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Due to previous exposure o f  items in adaptive testing, items may become known 
to a substantial portion o f  examinees. A disclosed item is bound to show drift in 
the item parameter values. In this paper: it is suggested to use a statistical 
quality control method for  the detection o f  known items. The method is worked 
out in detail f i n  the I-PL attd 3-PL models. Adaptive test data are used to 
re-estimate the item paranteters, attd these estimates are used in a test o f  
parameter drift. The method is illustrated in a mmtber o f  simulation studies, 
including a power study. 

One of the major problems in computer adaptive testing (CAT) is security. If 
adaptive testiqg items are administered to examinees on an almost daily basis, 
alter a while, some items may become known to new examinees. In an attempt 
to reduce the risk of overexposure several exposure control methods have been 
developed. These procedures have in commoq that they prevent the items from 
being administered more often than desirable. Typically, this goal is reached 
through modifying the item selection criterion such that the psychometrically 
optimal items are not always selected. Examples of methods of exposure control 
are the random-fi'om-best-n method (see, e.g., Kingsbury & Zara, 1989, pp. 
369-370), the count-down random method (see, e.g., Stocking & Swanson, 
1993, pp. 285-286), and the method of  Sympson and Hetter (1985; also see, 
Stocking, 1993). With relatively low exposure rates, items will probably become 
known later than with high exposure rates. Still, sooner or later some items may 
become known to a part of the future examinees. 

In this paper, it is suggested to use a method of  statistical quality control, the 
so-called CUSUM charts, to detect possibly known items. After detection such 
an item can be removed from the item bank. The methods proposed in this paper 
are primarily focused on parameter drift due to item disclosure. However, 
parameter drift may also occur as a result of  differences between the pretest and 
the operational phase. One might think of a change in the mode of preseqtation 
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(computerized or paper-and-pencil administration) as well as of  a change in the 
motivation of  the respondents. However, the method proposed below entails a 
one-sided test that the item is becoming easier and is losing its discrimination. 
The method will have power for parameter drift fitting this description, and not 
for parameter drift in the opposite direction. 

Two IRT models will be considered, the I-PL and the 3-PL model. In practical 
situations, the choice of  a mode[ is often related to the number of respondents 
available for parameter estimation. Lord (1983) has shown that for small sample 
sizes (under about 500) the parameter estimates in the 2- and 3-PL models 
become inaccurate, and in these cases the I-PL model is to be preferred. For 
larger sample sizes, however, the 2- and 3-PL models are preferred for their 
greater flexibility, which generally results in better model fit. 

This paper is organized as follows: In the next section, the effect of item 
disclosure on the item parameters will be described as parameter drift. It will be 
shown that tests for parameter drift are special cases of  tests for item bias or 
differential item functioning (DIF). Then it will be explained how the CUSUM 
chart can be used for the detection of disclosed items. Finally, the method is 
illustrated in a number of simulations, and a power study is presented. 

Item Parameter  Drift 

If an item is known by a fair  number of respondents, the item follows a 
different item response curve than it is supposed to. Assume that an item known 
in advance is answered correctly with probability one. Then the following 
consequences for parameter estimates can be derived. 

The I-PL Model 

Assume that item i is known by a proportion of  c~ of the respondents and that 
the original item response curve describing the probability of a correct response 
as a function of  the proficiency parameter 0 is P~(0). Then the probability of a 
random examinee with proficiency level 0 giving a correct response to item i is 

ci + (I - c i)  P~'(O), ( I )  

with 

exp (0 - 1311) 
P'i'(o) = (2) 

I + exp(O - 13~i~) ' 

and t3 o the original difficulty parameter of  item i. Note that (I)  is equivalent to a 
3-PL item response curve with guessing parameter c i and a discrimination 
parameter equal to one. Under these assumptions, the fact that respondents know 
an item in advance leads to an apparent shift of its guessing parameter away 
fi'om zero. Also, tile item p-value will increase due to the examinee 's  advance 
knowledge of the item. In the I-PL model, an increase of an item p-value 
implies a decrease of  the value of  the i tem's difficulty parameter. Before 
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describing how to detect parameter drift, the effect of  respondents knowing 
items in advance on the difficulty parameter is derived. 

Samejima (1984) gives a I-PL item response curve that is close to the 3-PL 
item response curve given in (1). The difficulty parameter 13~ of this 1-PL item 
response curve. 

exp(0 - 13~) 
= O )  

1 + exp(0 - 13])' 

is derived equating (3) a n d ( I ) f o r 0 = 1 3 ° . S o f r o m P ] ( 1 3  °) = c i + ( I  - ci) Pi°(13i).° 

= I o g i t  I I it follows that 13o_ 13i (~ + ~ci) ,  which results in 131 = 13o_ log 
I 

I - c i }  and 

13] 13'i' - 2c , .  

Hence, if I-PL curves are used to describe item responses, and percentage q of 
the respondents knows item i in advance, the difficulty parameter seems to have 
decreased by approximately 2q. 

