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Abstract. We consider the following problem. Given a finite set of points 4/ in R* we want to
determine ahyperplane H such that the maximum Euclidean distance between H and thepointsy’ is
minimized. This problem (CHOP) isanon-convex optimization problem with aspecia structure. For
example, all local minima can be shown to be strongly unique. We present a genericity analysis of the
problem. Two different global optimization approaches are considered for solving (CHOP). The first
is a Lipschitz optimization method; the other a cutting plane method for concave optimization. The
local structure of the problem is elucidated by analysing the relation between (CHOP) and certain
associated linear optimization problems. We report on numerical experiments.
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1. Introduction

Let n,m € N be fixed numbers such that m > n + 1. We use the abbreviation
J={1---,m}. Inthewholepaper Y = {3/ € R* | j € .J} will be aset of m
different pointsin R™. Asusual, || v || will denote the Euclidean norm of y € R".
We want to find a hyperplane

H={yeR"|cy=a}, 0#ceR", acR,

such that the maximum of all Euclidean distances between H and the pointsin Y’
is minimized. Since the Euclidean distance between a point y and H is given by
|cTy — a|/VcT ¢, this problem can be written as
-

(CHOP) MiMoeesn M. Ly el
and will be called the Chebyshev Hyperplane Optimization Problem (CHOP).

In order to solve (CHOP), we can minimize the numerator subject to a normal-
ization of the denominator. This leads to the following constrained optimization
problem:
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Figure 1. Four points in IR? with a local minimizer of (CHOP) (solid line) and a global
minimizer (dashed line).

(Q minfg(c,a,r) =7, subjectto

{ qj-t(c,oz,r) =+(c"y —a)—r <0, j€J
e =1.

Because of the constraint ¢’'c = 1, (Q) represents a non-convex problem. In
particular, (CHOP) can have local solutions which are not global minimizers (see
the examplefor n = 2, m = 4, asindicated in Figure 1).

Equivalently, in (CHOP), we can maximize the denominator v/¢T¢ (or minimize
—V/cT¢) subject to a normalization of the numerator. This approach leads to the
following concave optimization problem,

(P)  minfp(c,a) :=—c'c, subjectto ‘
pre,a) =+(c"y —a) <1, je

The feasible set of (Q) resp. (P) will be denoted by Zg, resp. Zp.

In the next section it will become clear that (P) and (Q) are equivalent reformu-
lations of (CHOP). We useformulation (P) to demonstrate that any local minimizer
of (CHOP) isastrict local minimizer of order 1. In Section 3 we will use (P) for a
general position analysis of (CHOP). In Section 4, we propose two methodsfor the
determination of global minimizers of (CHOP), one based on problem (Q), using
Lipschitz optimization techniques, and the other based on problem (P), using a
cutting plane technique. In the last section we discuss somelinear problemsrelated
to (CHOP).

Problem (CHOP) isa specia case of the problem of approximation of the set Y’
by alinear (or non-linear) manifold. Another special case, the approximation of Y
by apoint (also known as the “minimal covering sphere problem” or “Chebyshev
center problem”) hasalong history (seee.g. [7] [6]). The approximation of a point
set by straight lines has been considered in [13, 8, 1]. Investigations on the more
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general problem can be found in [12] for the Chebyshev norm and in [10] for the
least square norm. For complexity aspects of such problemswe refer to [2].

2. Optimality Conditions

In the whole paper, we assume that the point set Y satisfies the condition
C1: Notall pointsinY are contained in one hyperplane.

For later purposes we give some equivalent conditions for (C'1) which can be
proved by elementary means.

LEMMA 1. GivenY = {y/|j € J}, the conditionsi-v are equivalent.
i. (C1) issatisfied.
i span{(ﬁjl) | j€ J} = R*+1,
iii. (Q) hasall solutions (¢, &, 7) satisfying 7 > O.
iv. (P) is bounded.
v. Thefeasible set Zp of (P) is compact.

For both formulations (P) and (Q) of (CHOP), under condition (Cl), the
Mangasarian—Fromovitz Constraint Qualification holds, as can easily be seen.
So, necessary conditions for local minimizers involve the Kuhn—Tucker condition
instead of the more general Fritz John condition. It is not difficult to show that a
feasible point (¢, a, ) of (Q) satisfying » > 0 is a Kuhn—Tucker point of (Q) if
and only if the point (ﬁ, ﬁ) isaKuhn-Tucker point of (P) (with the same active
index set J* C J and the same distribution of non-zero multipliers).

