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Items with the highest discrimination parameter
values in a logistic item response theory model do
not necessarily give maximum information. This
paper derives discrimination parameter values, as
functions of the guessing parameter and distances
between person parameters and item difficulty, that
yield maximum information for the three-parameter
logistic item response theory model. An upper bound

for information as a function of these parameters
is also derived. An algorithm is suggested for the
maximum information item selection criterion for
adaptive testing and is compared with a full bank
search algorithm. Index terms: adaptive testing,
discrimination parameter, information function, item
selection, logisticIRT model.

The item information function (IIF) in item response theory (IRT) can be used to select items
from item banks. This can be done sequentially during test administration, e.g., in computerized
adaptive testing (Lord, 1980; Wainer, 1990).

The maximum-information selection criterion (e.g., Lord, 1980) is one of the most commonly
used methods of item selection for adaptive testing. For the two- and three-parameter logistic
(2PL and3PL) IRT models, increasing the item discrimination parameterai will cause information
to increase. Lord (1980, Equation 10-6) showed that for the2PL and3PL models, the maximum
obtainable item information is an increasing function of the squared item discrimination parameter
when item difficultybi and person trait level (θ) are optimally matched. For the2PL model,
maximum information is obtained whenbi = θ . It can also be shown that the area under theIIF in
the2PLmodel equalsai . A similar relationship holds for the3PLmodel (Birnbaum, 1968, Equations
20.4.26).

The guessing parameter (ci) for the3PL model contaminates the other two item parameters.ci

reduces the discrimination power of the item and the item is easier thanbi suggests (Samejima,
1984). For example, the maximum slope of the item response function reduces by a factor(1− ci),
and the probability of giving a correct answer for persons withθ = bi increases byci/2. Samejima
(1984) calculated her “discrimination shrinkage factor” and “difficulty reduction index” as functions
of ci .

ci also affects the information of the item. First, information decreases asci increases. Second,
it decreases more for lowθs than for highθs: theIIF becomes asymmetric. Third, maximum
information is obtained whenbi = θ minus a term that increases asci increases.

Information in the 2PL Model

Figure 1 showsIIFs on aθ − bi scale for different values ofai for the 2PL model. Increasing
ai leads to a higher and more peakedIIF. This phenomenon shows that the area under theIIF is
concentrated in a smaller range ofθ values, i.e., the width of theIIF becomes smaller asai increases.
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Figure 1
Item Information Functions

Samejima (1994) showed that the area under the square root of theIIF for the2PL model equals
π(≈ 3.14), irrespective ofai . This implies that in the2PL model theIIFs of two items must cross
at least once. For reasons of symmetry, theIIFs of two items with equalbis but differentais must
cross twice. This is shown in Figure 1.

Figure 1 also shows that an extreme increase inai can lead to a decrease of item information
whenbi is not close toθ . This effect is called theattenuation paradox(Loevinger, 1954) inIRT by
Lord & Novick (1968, p. 368) and Birnbaum (1968, p. 465).

Figure 2 illustratesIIFs for the2PL model as a function ofai for different values of the distance
betweenθ andbi . The fact that an item with a highai is not necessarily the most informative item
and that, therefore, selection of items in an adaptive test should not solely be based on theai , can
also be seen in this figure.

Figure 2
Item Information as a Function ofai
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Purpose

This paper shows which values ofai give maximum information and the magnitude of that
information. The optimal discrimination and the maximum attainable information are functions of
the distance betweenbi andθ for logistic IRT models. The results of this paper are implemented
in a maximum information item selection algorithm for adaptive testing, and a small simulation
study shows that this algorithm is faster than a full bank search.

Derivation of Optimal Item ais

The item response function, or the probability of a correct response to itemi for a person with
θ , of the3PL IRT model is (e.g., Lord, 1980, Equation 4-37)

Pi(θ) = ci + (1 − ci)
exp(Li)

1 + exp(Li)
, (1)

where
Li = ai(θ − bi),
ai ∈ R+ is the item discrimination parameter,
bi ∈ R is the item difficulty parameter,
ci ∈ [0,1) is the guessing parameter,
θ ∈ R is the person trait parameter, and
R andR+ are sets of real and positive real numbers, respectively. The correspondingIIF is

Ii(θ) = a2
i (1 − ci)[

ci + exp(Li)
] [

1 + exp(−Li)
]2

(2)

(e.g., Lord, 1980, Equation 4-43).
If Li = 0, then

Ii(θ) = 1

4
a2
i

1 − ci

1 + ci
. (3)

If (θ − bi) = 0, thenIi(θ) increases asai increases. If, however,ai = 0, the minimum of the
information as a function ofai is reached:Ii(θ) = 0.