The 3 - P L  M o d e l  

To derive the impact of item disclosure in the 3-PL model, a probabilistic 
interpretation of the 3-PL model as a response model must be given first. The 
probability of a correct response of a random respondent with p,'oficiency 
parameter 0 is given by 

Pi(O) = ~i + (I - "yi)Oi(O), (4) 

with 

exp(o~i(0 - 13i) ) 
qJi(0) = I + exp(%(0 - 13/))' 

where ¢x i, 13i, and ~'i are the discrimination, diffict, lty and guessing parameter, 
respectively. To derive an interpretation of the model, rewrite (4) as 

Pi(0) = ~,,(I - q~i(0)) + Oi(0). (5) 

This can be interpreted as a model where there is a probability tlq(0) that the 
respondent can give a correct response using the relevant proficiency, a prob- 
ability 1 - t~i(0) that the respondent cannot give a correct response using the 
relevant proficiency, and guesses with 3'i as the probability of a correct response. 
Note that it is assumed that conditionally on the case where the respondent can 
give a correct response using the relevant proficiency, the correct response is 
given with probability equal to one. So the total probability of a correct response 
is a sum of  a term ~i(0) and a term Wi(I - ~ ( 0 ) ) .  Now suppose that the item 
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has become known to a proportion of c; of the respondents, and all Ihese 
respondents give a correct response with probability equal to one. Then using 
(5), it follows that the probability of  a correct response becomes 

c i + (1 - c i ) [~ l i ( l  - ~i(0)) + @i(0)], 

which can be rewritten as 

(C i "t- ~t i "at" Ci~li) "4" ( I  - -  (C i 4- ~ i  "4- CiVil) ) q~i(O). (6) 

Notice that (6) entails a 3-PL model with guessing parameter c, + "y; + c,.',/,, and 
discrimination and difficulty parameters equal to the original parameters a i  and 
[3;, respectively. So the disclosure of the item has translated itself in an augmen- 
tation of the lower asymptote of the item response curve. 

Detection of Parameter Drift With the CUSUM Charts 

Parameter drift has much in common with DIE In bolh situations, one 
distinguishes between two or more groups of respondents. In DIF studies, one 
group serves as a reference group, and whether or not the response behavior of 
focal groups differs from that of the reference group is evaluated. In studies of 
parameter drift, one may distinguish a calibration phase from a CAT phase and 
evaluate whether or not response behavior differs. Therefore, it may come as no 
surprise that the statistical tools for the two kinds of studies are related. Lord 
(1980, Chap. 14) suggests a test lbr DIF to determine whether or not item 
parameters differ for two groups of respondents. The same test can be used to 
test whether the item has become easier, that is, to test the null hypothesis 
[3~ - [31'-----0 against the alternative [3] - [3ci' < 0, where [3° is the parameter 
value in the calibration phase and [3] is the parameter value during the adminis- 
tration of  the adaptive test. Assuming that [3o is calibrated (perhaps re- 
calibrated after the first use of  the item in the adaptive les t )  as ~ / ,  with standard 
error o-(13~;~), the test statistic suggested by Lord becomes 

f o_ f31 (7) 

where 13] and cr([3]) are the difficulty parameter estimate and its standard error 
based on data collected during the administration of  the adaptive tests. Since [31) 
and [3] are estimated using independent samples, the estimates do not covary and 
the standard error of the difl'erence 13'i' - [3,J" can be computed as the denominator 
of  (7). 

The test statistic given in (7) fits in the general framework of Wald-type tests 
(Glas & Verhelst, 1995, pp. 89-92) and has an asymptotic standard normal 
distribt, tion. 1,1 the framework of DIF studies, this test is not mt, ch used; most 
practitioners prefer using the ManteI-Haenszel procedu,'e (Holland & Thayer, 
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1988), though Fischer (1995) points out that this approach has some serious 
shortcomings in situations where the I-PL method does not hold. However, it is 
beyond the scope of this paper to delve deeper into this matter; for more 
information on methods for detection of DIF, see, for instance, Camilli and 
Shephard (1994). 

In this paper, it is suggested that the cumulative stun (CUSUM) chart be used 
for testing pa,'amete," drift. The procedure can be viewed as a sequential series of 
Wald tests. The CUSUM chart is an instrument used in statistical quality control 
(see, e.g., Wetherill, 1977) for detecting changes in product features during the 
production process. It is used in a sequential statistical test, where the null 
hypothesis of no change is never accepted. The test always continues until the 
null hypothesis of no change is rejected. It is only a naatte," of how many samples 
it takes until either a certain change is detected or the null hypothesis is 
erroneously rejected. In other words, the power of the test is a function of  the 
number of  samples. For quality control of items in an adaptive testing item pool, 
this method can be based on cL, mulated deviations of difficulty parameter 
estimates from the value found in the calibration study. 

