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Items with the highest discrimination parameteifor information as a function of these parameters
values in a logistic item response theory model dois also derived. An algorithm is suggested for the
not necessarily give maximum information. This maximum information item selection criterion for
paper derives discrimination parameter values, asadaptive testing and is compared with a full bank
functions of the guessing parameter and distancesearch algorithm. Index terms: adaptive testing,
between person parameters and item difficulty, thadliscrimination parameter, information function, item
yield maximum information for the three-parameteiselection, logisti¢dRT model.
logistic item response theory model. An upper bound

The item information functionif) in item response theoryRT) can be used to select items
from item banks. This can be done sequentially during test administration, e.g., in computerized
adaptive testing (Lord, 1980; Wainer, 1990).

The maximume-information selection criterion (e.g., Lord, 1980) is one of the most commonly
used methods of item selection for adaptive testing. For the two- and three-parameter logistic
(2pL and3pPL) IRT models, increasing the item discrimination parametewill cause information
to increase. Lord (1980, Equation 10-6) showed that forztheand 3PL models, the maximum
obtainable item information is an increasing function of the squared item discrimination parameter
when item difficultyb; and person trait leveld] are optimally matched. For the°L model,
maximum information is obtained whe#f = . It can also be shown that the area undenthe
the2pLmodel equals;. A similar relationship holds for theeL model (Birnbaum, 1968, Equations
20.4.26).

The guessing parameter ) for the3pL model contaminates the other two item parameters.
reduces the discrimination power of the item and the item is easiemthauggests (Samejima,
1984). For example, the maximum slope of the item response function reduces by alfactor
and the probability of giving a correct answer for persons withb; increases by, /2. Samejima
(1984) calculated her “discrimination shrinkage factor” and “difficulty reduction index” as functions
of ¢;.

¢; also affects the information of the item. First, information decreasesiasreases. Second,
it decreases more for lows than for highds: thellr becomes asymmetric. Third, maximum
information is obtained wheb = # minus a term that increases@sncreases.

Information in the 2PL Model

Figure 1 showsiFs on a9 — b; scale for different values af; for the 2PL model. Increasing
a; leads to a higher and more peaked This phenomenon shows that the area undenthis
concentrated in a smaller rangegofalues, i.e., the width of thes becomes smaller asincreases.
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Figure 1
Item Information Functions
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Samejima (1994) showed that the area under the square rootiof thethe2pL model equals
m(~ 3.14), irrespective of;. This implies that in thepPL model thellFs of two items must cross
at least once. For reasons of symmetry,ithe of two items with equa#; s but differents; s must
cross twice. This is shown in Figure 1.

Figure 1 also shows that an extreme increase ican lead to a decrease of item information
whenbp; is not close t@. This effect is called thattenuation paradoXLoevinger, 1954) inRT by
Lord & Novick (1968, p. 368) and Birnbaum (1968, p. 465).

Figure 2 illustratesiFs for the2pL model as a function af; for different values of the distance

betweerp andb;. The fact that an item with a high is not necessarily the most informative item
and that, therefore, selection of items in an adaptive test should not solely be based;oedhe

also be seen in this figure.

Figure 2
Item Information as a Function af
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Purpose

This paper shows which values af give maximum information and the magnitude of that
information. The optimal discrimination and the maximum attainable information are functions of
the distance betwedn andg for logistic IRT models. The results of this paper are implemented
in a maximum information item selection algorithm for adaptive testing, and a small simulation
study shows that this algorithm is faster than a full bank search.