Hereafter it is assumed thatLi 6= 0. Therefore the natural logarithm of theIIF,

log[Ii(θ)] = 2 log(ai) + log(1 − ci) − log
[
ci + exp(Li)

] − 2 log
[
1 + exp(−Li)

]
, (4)

is defined becauseIi(θ) > 0 for Li 6= 0.
Lis for which the information, as a function ofLi , reaches a maximum or minimum for fixed

values ofci and(θ − bi) 6= 0 are found by setting the derivative of log[Ii(θ)] with respect toLi

equal to 0, i.e.,

∂ log[Ii(θ)]
∂Li

= 2

Li
− exp(Li)

ci + exp(Li)
+ 2

exp(−Li)

1 + exp(−Li)
= 0 . (5)

Using the fact thatLi 6= 0, this equation can be reduced to

2ci(1 + Li) + [2(ci + 1) + Li ] exp(Li) + (2 − Li) exp(2Li) = 0 . (6)

 at Universiteit Twente on December 9, 2008 http://apm.sagepub.comDownloaded from 

http://apm.sagepub.com


Volume 23 Number 1 March 1999
34 APPLIED PSYCHOLOGICAL MEASUREMENT

The second derivative of log[Ii(θ)] with respect toLi ,

∂2log[Ii(θ)]
∂L2

i

= − 2

L2
i

− exp(Li)

ci + exp(Li)

[
1 − exp(Li)

ci + exp(Li)

]

− 2

{
exp(−Li)

1 + exp(−Li)

[
1 − exp(−Li)

1 + exp(−Li)

]}2

, (7)

is negative for allLi 6= 0 and all values ofci ∈ [0, 1) because in the sum on the right-hand side of
Equation 7 the first and last terms are always negative and the second term is never positive (it is
equal to 0 forci = 0.)

For exactly one value ofLi between−3 and−1, the first derivative of log[Ii(θ)] with respect to
Li (Equation 5) equals 0. SubstitutingLi = −3 andLi = −1, respectively, into Equation 5 yields

∂ log[Ii(θ)]
∂Li

∣∣∣∣
Li=−3

= 2

−3
− e−3

ci + e−3
+ 2

e3

1 + e3
≥ −5

3
+ 2e3

1 + e3
> 0 ∀ ci ∈ [0, 1) , (8)

and

∂ log[Ii(θ)]
∂Li

∣∣∣∣
Li=−1

= −2 − e−1

ci + e−1
+ 2e

1 + e
< − e−1

1 + e−1
− 2

1 + e
< 0 ∀ ci ∈ [0, 1) , (9)

respectively. Equation 7 indicates that∂ log[Ii(θ)]/∂Li strictly decreases asLi increases. Combin-
ing this fact with Equations 8 and 9 shows that for eachci there exists exactly one value ofLi < 0
for which∂ log[Ii(θ)]/∂Li equals 0, and that this value ofLi lies between−3 and−1. Furthermore,
such value ofLi corresponds with a maximum of log[Ii(θ)] andIi(θ), because

∂2log[Ii(θ)]
∂L2

i

< 0 . (10)

Similar reasoning applies forLi > 0. ForLi = 1 andLi = 3, ∂ log[Ii(θ)]/∂Li is always positive
and always negative, respectively. This proves thatIi(θ) has exactly one maximum forLi > 0 and
that this maximum is reached whenLi is between 1 and 3.

The two optimalLi values can be found for eachci value by solving Equation 6 iteratively,
substituting real numbers forLi between−3 and−1, and 1 and 3. Doing so forci values ranging
from 0.0 to .9 with steps of .1 results in finding the values ofLi given in Table 1.

The corresponding optimalai values can also be derived from these optimalLi values. If, for
example,ci = .1 and(θ − bi) = −2, then the optimalai value will be−1.816/−2 = .908. This
value is depicted as an “X” in Figure 3. The optimalai values forci = 0.0 and .9 are shown in
Figure 3 as functions of (θ − bi). All values for0.0 < ci < .9 lie between the values forci = 0.0
andci = .9.