It will now be shown that any local minimizer of problem (P) is a strict local
minimizer of order 1 (also called a strongly unique minimizer). Due to the corre-
spondence between the Kuhn—Tucker points of (P) and (Q), thisisalso the casefor
local minimizers of (Q).

Let (¢*, o*) bealoca minimizer for (P). Thenitiscalled astrict local minimizer
of order 1, if there exist aneighbourhood U* of (¢*, o*) and aconstanty > 0 such
that for all feasible (¢, «) iInU™,

—cle> () et +vll(e,a) = (¢, ). D)

THEOREM 1. Let (c¢*, a*) befeasiblefor (P) with active index set .J*. Then, the
conditionsi—iii are equivalent.
i.  (c*,a*)isalocal minimum.
ii. (c*,a*)isastrict local minimum of order 1.
i. () € int D, whereD* = {53, pio(Y)) | ny > 0}. Here,
oj = +1ifp; isactiveat (c*, o).
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iv. If|J*| =n-+1, then,i—ii areequivalentwith: theKuhn-Tucker condition
(2)isvalidwithall ;2 > 0and (¥)), j € J* linearly independent. (Note that
in particular, iii impliesthat |J*| > n + 1.)
Proof. i = ii: Suppose(c*, a*) isalocal minimimum for (P). Since (P) satisfies
the Mangasarian—Fromovitz Constraint Qualification, the Kuhn—Tucker condition
must be setisfied, i.e. thereexist o = £1, ;> 0, j € J* suchthat

> (Y1) = (3). @

jeJ*
In order to analyze the second order conditions, we define the cone
C* = {£e R | Dfp(c*,a*)¢ <0, Dpf(c',a")E <0, j€J} (3
= {(&:n1) e R = 267" <0, 0(€7y = €nya) <O, j € T}
Defining the Lagrangian

Lic,a,p) = —cTe+ Y pjoj(c’y’ — o),
jeT*
then, according to the second order necessary optimality condition for feasible
(c*,a*) (cf. eg. [11]), to any £ € C*, there existsamultiplier vector x* > 0 such
that (2) holds and

€D (ot =€ (T g ) €= —2Té 0 @

Thisimplies ¢ = 0. In view of thelast equation in (2), at least one of the o;’smust
beequal to +1 and —1 (dueto p; > 0). Using (3) gives —0&,41 <0, j € J* i.e.
én+1 = 0. Thus, if (¢*, o*) isoptimal then C* = {0}. By a well-known theorem
(seee.g.[11]) therelation C* = {0} impliesthat (c*, *) isastrict local minimum
of (P) of order 1. For ii <= iii seee.g. [11] and for 7v [3]. O

The problem (CHOP) could be generalized to the approximation of an infinite
pointset Y. If wesuppose, that Y C R” iscompact, the problem (CHOP) represents
a semi-infinite problem. Most of the theory remains valid. Note, that Y can be
replaced by the set of al extreme points of Y. In the case where Y has infinitely
many extreme points, the locally strong uniqueness of a solution need no more
remain true. Consider for example the problem in R? with Y the unit circle. Then,
obviously any line through the origin represents an optimal solution.

3. A General Position Analysisand Stability Aspects

In this section we will investigate, what kind of regularity conditions will be
fulfilled for aproblem (CHOP) if the problem liesin so-called “ general position”.
Often, such astudy is called a genericity analysis.
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For fixed n,m € N,mm > n + 1, aproblem (CHOP) or an equivaent problem
(P) can be seen as an element from P, ,,,,

Pn,m:{yje]Rn |j:17"'7m}- (5)

Thisset P, ,,, can beidentified with the (Euclidean) R*"™. Thefollowing analysis
will be donefor the problem (P). Putting

al 1

a? , yJ T 1 i
A= . wherea9:<_1> and 1, = | . | € R",

a™ 1

the feasible set Zp of (P) becomes

zpz{z:<;>emn+l|<_AA)zg12m}. (©6)

Obvioudly, Zp is a polyhedron having inner points (i.e. a polyhedron of full
dimension). A feasible point z is called avertex of Zp if z is given asthe solution
of