Description of the CUSUM Procedure 

Because the procedure is conceptually simpler for the I-PL than for the 3-PL, 
the CUSUM procedure will be described for the former model first. Consider a 
CAT program where the item parameters are re-estimated every once in a while, 
for example, each time the test has been taken by N respondents. It is assumed 
that in this period item i has been administered n i times. Each new difficulty 
estimate is based on the item responses collected after the previous re- 
estimation. The estimate found at thej-th re-estimation, 13.i i, is compared with the 
value of the estimate found in the intial calibration, that is, 13 °. For the I-PL 
model, a one-sided cumulative stnn chart can be based on the quantity 

{ V ~li)--~i - k ' O }  ' (8) -f- 0"2([3i) 

where k is a constant reference value indicating the size of  the standardized shift 
considered worth charting. In the sequel, k will be referred to as the effect size. 
The cumulative sum chart starts with 

Si(O) = O, 

and the null hypothesis is rejected as soon as 

Si( j )  > h, (9) 

where It is some constant threshold valt, e. 
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Generalization of the procedure to the 3-PL model is complicated by a 
problem specific to CAT. The problem is that guessing may be prominent in the 
calibration phase, while it may occur less frequently in the CAT phase, because 
there the items are tailored to the proficiency level of the respondents. There- 
fore, it will be assumed that the guessing parameter is fixed to some plausible 
constant, say, to the reciprocal of the number of response alternatives available. 
Since the guessing parameter is fixed, augmentation of the lower asymptote of 
the item characteristic curve, as modeled in (9), will now be translated into 
lowering of the item discrimination or difficulty parameter, or both. For the 3-PL 
model with fixed guessing parameter, the procedure starts with the parameter 

O O estimates a i and [3 i originally obtained. Then, for new batches of respondents 
j = I . . . . .  J taking the adaptive test. the alternative hypothesis entails that the 
item is becoming easier and is losing its discriminating power. Therefore, the 
simultaneous null-hypothesis is ~/-  c~'i' >- 0 and [3/- [3, 0 --> 0 fo r j  = I . . . . .  J. 
A cumulative sum chart will be based on the quantity 

- - k , ,  0 . 
s , (u )  = max S (g- + s (ao_ a4) + S (l  -1 41 a ° -  a i )  

I Since o and a ,  are estimated using independent samples, the standard error 

Se(&'] - &~) can be computed as the square root of crZ(&'i?) + o-z(&~). Further, 

within a sample the estimates of  discrimination and difficulty parameters are 

highly correlated. Therefore, in (10) the difference [3~] - [3/is weighted with the 

conditional standard error Se((5? - 13]1 60 - &J), which is computed as the 
square root of o-2([3~ ' )  + cr=([3/) - (crZ(&°,.,~'/) + ~rZ(&/,[3/))/(crz(&,°.)+ crz(&/)), 

^" , , r e  where cr(a~,[~.°) and the covariance of  the estimates of the dis- 

crimination and difficulty parameters obtained in the calibration sample and the 
j-th CAT sample, respectively. More details on the computation of these standard 
errors will be given below. 

Parametelw of tile CUSUM Procedure 

The values of  k, h, and N determine the success of the procedure. The choices 
of these values are often based on the run length distribution or the average run 
length (ARL) for the in-control state (no parameter drift) and a specific out-of- 
control state (the amount of drift of the parameter value to be detected). The run 
length is defined as the number of samples, that is, the number of  times the 
difficulty parameter of the item is re-estimated, taken before the chart indicates a 
lack of control, a drift of the difficulty parameter. Obviously, the ARL of the 
in-control state should be large, whereas the ARL of the out-of-control state 
should be small. Montgomery (1991, p. 295) gives recommendations for the 
values of  these parameters. He suggests using k ~- I/2 and h is four or five. 
These values provide a CUSUM chart with good power (in terms of ARL) 
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against the alternative hypothesis of a shift in item difficulty level of a size 
approximately one standard deviation of  the sample variable t~sed in the 
CUSUM chart. In (9) tiffs standard deviation is equal to one, because one 
normalized variable is used. In other words, the variable [3~'- [3,J. is divided by 
its standard deviation. The suggestions should be viewed as rules of thunlb that 
can be adapted if the resulting run length distribution is not considered satisfac- 
tory. For the test for the 3-PL model, one extra normalized decision variable is 
employed: the variable involving the discrimination indices. To have power 
against a shift of one standard deviation of both normalized decision variables in 
the direction of  the alternative hypothesis, a value k = I suggests itself. Depend- 
ing on the effect size the practitioner is interested in, other values are of course 
also possible. Below it will be shown how a suitable value of h in a concrete 
situation can be found by performing a simulation study. 

Estimation o f  Item Parantetelw attd Standard Errors 

For the CUSUM chart approach described above new estimates of  the diffi- 
culty parameter are needed. For the I-PL model, standard item parameter 
estimation techniques are conditional maximum likelihood (CML) and marginal 
nlaximum likelihood (MML) (see, for instance, Molenaar, 1995). However, Glas 
(1988) shows that CML is not feasible for rnulti-stage and adaptive testing 
designs. Further, it is shown that MML can be used for the estimation of item 
parameters in these response-contingent designs in a very broad class of  [RT 
models. For the estimation of the item parameters in these designs, the process 
causing missing responses can be ignored and the MML estimation equations 
have the same form as in the case of a fixed, non-response-contingent design 
(Glas, 1988; Mislevy & Wu, 1988, 1996). However, ['or sampling inferences, 
such as computation of  standard errors, an adaptive test design cannot be 
ignored (see, lbr instance, Little & Rubin, 1987, p. 88). Tiffs implies that in these 
cases the asymptotic variance of the MML parameter estimator is not equal to 
the reciprocal of Fisher information. In the present paper, it is assumed that 
neglecting this problem introduces only a minor additional bias in the standard 
error estimator. The simulation studies presented below corroborate that assump- 
tion. 