The maximum values ofIi(θ)(θ − bi)
2 in Table 1 can be obtained by substituting the values for

ci and the optimal values forai andLi in Equation 2. Upper bounds forIi(θ) can be found by
dividing these maxima by(θ − bi)

2. For items withci = .1, for example, the information atθ < bi

can be, at most,

[−1.816/(θ − bi)]2
e−1.816(1 + e1.816)2

<
0.222

(θ − bi)2
. (11)

This means that information for items withci = .1 and (θ − bi) = −2 is always less than .055. This
value is shown as an “X” in Figure 4 with the upper-boundIIFs for ci = 0 and .6. Similar plots can
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Table 1
OptimalLi Values and Corresponding Maxima forIi (θ)(θ − bi)

2

(Rounded Up) forci Values Given Fixed (θ − bi ) Values

(θ − bi) < 0 (θ − bi) > 0

ci Li Ii (θ)(θ − bi)
2 Li Ii(θ)(θ − bi)

2

0.0 −2.399 .440 2.399 .440
.1 −1.816 .222 2.417 .392
.2 −1.669 .145 2.434 .346
.3 −1.591 .101 2.451 .300
.4 −1.541 .073 2.467 .255
.5 −1.505 .052 2.482 .211
.6 −1.478 .037 2.497 .168
.7 −1.457 .025 2.512 .125
.8 −1.440 .015 2.526 .083
.9 −1.427 .007 2.540 .041

be drawn forci = .1, .2, .3, .4, and .5. These values all lie between the two plots in Figure 4. For
ci = .7, .8, and .9, the values lie below those ofci = .6.

For thecis in Table 1, the upper-bound values ofIi(θ)(θ − bi)
2, given the value of (θ − bi),

decreases asci increases. This is also the case for other values ofci .
Suppose(θ − bi) > 0, andc2i > c1i . L1i andL2i are defined as the optimal positiveLis for

ci = c1i andci = c2i , respectively. The upper-bound value ofIi(θ)(θ − bi)
2 for ci = c1i is

L2
1i (1 − c1i )[

c1i + exp(L1i )
] [

1 + exp(−L1i )
]2

. (12)

BecauseL1i is defined as the value ofLi for which Ii(θ)(θ − bi)
2 reaches its upper bound,

L2
1i (1 − c1i )

(c1i + exp(L1i ) (1 + exp(−L1i )
2

≥ L2
2i (1 − c1i )

(c1i + exp(L2i ) (1 + exp(−L2i )
2

. (13)

Whenc2i > c1i ,

L2
2i (1 − c1i )[

c1i + exp(L2i )
] [

1 + exp(−L2i )
]2

>
L2

2i (1 − c2i )[
c2i + exp(L2i )

] [
1 + exp(−L2i )

]2
. (14)

Figure 3
Optimalai Value as a Function of(θ − b)
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Figure 4
Upper-Bound Information as a Function of(θ − b)

The right-hand side of Equation 14 is the upper bound ofIi(θ)(θ − bi)
2 for ci = c2i . A similar

reasoning applies for(θ − bi) < 0, which completes the proof.

Conclusions

Three factors determine the value of the upper-bound information. It was just shown that it is
a decreasing function ofci for a fixed value of (θ − bi). It also decreases for increasing values
of (θ − bi)

2, for fixed values ofci , and the sign of (θ − bi), because then the upper bound of
Ii(θ)(θ − bi)

2 is constant. Finally, for fixed values of|θ − bi | andci , it is higher for(θ − bi) > 0
than for(θ − bi) < 0.

For example, for items withci > .1 and(θ − bi) < −2, the maximum information is less than
the maximum information for items withci = .1 and (θ −bi) = −2, which in turn is less informative
than items withci = .1 and (θ − bi) = 2. As a consequence, when items withci ≥ .1 exist, which
are above a person’sθ by at least two units [i.e.,(θ − bi) ≤ −2], thenIi(θ) ≤ .055. For items with
the samecis, but with(θ − bi) ≥ 2, Ii(θ) ≤ .392/4 = .098.

Finally, in Figure 5 the upper-bound information multiplied by(θ − bi)
2 is shown as a function

of ci . These results are based on the results given in Table 1. Interpolation was used for allci

values not shown in Table 1. Note that the exact shapes of the lines were thus not proven.