Agpz=1p41 , )
where Jp denotes an index set
JO:{]k7k=177n+1|1§j1<<]n+l§2m}7 (8)
satisfying j € Jo, 1 < j <m <= j+m ¢ Jo, and where Ay, is the matrix
leajl
A =|: . ol =dV ™ forj > m, )
O.jn+lajn+1
o lif1<ji<m
TT\-1if m+1<j<2m
such that A s, isregular. The vertex z € Zp is called non-degenerate, if
ojal z < 1foral j€{1,...,2m}\Jo. (10)

Thechoice Jo C {1,...,m} orJo C {m +1,...,2m}, i.e al o; have the same
sign, leads to the vertex v = +e, 11, which is aways degenerate (if m > n + 1).
Note, that the vertices +e,, 11 cannot be optimal. So, we can assumethat in (9) at
least one of the o},’sis positive and at |east one negative. In the sequel we will use
the following result from Stratification Theory (for a proof we refer to [5]).
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THEOREM 2. Let be given a polynomial functionp : RN — R, p # 0. Then,
theset p~1(0) = {x € R" | p(z) = 0} isa closed set of Lebesgue measure zero.
(Notation: 1(p~1(0)) = 0.)

We emphasize, that with z = (¢, ), also —z is a vertex of (P). Hence, in the
following, wetacitly identify z and —z (i.e. two vertices z and z are called different
iff z 2 %2 and z #£ —2). We now state the genericity result.

THEOREM 3. Letn,m € N befixed, m > n + 1. Then, the problem set P, ,,
containsan open, dense subset Mowith (P, \ M) = 0suchthat for all problems
(P) in Mg the following hold:
The condition (C1) issatisfied (and by Lemma 1 Zp isa compact polyhedron given
by the convex hull of its vertices). All verticesz = (¢, @) of Zp (except the vertices
+e,,11) are non-degenerate and have different values —¢’ ¢. In particular, (P) has
a unique global minimum z* = (¢*, a*).

(Note, that by Theorem 1 this solution and all other possible local minimizers
are strict minima of order 1 and characterized by the conditionsin Theorem 1 iv.)

Proof. We firstly show that genericaly all vertices of Zp are non-degenerate.
Let Jo beafixedindex set (8). Sincem > n + 1, such anindex set exists. Consider
the condition rank A, = n + 1 or equivalently p(y’1, ..., y/»+1) := detA, # O.
Obviously p is a polynomial function, p # 0. Thus, by Theorem 2 the set M,
defined by

Mj, = {(P) € P, |rankA;, = n + 1},

is open, dense in P, ,, (= R™) with u(Py,,m\My,) = 0. Now, let Jo be given
as above such that A, is regular, and choose jo ¢ Jo. Then for the solution z of
AJOZ =1,,1we have:

07 £ 1 Ay = (;“jgo 1’1“) hasfull rank n + 2. (11)
As above, by using Theorem 2 it follows, that the set (with both, .Jo and jo ¢ Jo
fixed)

My, jo = {(P) € Pom | rankA , j, = n + 2}

is open, dense and p(Py,m\My,.j,) = 0. Now we use the fact that the union
of finitely many sets of measure zero has measure zero and that there are only
finitely many combinations of basic index sets Jp as in (8) and jo ¢ Jo. By
construction, the intersection of all these sets M 5, M, j, only contain problems
(P) with nondegenerate vertices. Hence there exists an open and dense subset of
Py, m suchthat for al (P) from thissubset all vertices(# +e,,1) arenondegenerate.
Note, that by Lemma 1-ii, for any (P)e Mz, the condition (C1) is valid. Thus, by
Lemma 1, the feasible set Zp is a compact polyhedron. It is well-known that any
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compact polyhedron can be described asthe convex hull of itsvertices(in particular
Zp actually has vertices).

We now prove the conclusion that there is an open and dense subset My € P, 1,
such that moreover, all vertices z = (¢, a) of (P)e My have different function-
values. Let usassume, that z = (¢, ) and 2 = (¢, &) aretwo different (nondegen-
erate) verticesof Zp, i.e. with sets 7, J asin (8), J # J, we have

2=A 0, 2= A0 (andz # £2). (12)

With the adjoint A% of A; we can write A7 = ﬁAJ,A‘}d and accordingly
At = detA A% Let B (B) denotethen x (n + 1)-matrix obtained by deleting
the (n + 1)th row from Aad (Aad) Then c= ﬁélnﬁk:]_ and é == WJAAB]%A»].'