Theretbre, standard errors are computed as follows. Let the item administra- 
tion variable d,,~ take the value one if item i was administered to respondent n 
and zero if this was not the case. If d,,~= I, x,,; is the binary response of  
respondent n to item i, if d m = 0, it will be assumed that x,,~ is equal to some 
arbitrary constant. Let x ,  and d,, be the response pattern and the item adminis- 
tration vector of  respondent n, respectively. It will be assumed that proficiency is 
normally distributed. Further. the groups of  respondents j = I . . . . .  J may have 
their own proficiency distribution. So let g(. ;~Jj¢,,~,~rj¢m) be the density of 0,,, j(n) 
is the index of  the j-th proficiency distribution. Further, ~ is a vector of all 
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item and proficiency distribution parameters in the mode[. The log-likelihood to 
be maximized in MML can be written as 

L(~; X, D) = Z,, log p (x,, I d,,;~) 

= ~,,Iogfp(x,,,O,, I d,,;~)dO,, 
= Y,, IogJ;)(x,, I d,,,O,,,ot,~,'y)g(O,, ;~jl,,),~rj(,,))dO,,, 

where X stands for the data matrix and D for the design matrix. Mislevy (1986) 
suggests that the asymptotic covariance matrix of  the parameter estimates be 
computed by inverting 

H(~,~) -~ ~,,h,,(~)h,,(~)' (11) 

with 

and 

0 
h,,(f;) = c-~log p(x,,  I d,,;~) = E(b,,(~)lx,, ,d,, ,~), 

b,,(~) =/--~log p(x,,,O,, [d,,;~). 

Glas (1999) shows that (11) is an approximation of the expected Fisher informa- 
tion matrix. In the examples given below, this matrix was computed using the 
MML parameter estimates issued by Bilog-MG (Zimoski, Muraki, Mislevy, & 
Bock, 1996). 

The CUSUM method entails independent parameter estimates in different 
groups. The scales obtained in the groups must be identified in such a way that 
the identification restrictions interfere as little as possible with the conclusions 
on parameter drift. When the proficiency distributions of the groups differ, 
which they usually do, fixing the parameters of the proficiency distributions of 
the groups leads to a shifting of  the two latent scales, which will result in 
erroneous conclusions. Using the parameters of one of the items to identify the 
scales is even more problematic, especially when the item used happens to be 
biased itself. Therefore, in the framework of a discussion of  a Wald test for DIF 
in the Rasch model, Glas and Verhelst (1995, p. 91) argue that the best way to 
identify independent estimates is to rescale the parameter estimates in each 
group in such a way that the sum of the estimates is zero. For the 3-PL model, an 
analogous approach entails imposing the restrictions that both the sum of the 
difficulties and the sum of the logarithms o1' the discrimination parameters are 
zero. These parameter transformations also imply a transformation of the cova- 
fiance matrix of the estimates; for details, refer to Glas and Verhelst (1995, p. 
92). 
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An Illustration 

In this section, the rnethod is illustrated for the I-PL model in a number of  
simulation studies. In the next section, a more systematic power study will be 
presented for the 3-PL model. The method suggested above was applied to a 
simulated item pool, including items previously known by a certain percentage 
of  the respondents. The bank consisted of I-PL items, with difficulty levels 
drawn from the standard normal distribution. From the 150 items in the pool, 15 
randomly chosen items were assumed to be known. Three items were assumed 
known by 25% of the respondents, three by 20%, three by 15%, three by 10%, 
and three items by 5% of the respondents. 

Calibration data were generated according to the lbllowing design. The items 
were divided into six booklets. Each booklet consisted of 50 items. The first 
booklet consisted of  items I to 50, the second, items 26 to 75, the third, 51-100, 
the fourth, 76-125, the fifth, 101-150, and the sixth, 126-150 and 1-25. So, 
each item figured in two booklets. Each respondent was presented with one 
booklet. Sample sizes of 100 and 500 respondents per booklet were used. So, in 
total, 600 and 3000 respondents were used for calibration, and as each respon- 
dent was given one third of the pool, each item was presented to 200 or 1000 
respondents, respectively. The proficiency distributions of  the six groups of  
respondents were assumed to be normal with standard deviation one, and with 
means varying from -0 .25  to +0.25, with a difference of 0. I between successive 
groups. 

Using these data, MML estimates of the difficulty parameters were computed 
using a subroutine of the OPLM-package (One parameter logistic model; Ver- 
heist, Glas, & Verstralen, 1994), called OPMML. This program computes both 
the estimates of  the item and proficiency distribution parameters and their 
standard errors. Separate normal distributions were assumed for the proficiency 
parameters in each group. 