An Item Selection Algorithm

The relationship betweenθ , bi , and item information atθ can be used for item selection in
adaptive testing. Suppose the task is to select items from an item bank in an adaptive test with
the maximum information criterion. This criterion selects the item with the highest value ofIIF

at a value on theθ scale, usually some provisional estimate, e.g.,θ0. One way to select the most
informative item atθ0 is a full bank search, i.e., to calculate the information of all items at valueθ0.

An Alternative to a Full Bank Search

This algorithm is based on the fact that it is unnecessary to compute the information of all items
in an item bank to determine which item has maximum information. Letcmin be the smallestci

value among all items in the item bank. LetImax,+(cmin) andImax,−(cmin) be the upper bounds
of Ii(θ0)(θ0 − bi)

2 for positive and negative values of (θ0 − bi), respectively, and forci = cmin.
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Figure 5
Upper-Bound Information Times(θ − b)2 as a Function ofci

These upper bounds are shown in Table 1 underIi(θ0)(θ0 − bi)
2 and the values ofcmin are under

ci , e.g.,Imax,+(.1) = .392 andImax,−(.1) = .222. Forci values other than those shown in Table
1, the upper bounds can be determined from Equation 6. Forci = cmin, the two upper bounds of
Ii(θ0)(θ0 − bi)

2 are the highestci values in the item bank, because these upper bounds decrease as
ci increases. The two upper-bound values that correspond to the lowestci values are in some sense
the two upper-bound values for the entire item bank, one for negative and one for positive values
of (θ0 − bi).

In the following,Imax will be Imax,+(cmin) or Imax,−(cmin). For two itemsi andj , the following
can be derived:

If (θ0 − bi)
2 >

Imax

Ij (θ0)
, thenIi(θ0) < Ij (θ0) . (15)

This follows from

(θ0 − bi)
2 >

Imax

Ij (θ0)
⇔ Ij (θ0) >

Imax

(θ0 − bi)2
(16)

and

Ii(θ0)(θ0 − bi)
2 < Imax ⇔ Ii(θ0) <

Imax

(θ0 − bi)2
. (17)

The left-hand side of Equation 9 follows from the definition ofImaxas an upper bound ofIi(θ0)(θ0−
bi)

2.
When it is determined that an itemj has a certain informationIj (θ0), then all itemsi with positive

θ0−bi and(θ0−bi)
2 > Imax,+(cmin)/Ij (θ0) or negativeθ0−bi and(θ0−bi)

2 > Imax,−(cmin)/Ij (θ0)

will have less information than itemj , regardless of the values ofai andci ≥ cmin.

The Algorithm

The algorithm has the following initialization steps:
1. Order theN items in the item bank according to their difficulties:b1 < b2 < . . . < bN .
2. Determine the smallest value ofci in the item bank:cmin.
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3. Compute the constantsImax,+(cmin) andImax,−(cmin).
If θ0 is a provisional estimate after the administration of a set of items in an adaptive test, then
the selection of the next item with maximum information onθ0 from the set of items not already
included in the test consists of the following steps:
1. Search for itemj with bj equal to the smallest positive difference (θ0 − bj ) among all items.

If θ0 < b1 or θ0 > bN , then itemj is the easiest or the most difficult item, respectively.
2. Search for itemsi in increasing order of|θ0 − bi |, for positive values of (θ0 − bi).

If (θ0 − bi)
2 > Imax,+(cmin)/Ij (θ0), then continue. Otherwise, computeIi(θ). If Ii(θ0) >

Ij (θ0), then setj equal toi, and continue the search.
3. Search for itemsi in increasing order of|θ0 − bi |, for negative values of (θ0 − bi).

If (θ0 − bi)
2 > Imax,−(cmin)/Ij (θ0), then end the search. Otherwise, computeIi(θ). If

Ii(θ0) > Ij (θ0), then setj equal toi, and continue the search with Step 1.
Step 1 can be made more efficient by beginning the search for itemj with an item that is expected to
have a difficulty close tobj . Note that in Steps 2 and 3, the indexj represents the most informative
item that is eventually administered to the examinee. The answer to this item is scored, and the
examinee’sθ is re-estimated. Itemj is then removed from the item bank.