Derivation of Optimal Iltem a;s

The item response function, or the probability of a correct response ta ifiena person with
0, of the3pL IRT model is (e.g., Lord, 1980, Equation 4-37)

. o exXp(Li)
Pi(0) =ci+(1 C’)71+exp(L,-) ; (1)
where
Li =ai(0 —bi),

a; € R is the item discrimination parameter,

b; € R is the item difficulty parameter,

c; €[0,1) is the guessing parameter,

0 € R is the person trait parameter, and

R andR* are sets of real and positive real numbers, respectively. The corresparding

21—¢;
1) = 41— a) 2 @)
[ci +exp(Li)] [1+ exp(—L)]
(e.g., Lord, 1980, Equation 4-43).
If L; =0, then
_ 1 2 1- Ci
L) =7 e T 3

If @ —b;) =0, then;(9) increases as; increases. If, however; = 0, the minimum of the
information as a function af; is reachedi; () = 0.
Hereafter it is assumed that # 0. Therefore the natural logarithm of the,

log[Z; (6)] = 2log(a;) + log(1 — ¢;) — log[c; + exp(L;)] — 2log[1+ exp(—L)] . (4)

is defined becausk(9) > 0for L; # 0.

L;s for which the information, as a function af, reaches a maximum or minimum for fixed
values ofc; and (6 — b;) # 0 are found by setting the derivative of lgg6)] with respect taL;
equalto 0, i.e.,

dloglli()] _ 2 exp(Li) exp—Li) _ 5)
aL;  L; ¢ +explL;) 1+exp—L;)

Using the fact thaL; # 0, this equation can be reduced to

2ci(1+ L) +[2(c; + 1) + Li] exp(L;) + (2— L;) exp2L;) = 0. (6)
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The second derivative of 1¢g (9)] with respect ta_;,

loglli(®)] 2 exp(L;) [1 exp(L;) }

IL? - ZZ CcitexplLi) | o +expLy)
, . 2
_2{ EX[X—L,) |:1_ eXp( Ll) :H i (7)
1+ exp(—L;) 1+exp(—L;)

is negative for allL; # 0 and all values of; € [0, 1) because in the sum on the right-hand side of
Equation 7 the first and last terms are always negative and the second term is never positive (it is
equal to O forc; =0.)

For exactly one value df; between-3 and-1, the first derivative of log; (9)] with respect to
L; (Equation 5) equals 0. Substitutidg = —3 andL; = —1, respectively, into Equation 5 yields

dlogl1; (9)] 2 =3 3 5 28

= - 2 > - [ 0 Ve 07 1 , )
aLi  lp—-s3 —3 Ci+€_3+ 1+- 3 158 ci €[0,1) (8)
and
dloglZi ()] e 1 2 o1 5
TOL e o - - 0Veiell), 9
dL; Li=—1 Ci+€_l+l+e< 141 1+e< ¢ €[0,1 ()

respectively. Equation 7 indicates tladag[7; (9)]/0L; strictly decreases ds increases. Combin-
ing this fact with Equations 8 and 9 shows that for egctinere exists exactly one value bf < 0
for whichalog[I;(9)]/0L; equals 0, and that this value bf lies between-3 and—1. Furthermore,
such value of_; corresponds with a maximum of Ipg(9)] and; (), because

92logl1; (9)] B

17 0. (10)

Similar reasoning applies fdr; > 0. ForL; = 1 andL; = 3, dlog[/;(9)]/dL; is always positive
and always negative, respectively. This proves thay has exactly one maximum fdr, > 0O and
that this maximum is reached wheénis between 1 and 3.

The two optimalL; values can be found for each value by solving Equation 6 iteratively,
substituting real numbers fdr; between-3 and—1, and 1 and 3. Doing so fef values ranging
from 0.0 to .9 with steps of .1 results in finding the valued pgiven in Table 1.

The corresponding optimal values can also be derived from these optimavalues. If, for
examplec; = .1and (@ — b;) = —2, then the optimak; value will be —1.816/-2 = .908. This
value is depicted as an “X" in Figure 3. The optimglvalues forc; = 0.0 and .9 are shown in
Figure 3 as functions ob(— b;). All values for0.0 < ¢; < .9 lie between the values faf = 0.0
andc; = .9.