Adaptive Test Design 

In the adaptive testing phase, respondents' proficiency parameters were drawn 
from a normal distribution with mean 0.2 and variance I. The responses were 
generated according to the I-PL model (2) for the items assumed to be unknown 
to the respondents. The responses to the previously known item were generated 
according to the 3-PL model given in (I). In the adaptive testing phase, the 
examinee's proficiency was estimated using weighted maximum likelihood 
(Warm, 1989). The selection of the first item was made with the proficiency 
estinaate equal to zero. The maximum-information criterium was used for item 
selection. Since a I-PL item bank was used. an optimal item was an item with 
difficulty estimate closest to the current proficiency estimate. 

Expostlre Control 

In this study, exposure of the items was controlled through random item 
selection (see, e.g., Kingsbury & Zara, 1989). Each time the four most informa- 
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i.~ 200 

1 17 33 49 65 81 97 113 129 145 
9 25 41 57 73 89 105 121 137 

~ n  

FIGURE I .  An example o f  mean item e.~7)osure where e,~posure is the number o f  times 
the item is exposed in I000 tests (77re mean is taken over 25 replications.) 

tive items were selected, and from this set an item was randomly chosen to be 
administered. Selected items were not selected again. As a result, the exposure 
rates of the individual items were not far from the average exposure rate of 20% 
(30 items in the test, 150 items in the pool). 

In Figure I, an example of the exposure distribution is given. Items are 
ordered according to the difficulty values found in the calibration study. The 
exposure rates are computed as the mean over 25 replications, where every 
replication consisted of 1000 adaptive tests. About half of the items had an 
exposure rate of about 25%, and an exposure rate of less than 10% was found 
for less than 10% of the items. 

The C U S U M  Procedure  

The CUSUM procedure was carried out with parameters k = I/2, h = 5, and 
N = 1000. Twenty-five batches of 1000 respondents were generated; in every 
batch, the parameters were t'e-estimated using MML and these estimates were 
compared with the values obtained in the initial calibration. Finally, the normal- 
ized differences were added to the cumulative sums (8). 

In Table I, the minimuna, mean, and maximum values of the estimates of the 
standard errors used in the CUSUM chart are shown. As the values of the 
parameters h and k were chosen to provide a CUSUM chart with power against 
the alternative of a shift in difficulty of one standard error, the last line in the 
table indicates the size of the parameter shifts for which the current CUSUM 
chart can be used. 
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TABLE I 
Estimates of  Standard Errolw of Item Parameter l£stimato~w 

Sample Size 100 500 

Standard Error Min Mean Max Min Mean Max 

{r(137) 0.28 0.29 0.37 0.12 0.13 0.15 

,r(13~) 0.14 0.18 0.44 0.14 0.18 0.40 
2 ^ ( ) "  ^ X/(.r (13~} - (r2([31) 0.31 0.34 0.57 0.18 0.22 0.43 

In Figure 2, the observed detection rates of the items are shown as a function 
of  run lengths. Items were divided into groups with the same percentage of 
disclosure: five groups of three items with percentages ranging from 5% to 
25%, and one group of 135 items not known by any respondents. As the quality 
control procedure was repeated three times for each of the two calibration 
sample sizes, the detection rates were calculated over three replications of three 
(known) or 135 (unknown) items each. 

Because the results in Figure 2 are based on a small data set, the conclusions 
are only tentative. The following observations can be made. The items with 
c~ = 0.2 and 0.25 were usually detected soon. Items with c~ = 0.1 and 0.15 were 
usually detected, but detection was sometimes not possible within 25 runs. The 
low detection rate for the items with c~ = 0.15 in Figure 2b can be explained by 
the high estimate of the standard error for one of the three items. Items with 
c~ = 0.05 were usually not detected within 25 runs. The type I error after 25 runs 
was about 7.5%. Finally, the differences between the two item pools were rather 
small. 

A Power Study 

[n this section, a simulation study of  the power of the CUSUM test for the 
3-PL model will be presented. As mentioned above, the power of the CUSUM 
procedure is governed by choosing tin effect size k and a critical value h. A 
practical procedure to set the parameters of  the CUSUM procedure may be the 
following. First, the practitioner must set an effect size of  interest. Then, when 
the pretest data have become available, CAT data can be simulated using the 
parameter estimates of  the pretest stage without assuming parameter drift. Fi- 
nally, CUSUM statistics can be computed to find a value of h such that an 
acceptable Type I error rate is obtained. 

This is illustrated in a simulation with the following design. The item bank 
consisted of 100 items, with difficulties equally spaced on the interval - 1.00 to 
1.00 and discrimination parameters drawn from a log-normal distribution with 
mean zero and standard deviation equal to 0.10. The guessing parameter was 
fixed at 0.20. Proficiency parameters were standard normally distributed 
throughout the study. For the pretesting phase, four groups of 250 testees each 
were generated. Each group responded to 50 items: the first group responded to 

383 
 at Universiteit Twente on January 8, 2016http://jebs.aera.netDownloaded from 

http://jebs.aera.net


Veerkamp and G/as 

(a) 

12' 

1.0' 

i 
.8' 

.4' 

2' 

0.0 

I ,' ~ J  

,J i _l , I ° t - . ~ " -  

' I , i T-- ~ - -  
i i 

T-' I ~"" 
i 

i i ~ j  ~ - ~ - ~ - o - o  - I  

' L ~ _  i i 

3 5 7 9 1-1 I-3 I-5 1-7 1-9 21 ~ ~ 

P, Jn Le~ 

(b) 