J

Hence, z, 2 have the samevalue —¢’ ¢ =

—eT¢iff
p(A;, Ay) = (detA;)?1) BT Bl, 1 — (detA;)®1T . BTB1,1 = 0.

This relation represents a polynomial equation with a non-vanishing polynomial
p depending on the variables 7, j € .J U .J and from Theorem 2 it follows, that
the set p=1(0) is a closed set So € P, of measure zero. Thus M3 = P, ,,,\So
is open, dense and 1( nm\M3) = M(So) = 0. By construction, for (P) € Ms,
the vertices z, 2 given by . J, J have different values. Since there are only finitely
many such |ndex sets J, J; J # J theintersection My of all relevant sets satisfies
the conditions of Theorem 3. |

Itisobviousthat by using the results on the relations between the problems (Q)
and (P) in Section 2, corresponding genericity statements can be formulated for
problem (Q).

We finish this section with some remarks on stability. Let be given a problem
Y = {7%,..., ™} € P,m and aloca minimizer z = (¢,a) of (P) = P(Y).
(P(Y) will denote the problem (P) in dependence on the point set Y.) We will
discuss the question whether this solution z persists under small perturbations of
Y. For n = 2, this stability question has been considered in [12]. For the case that
z isanon-degenerate vertex of Z, 5 (cf. 10) the following result holds:

Strong Stability Result: Suppose that z is alocal solution of P(Y') such that z
isanon-degenerate vertex of 7, P Then, there exist neighbourhoods U of z and

V of Y andafunctionz: V — U, z(Y) = z suchthat for all Y € V the vector
2(Y) € U istheuniqueloca minimizer (strict of order 1) of P(Y') in U. Moreover,
the solution function z is (infinitely many times) continuously differentiable.

This result follows directly by considering locally around Y = Y the equation
E(Y): ai(c"y! —a) =1, jeJ*
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and (2) for asolution z = (¢, ) of P(Y"), with corresponding multipliers sz;. When
z is a non-degenerate vertex, we have |J*| = n + 1 and z = (¢, &) is the unique
solution of the equation E(Y'). Thisfollows by Theorem 1 iv. By continuity there
exists a neighbourhood V' of Y such that for all Y € V there is a unique solution
2(Y) of E(Y).

When at alocal minimum z of P(Y) wehave |J*| > n+ 1, then, asmall pertur-
bation of Y might resultintoa’ bifurcation’ into several local minimanear z. Takeas

asimpleexampletheproblemsetY = {( ), (_3), (5, (%) } with (global) solution

z = (0,1,0). Consider asmall perturbation Y. = {(79), (29, (;2.), (_{,.) }- Then
for any e > 0 the problem P(Y) has two (global) minima z! = (¢/4,1, —¢/2),
2% = (—€/4,1,¢/2).

However he local minima cannot disappear completely by asmall perturbation.
Thisis stated in the following

Weak Stability Result: Suppose, 2 isalocal solutionof P(Y'). Then, thereexists
aneighbourhood V' of Y suchthat forany Y € V' thereisat least onelocal solution
z(Y') of P(Y). Moreover withaconstant s > Owehave||z(Y)—Zz|| < &||Y =Y||.

This result follows by a well-known (weak) stability result valid for non-linear
optimization problems at a strict local solution z of order 2 under Mangasarian—
Fromovitz Constraint Qualification (cf. e.g.[9]).

Sincefor thegeneric set Mo C P, of Theorem 3in particular all local minima
of problems (P) € My are non-degenerate vertices of Zp, the genericity result in
Theorem 3 together with the Strong Stability Result leadsto

THEOREM 4. For all (P) € My all local minima z of (P) are strongly stable
(in the sense ot the Srong Sability Result).

4. Two Methodsfor Solving CHOP

In this section we will briefly discusstwo different methods of global optimiza-
tion to solve problem (CHOP).