The maximum values af (9) (6 — b;)2 in Table 1 can be obtained by substituting the values for
¢; and the optimal values far; and L; in Equation 2. Upper bounds fdy(9) can be found by
dividing these maxima by — b;)2. For items withe; = .1, for example, the information at< b;
can be, at most,

[—1.816/(6 — b;)]2 0.222
e—1816(1 1 (18162 ~ (9 —p;)2 "

(11)

This means that information for items with=".1 and ¢ — b;) = —2 is always less than .055. This
value is shown as an “X" in Figure 4 with the upper-bourd forc; = 0 and .6. Similar plots can
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Table 1
Optimal L; Values and Corresponding Maxima f6) 6 — b;)?
(Rounded Up) for; Values Given Fixedd — b;) Values

©—bj)<0 ©—b)>0

¢ L; L:(0)(0 — b;)? Li L) —b)?
0.0 —2.399 440 2399 440
A -1.816 222 2417 .392
2 —-1.669 145 2434 .346
3 —-1.591 101 2451 .300
4 —1.541 .073 2467 255
5 —-1.505 .052 2482 211
6 —-1.478 .037 2497 .168
7 —-1.457 .025 2512 125
.8 —1.440 .015 2526 .083
9 —-1.427 .007 2540 .041

be drawn forc; = .1, .2, .3, .4, and .5. These values all lie between the two plots in Figure
¢; =.7,.8, and .9, the values lie below thoseof .6.

For thec;s in Table 1, the upper-bound valuesipf) (@ — b;)?, given the value off — b;),
decreases as increases. This is also the case for other values.of

Suppos€d — b;) > 0, andcy; > c1;. Li; andLy; are defined as the optimal positives for
¢i = c1; ande; = c¢p;, respectively. The upper-bound valuelp®) (@ — b;)? for ¢; = cq; is

L2.(1—cy
2 c1i) - (12)
[c1i + exp(L1)] [1+ exp(—L1)]
Becausely; is defined as the value af; for which 1;(9) (6 — b;)? reaches its upper bound,
L2.(1—cy; 2 (1 o1

1 (1—cw) . > Lz,(l 1) - (13)
(c1i +exp(Ly) (1 + exp(—Li;) (c1i +exp(Lai) (1 + exp(—Lz;)
Whenczl~ > C1i,

L5(1—cw) L5(1—c2) (14)

> .
[c1i + exp(Lan) ] [L+ exp(—L2)]*  [cai +exp(Lan) ] [1 + exp—L2)]?

Figure 3
Optimala; Value as a Function ap — b)
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Figure 4
Upper-Bound Information as a Function@f— b)
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The right-hand side of Equation 14 is the upper bound; @) © — b;)2 for ¢; = cp;. A similar
reasoning applies fap — b;) < 0, which completes the proof.

Conclusions

Three factors determine the value of the upper-bound information. It was just shown that it is
a decreasing function af for a fixed value of § — ;). It also decreases for increasing values
of (8 — b;)?, for fixed values ofc;, and the sign off — b;), because then the upper bound of
1;(6)(6 — b;)? is constant. Finally, for fixed values @f — b;| andc;, it is higher for(® — b;) > 0
than for(® — b;) < 0.

For example, for items with; > .1 and(9 — b;) < —2, the maximum information is less than
the maximum information for items withh = .1 and ¢ — b;) = —2, which in turn is less informative
than items withe; = .1 and ¢ — b;) = 2. As a consequence, when items with> .1 exist, which
are above a persorvsby at least two units [i.e(p — b;) < —2], then/;(9) < .055 For items with
the same;s, but with(@ — b;) > 2, I;(9) < .392/4 = .098.

Finally, in Figure 5 the upper-bound information multiplied (8y— 5,)? is shown as a function
of ¢;. These results are based on the results given in Table 1. Interpolation was used-for all
values not shown in Table 1. Note that the exact shapes of the lines were thus not proven.