1.2' 

1.0' 

~ '  

~ JS' 

.4' 

2' 

0.0 

i 
_ J  

I , 

i i 

~ 1  

t - ,  1- 
I I 

3 5 7 9 11 13 15 17 19 21 23 25 

FIGURE 2. The observed relative frequency (~ detecting all item as known, as a 
.[hnction of the run length, .['or the items known by 25% (long slashed line, marked by 
open circles), 20% (short slashes, squares), 15% (long slashes, triangles), I0% (short 
slashes, diamonds). 5% (long atul sltort slashes), and 0% (solid line), of the re,wondents 
(hems were taken ]~'om two item pools that only dtffered in their calibration desigH, 
namely with I00 (a) attd 500 (b) respondents per booklet.) 
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TABLE 2 
Type I ertvr rate of  CUSUM test after 5 iterations (20 replications) 

Efl~ctSize h = 2.5 h = 5.0 h = 7.5 h = 10.0 

k = 0.50 17 04 01 00 
k = 1.00 09 06 01 00 
k = 2.00 01 00 00 00 

the items I to 50, the second group to 26 to 75, the third group to 51 to 100, and 
the fourth group to the items I to 25 and 76 to 100. So in the pretest design 
every item was presented to 500 respondents. Next, four batches, j = 1 . . . . .  4, 
of 1000 CAT simulees were generated. Every testee responded to 20 items. In 
this study, respondent parameters were estimated by their posterior expectation 
using a standard normal prior, and item selection was by the maximt, m informa- 
tion criterium. Difficulty, discrimination, and proficiency distribution parameters 
were estimated by MML; the guessing parameter was fixed at its true value 0.20. 
Finally, CUSUM statistics Si( j ) ,  j = 1 . . . . .  4, were computed. 

This procedure was carried out for three effect sizes k and four thresholds h; 
the values are shown in Table 2. In the table, the percentages of items flagged in 
the fourth iteration ( j  = 4) of the procedure are shown for the various combina- 
tions of k and h. Since no parameter drift was induced, the percentages shown 
can be interpreted as Type 1 error rates. For an effect size k = 0.50, it can be seen 
that a value h = 2.5 resulted in flagging of 17% of the items, which is too high. A 
value h = 5.0 resulted in 4% flagged items, which might be considered an 
acceptable Type I error rate. Also for an effect size k = 1.00 a critical value 
h =5 .0  seems a good candidate. Finally, for k=2 .00 ,  all four values of h 
produced low Type I error rates. So it must be concluded that, given the design 
and the sample size, detection of parameter drift with an effect size of two 
standard deviations may be quite difficult. This result will be further studied in 
the next set of simulations where model violations were introduced. 

These studies pertain to a set-up similar to the previous one; however, in the 

present case parameter drift was imposed on every fifth item, so that 20 of the 
100 items were affected. Parameter drift was imposed in six conditions: in the 
first three, items were known to 5%, 10%, and 20% of the respondents, respec- 
tively, and in the next three the difficulty parameter changed from the initial 
value by -0 .20 ,  - 0 . 4 0  and -0 .60 ,  respectively. The results on the .detection of 
these items are shown in Table 3. For the simulation studies with effect sizes 
k = 0.50 and k = 1.00, a critical value h = 5.0 was chosen, for the studies with 
effect size k = 2.00, the critical value was h = 2.5. For every combination of 
effect size and model violation 20 replications were made. The last four columns 
of Table 3 give the percentages of the affected items detected by the CUSUM 
method. As expected, the highest percentages of detection were obtained for the 
smaller effect sizes k = 0.50 and k = 1.00 and the larger model violations. The 
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TABLE 3 
D e t e c t i o n  o f  p a r a m e t e r  dr~fi u n d e r  v a r i o u s  m o d e l  v io la t ions  (20  r ep l i ca t i ons )  

Effect Model Iteration 
Size Violation j = I j = 2 j = 3 j = 4 

k = 0.50 c i = 0.05 O0 O0 05 15 
c~ = 0. I 0 00 05 10 20 
c i = 0.20 00 30 75 85 

k = 1.00 c i = 0.05 15 25 30 45 
c i = 0.10 15 35 55 50 
c i = 0.20 30 75 90 85 

k = 2.00 c; = 0.05 00 05 15 15 
c i = 0.10 05 15 15 20 
q = 0.20 15 30 55 60 

k = 0.50 13 , - 0.20 00 00 10 15 
13, - 0.40 00 15 45 60 
13, - 0.60 05 35 65 80 

k = 1.00 131 - 0.20 00 20 40 35 
13; - 0.40 25 50 55 65 
13i - 0.60 20 75 95 99 

k = 2.00 13i - 0.20 00 00 05 05 
13, -- 0.40 05 10 30 35 
13, -- 0.61) 00 25 75 75 

best  de tec t ion  record  was ob ta ined  by the c o m b i n a t i o n  k = 1.00 and a shift  in 

di f f icul ty  of  - 0 . 6 0 ,  which ,  f o r j  = 4, has an a h n o s t  perfect  de tec t ion  rate of  99%.  