This search process uses only a part of the item bank, i.e., information is computed only for
items with relatively small values of(θ0 − bi)

2. For that reason, item selection will be much faster
with this algorithm than with a full bank search.

A Simulation Study

To establish the relative speed of this item selection algorithm, a simulation study was performed
in which the algorithm was compared to the algorithm with straightforward calculation of the
information of all items in an item bank. The maximum information criterion was used to select
items for both algorithms. This means that exactly the same items, in the same order, were selected
by the two algorithms for each test. The algorithms differed only in their computational (CPU)
times. The simulations were performed using a program written in Borland Pascal 7.0 and were
run on a 486-DX2 66 MHz computer.

Design. Adaptive tests of 30 items were simulated for seven values,θ = −3, −2, −1, 0, 1, 2,
and 3. These simulations were repeated for three different item banks. Each item bank contained
200 items. The distributions of theais andcis were uniform for each bank. Theais were uniformly
distributed between .5 and 2, i.e.,ai ∼ U (.5,2), and thecis between .1 and .3, i.e.,ci ∼ U (.1, .3).
The three item banks differed only in their distributions ofbi . One bank had a uniformU (−3,3)
distribution ofbi ; the other two were normally distributed with a variance of 1 or 3. Thus, the
distributions ofbis wereU (−3,3),N(0,1), andN(0,3), respectively. For each combination ofθ

and item bank, there were 100 replications.
Results. Figure 6 shows theCPU time used to select 30 items in 100 tests, as a function ofθ ,

for the two algorithms and the three item banks. The three lines at the top of Figure 6 show theCPU

time needed to calculate the information of all items in the bank not already included in the test.
The algorithm improved item selection by a factor between 1.5 and 6. For a uniform distribution of
thebis, the relative speed did not depend onθ . But for the item banks with normally distributedbis,
speed was dependent onθ . For θ = 0, CPU time was relatively high because there were relatively
many items with abi in that region. Therefore, in these cases the information had to be computed
for relatively many items.

The highCPUtimes for extreme negativeθs for theN(0,1) distribution ofbis can be explained
as follows. Thebis were thinly spread around−3. The information of the most informative item
j in the search process was usually not very high, because most of the time(θ0 − bj ) < 0 and
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Figure 6
Total CPU Time for Two Maximum Information Item Selection

Algorithms for 100 30-Item Adaptive Tests Using Three 200-Item Banks

|θ0 − bj | was large. Therefore, the range ofbis that were more informative than itemj was rather
large. On the other hand, for extreme positiveθs, theCPU times were much lower because the
information for itemsj with large distances betweenθ0 andbj was higher for(θ0 − bj ) > 0 than
for (θ0 − bj ) < 0. Note that for theN(0,3) distribution, thebj values were spread out much more
than for theN(0,1)distribution; thus, this effect did not occur.

Discussion

One application of the algorithm proposed here is an adaptive testing procedure in which the
test is constrained with respect to its content. In such cases, the use of information tables (Thissen
& Mislevy, 1990, pp. 116–117) is virtually impossible because items are generally selected from
changing subsets in the bank. Stocking & Swanson (1993), for example, have developed a weighted
deviations model for constrained item selection in adaptive testing. Swanson & Stocking (1993)
present a heuristic for solving this model for very large numbers of constraints that gives a subopti-
mal solution because of the complexity of the selection procedure. Furthermore, exercising control
of item exposure can lead to the practice of searching for a group of nearly optimal items each
time an item is selected for administration. Because time often plays a critical role in constrained
item selection procedures, it may be worthwhile to investigate the possibility of incorporating the
algorithm proposed here into Swanson and Stocking’s heuristic or other heuristics for item selection
procedures for constrained adaptive testing. Another possible need for quick alternatives to a full
bank search may arise in applications of adaptive testing with frequently changing banks, due to
the replacement of obsolete items or to the use of rotating banks introduced to secure item content.
In such cases, a quick item selection algorithm is a good alternative to the practice of frequently
recalculating and replacing information tables.

Conclusions

Whenbi andθ are not optimally matched, the optimalai in logistic item response models is not
its maximum value. It has been shown here that the optimalai is inversely related to the distance
betweenbi andθ , and it was determined thatai provides the most information at certain points
on thebi − θ scale. The corresponding maximum information is inversely related to the squared
distance betweenθ andbi .
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The relation between this distance and an upper bound on information was used in an algorithm
for the maximum information item selection criterion for adaptive testing. In a small simulation
study, this algorithm was 1.5 to 6 times faster than a full bank search. Because much faster
algorithms than a full bank search are being used in practice, further research is needed to compare
this algorithm with those methods.
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