An Item Selection Algorithm

The relationship betwees, b;, and item information a# can be used for item selection in
adaptive testing. Suppose the task is to select items from an item bank in an adaptive test with
the maximum information criterion. This criterion selects the item with the highest value of
at a value on th@ scale, usually some provisional estimate, &g.,One way to select the most
informative item atg is a full bank search, i.e., to calculate the information of all items at v&lue

An Alternative to a Full Bank Search

This algorithm is based on the fact that it is unnecessary to compute the information of all items
in an item bank to determine which item has maximum information. ckgtbe the smallest;
value among all items in the item bank. L&tax+(cmin) @nd Imax—(cmin) be the upper bounds
of 1;(60)(60 — b;)? for positive and negative values afy(— b;), respectively, and foe; = ¢min.
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Figure 5
Upper-Bound Information Time® — b)2 as a Function of;
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These upper bounds are shown in Table 1 urges)(6o — b;)? and the values ofy,;n are under
c¢iy .0, Imax+(.1) = .392 andimax —(.1) = .222. Forc; values other than those shown in Table
1, the upper bounds can be determined from Equation 6 c;Fotmin, the two upper bounds of
1;(60)(60 — bi)? are the highest; values in the item bank, because these upper bounds decrease as
¢; increases. The two upper-bound values that correspond to the lgwesies are in some sense
the two upper-bound values for the entire item bank, one for negative and one for positive values
of (90 - bi).

In the following, Imax Will be Imax +(cmin) OF Imax —(cmin)- FOr two items and, the following
can be derived:

1,
If B — b;)? M3 theny; 1;(60) . 1
(6o — bi)” > 700 thenZ; (6o) < 1;(60) (15)

This follows from

1, 1,
O—bi2> M o () > — X 16
(6o — bi) 7,60) i) > G52 (16)
and
1160) B — b)? < Ima <> 11(60) < — "3 17)

(6o — b:)?

The left-hand side of Equation 9 follows from the definitiomgfxas an upper bound f(6g) (6o —
b,‘)z.

Whenitis determined that an itejinas a certain informatiafy (9), then all itemg with positive
60— b; and(@o—b;)? > Imax+(cmin) /1 (60) OF negativedo — b; and(6o —b)? > Imax— (cmin)/1; (00)
will have less information than item regardless of the values @f andc; > cmin.

The Algorithm

The algorithm has the following initialization steps:
1. Order thev items in the item bank according to their difficulties: < b, < ... < by.
2. Determine the smallest value fin the item bankicmin.
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3. Compute the constanigax + (¢min) @ndImax — (cmin)-
If 6y is a provisional estimate after the administration of a set of items in an adaptive test, then
the selection of the next item with maximum informationé@grfrom the set of items not already
included in the test consists of the following steps:
1. Search for iteny with 5; equal to the smallest positive differeneg ¢ 5;) among all items.

If 6o < b1 Or6g > by, then item; is the easiest or the most difficult item, respectively.
2. Search for itemsin increasing order o)y — b;|, for positive values ofdy — b;).

If (6o — b)) > Imax +(cmin)/1(80), then continue. Otherwise, comput€s). If 1;(6p) >

1;(9o), then setj equal toi, and continue the search.
3. Search for itemsin increasing order oy — b;|, for negative values obf — b;).

If 6o — b))% > Imax—(cmin)/1j(6o), then end the search. Otherwise, compi@). If

I; (60) > 1(b0), then setj equal toi, and continue the search with Step 1.
Step 1 can be made more efficient by beginning the search forjiteith an item that is expected to
have a difficulty close té;. Note that in Steps 2 and 3, the indesepresents the most informative
item that is eventually administered to the examinee. The answer to this item is scored, and the
examinee'® is re-estimated. Iteni is then removed from the item bank.

This search process uses only a part of the item bank, i.e., information is computed only for

items with relatively small values @fp — b;)2. For that reason, item selection will be much faster
with this algorithm than with a full bank search.

A Simulation Study

To establish the relative speed of this item selection algorithm, a simulation study was performed
in which the algorithm was compared to the algorithm with straightforward calculation of the
information of all items in an item bank. The maximum information criterion was used to select
items for both algorithms. This means that exactly the same items, in the same order, were selected
by the two algorithms for each test. The algorithms differed only in their computatiara) (
times. The simulations were performed using a program written in Borland Pascal 7.0 and were
run on a 48a@x2 66 MHz computer.