The first method is a so-called Lipschitzian optimization approach. By defin-
ing "~ = {c¢ € R"|c"¢ = 1}, (CHOP) can be written as min,c gn-1 MiNyer
max;e s |y’ — . For fixed ¢ € S"~ we consider the function

F(c) = Minger MaXjcy [cly? — al.
Then, obviously (CHOP) is equivalent to the problem
(Q) min_ F(c). (13)

cesn—1

Putting M (c) = maX;cs cTy?, m(c) = minj.; cT'y/ we can write

(14)
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Thisfunction F is Lipschitz continuous,
|F(c1) — F(c2)| < A ex—cz]|| fordl c1,c0 € R,

with Lipschitz constant A = max;.; || 47 ||. The easy proof is omitted.

The Lipschitzian method to solve (Q) isbased on thefollowing simpleidea: Let
K C R" becompact. Wedenotethediameter of K by d(K), d(K) = MaX., ek ||
c1 — ¢z ||. Then, for given ¢ € K, by using the Lipschitz condition for F', we find
for any ¢ € K the inequality F(¢) < F(c) + |F(¢) — F(c)| < F(c) + M(K).
Consequently

E%‘F(C) > F(¢) — Md(K). (15)

In every step of the following branch-and-bound algorithm A1 this inequality
(15) enables us to discard certain parts of the feasible set S”~1 of (Q) from a
further minimum search. (See [4, pp. 111-140], and [12] for more details.)

A1: Algorithm for solving (Q) (see (13))
Start:  Choose ¢ > 0 and an initial partition Sp of S"~1, Sp = Un21S0,-
Compute A = max;s || v/ ||.
Step k — k + 1: Given apartition of aset S, ¢ "1, S = uf]glsk,# such
that min,.g»-1 F'(c) = min..g, F(c), we proceed asfollows.
1. For p = 1,---,my; Choose a point cj,eSy,,, and compute oy, = F(cky),
/Bku = Oy — Ad(Sk,u)'
2. Compute oy, = MiNy=1,...;m, Wy > Br = MiNu=1....m; Brp- I e — B < e
stop with an approximate minimum ¢,z such that F'(cxz) = o
3. Deletefrom S, dl sets S, ,, suchthat ;. < By,,. Chooseafiner partition Sy, 1
of the remaining sets, S 11 = U 1" Sk 11,

Another approach to solve (CHOP) isto apply methods from concave optimization
to the equivalent problem (P). With the notations of Section 3, the problem (P)
consistsof minimizing the concavefunction f (¢, ) = —c’ c onthepolyhedron Zp
(cf. (6)). Dueto condition (C'1) thefeasibleset Z = Zp iscompact (cf. Lemmal).
It is well-known that the global minimum of a concave function f over a compact
polyhedron Z is always attained at some vertex of Z. (See [4, p. 10] for a proof.)
Thisfact allowsto apply the Simplex method. We briefly outline a Simplex method
combined with a cutting plane method for solving problem (P). For more details
the reader is referred to [4].

The method is based on the following construction, which is applicable to any
problem of minimizing a concave function on a polyhedral set. Suppose 2° is a
nondegenerate vertex of Zp defined by A;,2° = 1,1 (cf. Section 3). Let y be
given, such that f(2%) > +. Definefor j = 1,---,n + 1 (with ¢; the unit vectors
in ]RnJrl)

;= sup{t > 0] f(2° - tA;olej) >~land v/ =20 — TjAjolej. (16)
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<J

Figure 2. lllustration of the cutting plane method.

Note, that the vectors —Ajolej give the directions of the n + 1 edges emanating

from 2°. We supposethat 0 < 7; < oo, j = 1,---,n + 1. Then, we can define

¢= (5. 77)" andthelinear function

((z) = _qTAJoZ + qT1n+1 -1 (17)

This function satisfies £(2°) = —1 and (cf. (16)) ¢(v/) =0, j = 1,---,n + 1.
Consequently, the equation /(z) = 0O defines the hyperplane going through the
pointsv’/, j =1,---,n 4 1 (cf. Figure 2).

Let S denote the (n 4 1)-simplex with vertices 20, v%, - - -, v™*1. By construc-
tion, f(z°) > y and f(v?) > v, j = 1,---,n + 1. The above mentioned fact
that the convave function f attains its minimum at a vertex of Sp implies that
min,.s, f(z) >v.Since{z € Zp | £(z) < 0} C Sp thelinear inequality ¢(z) > 0
definesa so-called ‘y-valid cut’, i.e.

