terms with g?''. These terms are of order infinity, because 
ggT"+lin-k 0, for any finite k, and therefore they only contribute to the first few 

terms of equation (2). The kth order asymptotic approximation is defined as 

and f (O)c$(O) + f ii)d(l) + f (2)$(2) + . . . . . is called asymptotic expansion of $. For k = 0, 
1 we can express in a closed form by taking appropriately chosen partial derivatives 
of the infinite medium potential (see Appendix). We obtain, 

4") = (Q, (cos 8, - A) + Q, sin 8, cos @,) R-? (5) 

where R is the distance between the electrode and the dipole, 

R = (l-2Acon8,+ AZP 
If A is chosen as rolr, and the coefficients f and f (1) are chosen as 

f '01 = SE and f (1) = 
4€ 

4 ~ o ( l + € ) ~ r :  4 a o ( l  +€)'r: 
(8) 

the expansions (1) and (4) match. Now + is expressed as 
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Since (Q, nPno (cos0,) + Q,PX1 (cos0,) cos&) = O(n), the series of differences 
converges as Zn-lAn, instead of as ZnAn, which represents the convergence of the original 
series. Therefore, much fewer terms are necessary to compute (9) than (l), with the same 
precision. Note that for this three-sphere model, we have f = 2f (l)  and, therefore, the 
sum f (O)$(O) + f (l)$(') has a clear physical interpretation: it is the potential caused by a 
dipole in a homogeneous sphere (substitute = 1 into equation (2)). This is however not 
true for the general sphere model. With the formulae presented in De Munck (1988), the 
asymptotic expansion can be found for the potential in the general (anisotropic) concentric 
sphere model. In this model the field point is not restricted to the outer surface, which is 
useful for analysing recordings from patients with implanted electrodes. It can be shown 
that in this model the asymptotic expansion has the following properties (the derivation is 
given in De Munck and Peters (1991)): 

1. When the layers are anisotropic, the weights f (k) and A only depend on the radii and 
conductivities of the layers between (and includirlg) the electrode and the dipole. 

2. When all layers between the source and the field point are isotropic then the matching 
A is given by rotre; if one (or more) of those layers are anisotropic then A is disturbed by 
that layer(s). 

3. Under the conditions of (2), the parameters f (k) are independent of the radii, as is the 
case with the three-sphere model. 

4. When the dipole is in an anisotropic layer, the weighing coefftcients f are different 
for a radial and a tangential dipole. Their ratio equals the ratio of the radial and tangential 
conductivity. 
Since the asymptotic expansion f + f (')4(I) + f (z)$(2) is devised as an 
approximation of the true potential, properties ( 1 )  - (4) shed some light on the dependence 
of the potential on the volume conductor. Note, however, that in this expansion the infinite 
order terms are omitted, whereas they do have an influence on thc lowcr order terms of the 
spherical harmonic expansion (1). 

3. The lead field covariance matrix 

Hamalainen and Ilmoniemi (1991) derived a method to interpolate electromagnetic data 
based on minimum norm cstimates. Their method can be summarised with the Cullowing 
formula: 

where Bk are the measured magnetic fields, and B,! are the interpolated values. CjP is the 
lead field covariance matrix, defined by 

where 5 are the measurement points. Similarly, the C;; denote the covariance matrix for 
the combinations of the measurement points with the interpolation points. In equation (11) 
L(x;x, n,)  is the lead field corresponding to B,, i.e. if B(x;x,).n, is the magnetic field at 
the point X,, in the direction nj, caused by a dipole Q at X, then 

In this formulation, the computation of each matrix element of C requires a three- 
dimensional integration and, therefore, the method is very time consuming. To  speed up  
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the computation using the asymptotic expansion, the integrals should first be expressed in 
a series of spherical harmonics. It can be shown (De Munck et a1 1991) that, for 
f (x)  = r26(r0 - r), Cjk can be expressed as 

F: n 
Cjh = (n, .?)(Ilk. v&)- r:+2 

4a . = I (n+ 1)(2n+I) (r,rk)=+' p.0 (cos U,,) 
(13) 

where 

cos wj, = cos Oj cos + sin 0, sin Or cos ($, - m*) (14) 

is the angle between the positions of the magnetometers j and k. (rj , B, , $ j )  are the 
spherical coordinates of  the j th magnetometer, n, . is the corresponding directional 
derivative and r o  denotes the dipole layer radius. 

With equation 13 the computation time is already substantially reduced. Now A is 
2 - 1  - 0 defined as ro r, r, and nl[(n+ 1)(2n+ l)] is expanded as ll(2n) - 31(2n2) + O(n-3). When 

the first-order approximation is expressed in closed form we obtain: 

m l 1 - Acosw + (1 - 2Acosw + A2)" 
fit C - AnPnO(cos W )  = -po In 

n I n  2 
(15) 

The logarithm in equation (15) seems to spoil the advantages of the asymptotic expansion 
maho6. Uo-;;e,:c:, %?e ~ti!! have ro take the partial derivatives of equation (15) and then the 
logarithm will disappear. 

When both gradiometers are radial, a simpler formula is obtained. After taking the 
partial derivatives with respect to r, and rh we obtain 

Here the sum of the terms with 2n+ 1 is easily recognised as the potential of a radial dipole 
in a homogeneous conducting sphere, which can he expressed in closed form using 
equations (5) - (7). 
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Appendix 

In this appendix it is shown how an analytically closed expression can be derived for the 
zeroth and first-order approximation of $. The  derivation is based on the expansion of the 
monopole potential in Legendre polynomials: 

If we differentiate this equation with respect to A or to O,, we find equation (5). If the term 
with n = 0 in (A.l) is omitted, and the result is divided by A, we have the radial part of 
equation (6). If subsequently the radial part of equation (6) is integrated over A, equation 
(15) is obtained. Finally, if equation (15) is differentiated with respect to 8,, we obtain the 
tangential part of equation (6). 