In Table  4, the de tec t ion  rates of  the 80 i tems not affected by pa rame te r  drift  

are shown.  The  last four c o l u m n s  of  this  table  g ive  the pe rcen tage  false a larms,  

that  is, i tems e r roneous ly  f lagged  as drif t ing.  It can be seen that  the pe rcen tage  

o f  false a la rms  r ema ined  re la t ively  low. The  wors t  pe r fo rmances  were  ob ta ined  

for c o m b i n a t i o n s  o f  k = 0 .50 and  k = 2.00 with smal l  v iola t ions ,  such as i tem 

d isc losure  to 5% or  10% of  the respondents ,  or a shif t  in diff icul ty  of  - 0 . 2 0 .  

Bes ides  a re la t ively  low hit-rate,  these  cond i t ions  show a fa l se-a la rm-ra te  of  

app rox ima te ly  10%, which  is re la t ively  high.  

Discussion 

Recent ly ,  exposu re  cont ro l  has rece ived  much  a t ten t ion  in tile l i terature about  

adapt ive  test ing.  The  a im of  exposure  cont ro l  is to preserve  the qual i ty  of  the 

i tem pool. and, consequent ly ,  o f  tile test. Test val idi ty  decreases  when  i tems 

b e c o m e  k n o w n  to the r e sponden t s  in advance .  Exposure  control  dec reases  the 

risk of  i tems b e c o m i n g  known,  but  i tem exposure  can neve r  be ruled out. 

There fore ,  in this paper,  a me thod  to de tec t  known  i tems is proposed.  By 

rout ine ly  re -es t imat ing  i tem pa ramete r s  on the basis  of  adapt ive  test  data and 

c o m p a r i n g  the es t imates  with  the values  found in the initial ca l ibra t ion ,  drift  ill 

the pa ramete r s  o f  k n o w n  i tems can be detected.  T he  me thod  sugges ted  here  is 
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TABLE 4 
Type I e r r m  rate under  various model  violations (20 replications) 

Effect Model Iteration 
Size Violation j = I j = 2 j = 3 j = 4 

k = 0.50 c i = 0.05 00 04 05 13 
c i = 0.10 O0 03 05 06 
c~ = 0.20 00 O0 01 03 

k = 1.00 c i = 0.05 05 13 17 21 
c i = 0.10 03 03 03 06 
ci = 0.20 03 04 06 09 

k = 2.00 q = 0.05 O0 O0 03 O0 
c i = 0.10 03 OI 04 04 
c, = 0.20 00 01 01 01 

k = 0.50 B~ - 0.20 00 00 06 05 
~ - 0.40 OI 06 09 15 
13~ - 0.60 00 00 04 04 

k = 1.00 13~ - 0.20 00 01 03 05 
13i - 0.40 01 04 06 09 
[3~ - 0.60 03 06 10 10 

k = 2.00 [3 i - 0.20 O0 01 03 03 
13i - 0.40 O0 00 03 Ol 
[3 i - 0.60 01 03 04 03 

based  in the so-cal led  c u m u l a t i v e  SLim or C U S U M  char ts  (see, e.g., Wether i l l ,  

1977). With this method ,  any speci f ied  c h a n g e  in the va lue  of  the diff icul ty  

pa rame te r  can be detected.  T he  me thod  is i l lustrated wi th  a s imula ted  e x a m p l e  

and a power  study. Resul ts  show that  the de tec t ion  rate of  the p rocedure  is qui te  

accep tab le  and that  type  I erro," rate is well  under  control .  

Once  pa rame te r  drift  is de tec ted  by the C U S U M  char t  me thod ,  a more  

thorough  analys is  shou ld  a lways  follow. In the first place, the s ign i f i cance  o f  the 

pa ra lne te r  c h a n g e  shou ld  be checked  wi th  the aid of  o the r  statist ical  tests. If  the 

resul ts  aff i rm the first conc lus ion ,  a search for the precise  cause  of  the pa rame te r  

drif t  shou ld  be per formed.  T he  or ig in  of  pa rame te r  c h a n g e  is not necessar i ly  

p rev ious  k n o w l e d g e  of  the r e sponden t s .  For  example ,  Bock,  Murak i ,  and  

Pfe i f f enberge r  (1988)  sugges t  that  the values  of  i tem pa rame te r s  can drif t  w h e n  

the same  i tems are used for a long t ime,  mere ly  because  o f  educa t iona l ,  t echni -  

cal,  and cul tural  changes .  Finally,  it should  be dec ided  whe the r  or not i tems 

de tec ted  can be  used in any  future way. 

R e f e r e n c e s  

Bock, R.D., Muraki, E., & Pfeiffenberger, W. (I988). Item pool maintenance in the 
presence of item parameter drift. Journal  o f  Educat ional  Measurentent.  25, 275-285. 

387 
 at Universiteit Twente on January 8, 2016http://jebs.aera.netDownloaded from 

http://jebs.aera.net


Veerkamp aml Glas 

Camilli, G., & Shepha,d, L. A. (1994), Methods tbr idemifying biased test items. Vol. 4 
of Measurement method~ for the social sciences series. Thousand Oaks, CA: Sage 
Publicalions. 