Zy={2€Zp| f(z) <y} C{z € Zp|L(z) >0} (18)

In particular, if theset {z € Zp | £(z) > O} isempty, theny < min,cz, f(2).
A2: Simplex-cutting-plane algorithm to solve (P).
Start: Findavertex 2° € Zp. Putk = 0,y = f(2), zopr = 2° and Zo = Zp.
stepk — k+ 1. Given v and a vertex z* of a polyhedron Z;, ¢ Zp such that
min,cz, f(z) = min,cz, f(z) we proceed with:

1. If z¥ isalocal minimizer of min,., f(z), then goto 3.

2. Find aneighbouring vertex o of z* in Z; suchthat f(v) < f(2*). Put 2F = &

and goto 1.
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N

Figure 3. lllustration of alinear problem related to (CHOP).

3. 1fy > f(2F), puty = f(2¥) and 2,y = 2*. Compute from z* a*~-valid cut’
given by /;(z) > 0 (see 18 and the construction above). Compute a vertex
solution ¢ of the linear program

max ék(z) st. z € Z;.
If £;(9) < 0, then stop with a global solution z,,;. Otherwise, put z¢*1 = ¢
and Zy 11 = {z€Zk |0k (2) > O}.

For a discussion of the convergence of algorithms of the type A2 we refer to [4,
pp. 99, 183].

REMARK 1. For problem (P) it is evident that if (¢, o) isfeasible, also —(c, @)
is feasible. Therefore, we can assume a further restriction for z = (¢, «) such as
cn, > 0. Inview of the genericity results of Section 3, we can expect that, in general,
all vertices of Zp (apart from the vertices z = +e, 1) will be non-degenerate.

5. Linear Problems Related to CHOP

We consider again the problem (CHOP) in the form (Q). Take for example the
problem (Q) in R2. A hyperplane H is given by the equation ¢’y — o = c1y1 +
coy2 — o = Owith ¢ + ¢ = 1. By assuming c, # 0, this relation can be written as

C1 (67
y2 =h(y1) = ——y1+ —.
Cc2 Cc2

Geometrically, (@) istheproblem of finding alinear function h(y1) = ~yy1— 3 such
that the maximal Euclidean distancein R? between the points (i, y3) € Y andthe
graph of h isminimized. By minimizing simply the maximal distance |y% — h(y{)|
we arrive at a corresponding linear approximation problem (see Figure 3).
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We now will generalize thisideato problems (Q) in R” and discusstherelation
between the non-convex problem (Q) and the associated linear problems.

Let k, 1 < k < n, be fixed. Suppose, (¢, «,r) is feasible for (Q) such that
ci # 0. Then, we define

1 o r
Ye = ——(01, . --7Ck7170k+17---7cn)7 Op = ——y TEb= 17 (19)
Ch Ch |cx|

andt], = (v}, Y} 1:Yh 1o---»¥}), 4 € J. Weemphasize, that here, v; and ¢
denote vectors in R”~1. Now, the vector (., ay, 1) is afeasible solution of the
following linear optimization problem:

Q1) min ry St & (77H —ap —yl) —r, <0, j e

In comparison with (@), the problem (Qy) represents the approximation of the
data{ti,yi}jg by the linear function h(t) = yTt — a (y,t € R* 1, a € R) in
the Chebyshev norm (cf. Figure 3 for ageometrical illustration).

Similarly, for afeasible point (v, ax, 1) of (Qx) by defining ¢ = ((v)1,- - -,
()k—1- =1, (V) k> - - -» (7% )n—1) ((7%); denoting the components of +;,) and

C (677 Tk

o = r =

CcC =

(20)

the vector (¢, a, r) is feasible for (Q). We summarize these facts in the following
lemma.

LEMMA 2. Let (¢, o, ) and (yx, g, ) correspond according to (19) and (20).
Then, (c, a,r) satisfying ¢, # 0 is feasible for (Q) with an active index set J if
and only if (¢, o, r) isfeasiblefor (Q) with the same active set J.

Although the original problem (Q) is non-convex and the associated programs
Qr, k = 1,---,n are linear, Figure 3 indicates that these problems are closely
connected. We give two examples to clarify, what kind of situations are possible.
Firstly, an example of solutions of (Q>) (or (Q1)) which are local but not global
minimizers of (Q).