Design. Adaptive tests of 30 items were simulated for seven values-3, -2, -1, 0, 1, 2,
and 3. These simulations were repeated for three different item banks. Each item bank contained
200 items. The distributions of thes andc; s were uniform for each bank. Thgs were uniformly
distributed between .5 and 2, i.e;,~ U(.5,2), and the;s between .1 and .3, i.ey, ~ U(.1,.3).

The three item banks differed only in their distributionshbaf One bank had a uniforri (—3, 3)
distribution ofb;; the other two were normally distributed with a variance of 1 or 3. Thus, the
distributions ofp;s wereU (-3, 3), N(0,1), andnN (0, 3), respectively. For each combinationgof
and item bank, there were 100 replications.

Results. Figure 6 shows theputime used to select 30 items in 100 tests, as a functieh of
for the two algorithms and the three item banks. The three lines at the top of Figure 6 sttruthe
time needed to calculate the information of all items in the bank not already included in the test.
The algorithm improved item selection by a factor between 1.5 and 6. For a uniform distribution of
theb;s, the relative speed did not dependioBut for the item banks with normally distributégs,
speed was dependent énFor¢ = 0, cputime was relatively high because there were relatively
many items with a&; in that region. Therefore, in these cases the information had to be computed
for relatively many items.

The highcputimes for extreme negativis for theN (0, 1) distribution ofy; s can be explained
as follows. Theb;s were thinly spread around3. The information of the most informative item
j in the search process was usually not very high, because most of th&ggimeb;) < 0 and
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Figure 6
Total CPU Time for Two Maximum Information Item Selection
Algorithms for 100 30-ltem Adaptive Tests Using Three 200-ltem Banks
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|60 — b;| was large. Therefore, the rangeip$ that were more informative than itefrwas rather
large. On the other hand, for extreme positie thecpu times were much lower because the
information for items; with large distances betwe@g andb; was higher forgp — b;) > 0than
for (6o — b;) < 0. Note that for thev(0, 3) distribution, theb; values were spread out much more
than for then (0, 1)distribution; thus, this effect did not occur.

Discussion

One application of the algorithm proposed here is an adaptive testing procedure in which the
test is constrained with respect to its content. In such cases, the use of information tables (Thissen
& Mislevy, 1990, pp. 116-117) is virtually impossible because items are generally selected from
changing subsets in the bank. Stocking & Swanson (1993), for example, have developed a weighted
deviations model for constrained item selection in adaptive testing. Swanson & Stocking (1993)
present a heuristic for solving this model for very large numbers of constraints that gives a subopti-
mal solution because of the complexity of the selection procedure. Furthermore, exercising control
of item exposure can lead to the practice of searching for a group of nearly optimal items each
time an item is selected for administration. Because time often plays a critical role in constrained
item selection procedures, it may be worthwhile to investigate the possibility of incorporating the
algorithm proposed here into Swanson and Stocking’s heuristic or other heuristics for item selection
procedures for constrained adaptive testing. Another possible need for quick alternatives to a full
bank search may arise in applications of adaptive testing with frequently changing banks, due to
the replacement of obsolete items or to the use of rotating banks introduced to secure item content.
In such cases, a quick item selection algorithm is a good alternative to the practice of frequently
recalculating and replacing information tables.

Conclusions

Whenb; andg are not optimally matched, the optimalin logistic item response models is not
its maximum value. It has been shown here that the optimnialinversely related to the distance
betweeny; andg, and it was determined that provides the most information at certain points
on theb; — 0 scale. The corresponding maximum information is inversely related to the squared
distance betweef andb;.
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The relation between this distance and an upper bound on information was used in an algorithm
for the maximum information item selection criterion for adaptive testing. In a small simulation
study, this algorithm was 1.5 to 6 times faster than a full bank search. Because much faster
algorithms than a full bank search are being used in practice, further research is needed to compare
this algorithm with those methods.
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