Fischer, G. H. (1995). Some neglected problems in IRT. Psvchometrika, 60, 459--487. 
Glas, C.A.W. (1988). The Rasch model and multi-stage testing. Jourttal of  Educational 

Statistics. 13. 45-52. 
Glas, C.A.W. (1999). Modification indices for the 2-pl and Ihe nominal response model. 

Psychometrika, 64, 273-294. 
Glas, C.A.W., & Verhelst, N. D. (1995). Testing the Rasch model. In G. H. Fischer & 

1. W. Molenaar (Eds.), Rasch models. Foundations, recent developments attd applica- 
tions (pp. 69-95). New York: Springer-Verlag. 

Holhmd, R W., & Thayer, D.T. (1988). Differential item functioning and the Mantel- 
Haenszel procedure. In H. W~,iner and H. 1. Braun (Eds.), Test validity. Hillsdale, 
N J: Lawrence Erlbaum Associates Inc. 

Kingsbury, G. G., & Zara, A. R. (1989). Procedures for selecting itenls for computerized 
adaptive tests. Applied Measttrentent in Education, 2, 359-375. 

Little, R.J.A. & Rub[n, D. B. (1987). Statistical analysis with missing data. New York: 
Wiley. 

Lord, F. M. (1980). Applications of  item re.wonse theot 3, to practical testing problems. 
Hillsdale, N J: Lawrence Erlbaum. 

Lord, E M. (1983). Small N just[ties Rasch model. In D. J. Weiss (gd.), New horizons in 
testing (pp. 51-61 ). New York: Academic Press. 

Mislevy, R. J. (1986). Bayes modal estimation in item response models. Psychometrika, 
51, 177-195. 

Mislevy. R. J.. & Wu, R K. (1988). Inferring exanlinee ability when some item responses 
are nlissing (Research Report RR-88-48-ONR). Princeton, N J: Educational Testing 
Service. 

Mislevy, R. J. & Wu, R K. (1996). Missing responses and IRTability estimation: Omits, 
choice, time limits, attd adaptive testing (ETS Research Repor[ RR-96-30-ONR). 
Princeton, N J: Educational Testing Service. 

Molenaar, I. W. (1995). Estimation of item parameters, in G. H. Fischer & I. W. Molenaar 
(Eds.), Rasch models: Foundations, recent developments and applications (pp. 
39-52). New York: Springer-Verlag. 

Montgomery, D.C. (1991). hmvduction to statistical quality control (2nd ed.). New 
York: John Wiley & Sons. 

Samejima, F. (1984). Results of  item parameter estimation using Log[st 5 on sire[dated 
data (ONR/RR-84-3). Knoxville, Tennessee: University of Tennessee. 

Stocking, M. L. (1993). Controlling exposure rates in a realistic adaptive testing para- 
dignl (Research Report 93-2). Princeton. N J: Educational Testing Service. 

Stocking, M. L., & Swanson, L. (1993). A method for severely constrained item selection 
in adaptive testing. Applied Psychological Measurement, 17, 277-292. 

Sympson, J. B., & Hetler, R. D. (1985). Cmmwlling item-e.rpoxt~re rates in computerized 
adaptive testing. Proceedings of the 27th annual meeling of the Military Testing 
Association (pp. 973-977). San Diego, CA: Navy personnel Research and Develop- 
ment Center. 

Verhels[, N. D., Glas, C.A.W., & Verslralen, H.H.EM. (1994). OPLM: Computer pro- 
gram and mamml. Arnhem, the Netherlands: CITO. 

388 
 at Universiteit Twente on January 8, 2016http://jebs.aera.netDownloaded from 

http://jebs.aera.net


Detection of Known hems ilt Adaptive Testing 

Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. 
Psychometrika. 54, 427--450. 

Wetherill, G. B. (1977). Sampling in,wection and quality control (2nd ed.). London: 
Chapman and Hall. 

Zimowski, M. F., Mur~lki, E., Mislevy, R. J., &Bock, R. D. (1996). Bilog MG: Multiple- 
grottp IRT analysis and test maintena~tce.fi~r binal 3, items. Chicago: Scientific Sott- 
ware International, Inc. 

Authors 

WlM J. J. VEERKAMP wrote this article as a Phd.-student at the Department of Educa- 
tional Measurement and Data Analysis, Faculty of Educational Science and Technol- 
ogy University of Twente, P. O. Box 217, 7500AE, Enschede, the Netherlands. He is 
currently working as an econometrician at the Zwolse Algemene Bank, Nieuwegein, 
the Netherlands. He speci,'dizes in forecasting and risk-analysis. 

CEES A. W. GLAS is an Associate Professor at the Department of Educational Measure- 
rnent and Data Analysis, Faculty of Educational Science and Technology University of 
Twente, P. O. Box 217, 7500AE, Enschede, the Netherlands; glas@edte.utwente.nl. He 
specializes in psychometrics and educational measurement. 

Received July 1998 
Revision Received June 1999 

Accepted January 2000 

389 
 at Universiteit Twente on January 8, 2016http://jebs.aera.netDownloaded from 

http://jebs.aera.net