EXAMPLE1.  Let us consider the problem in R? given by the points 3/ =
(.5 + (=1)u), 7 = 1,2,3, where p is a parameter, 1 € (0,00). Then, the
following holdswith the lines h and h defined by h(t) = ¢, h(t) = (14 2u)t — 5u
and with the values i = /3, i1 = (V7 — 1)/2 (cf. Figure 4): I is always the
(unique) solution of (Q)-) for al x > 0, and
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Figure 4. Illustration corresponding to Example 1 for the value . = pa.

For O<p<3  histhesolutionof (Qu), (Q).

For 3 <pu<po: histhesolutionof (Q)and
h isthe solution of (Qq).

For po<p < pi: histhesolutionof (Q); hisalocal solution
of (Q) and the solution of (Q1).

For pu1<p<1  histhesolutionof (Q) and (Qy);
h isalocal solution of (Q).

For pu>1: h isthe solution of (Q) and (Q1).

Next we give a problem, where the solutions of (Q), (Q1) and (Q») are al
different.

EXAMPLE 2. We choose the points

y = <cos (% +(j— 1)%71') , 8N (% +(j— 1)%%)) , 7=1,2,3,

on the unit circle (cf. Figure 5). Then, h; is the unique solution of (Q1), h2
the unique solution of (Q2) and (Q) has the three global solutions k1, hy, h. The
solutions of (Q1), (Q2), (Q) depend continuously on small perturbations of the
pointsy’, j = 1,2, 3. Therefore, it is clear from Figure 5 that by only perturbing
y? by 42 = y?(1 — €) (¢ > 0 small) we will obtain a unique solution & of (Q)
parallel to h, at adistance 5. Whereasthe solutions of (Q1) (resp. (Q2)) will remain
near hy (resp. (h2)).

In the situation however, whereall problems (Qy), k = 1,...,n, havethe same
optimal hyperplane, the corresponding feasible point (¢, o, ) isthe global solution

of (Q).

THEOREM 5. Supposg, (¢, @, 7*) issuch that the corresponding vectors (%, @, 7«.)
(cf. (19)) are solutions of (Q) for all £ = 1,...,n. Then, (¢, a,r) is the global
solution of (Q).
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Figure 5. Illustration corresponding to Example 2.

Proof. Suppose, (¢, «, r) is feasible for (Q) with » < 7. This leads to a con-
tradiction as follows. It is geometrically clear that the relation » < 7 implies
(c,a) # £(¢,@) andalso ¢ # +¢. Since 1 = Y7, &5 = °7_; 5, there must be
someindex 7, 1 < 7 < n such that

cr # ¢r and leq| > e (21)

Defining the feasible solution (v, o, ;) of (Q,) corresponding to (c, c, ) (cf.
(29)) wefind

r 7 _
=< - =77
ler|  ler]
contradicting the optimality of (v, &-, r;) for (Q;). 0

6. Numerical Experiments

We finally report on some numerical experiments. The point sets Y C R” have
been generated randomly asfollows. Firstly, m pointsg’ are generated randomly in
the hyperrectangle[—100, 100]" ! x [—d, d] (with fixed d > 0). Then, we generate
randomly ¢ (¢ € R", ||c[| = 1) and a (o € R). Finaly we choose an orthogonal
matrix @@ which transforms the unit vector e, into ¢ (i.e. ¢ = Qe,) and apply the
affine transformation

y' = QY + ac.

The problem points are then lying in a corresponding hyperrectangle around the
hyperplane H = {y € R" | y"'c¢ — a = 0}. The smaller d (compared with 100) the
better the data Y™ fit the hyperplane H. Firstly we compare the Lipschitz method in
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Table!l. Comparison between the algorithms A1 and A2 for
n = 3,d = 1 and different m.

A2 Al
m number of evauationtime evaluation time
~-valid cuts in seconds in seconds
10 1 0.05 10.16
30 1 0.10 14.66
50 2 0.27 15.04
100 2 0.49 92.49
200 2 0.87 108.58

algorithm A1 with the cutting plane algorithm A2. Table | contains some typical
examplesfor n = 3. The efficiency of the methodsis roughly indicated by giving
an evaluation time (on the PC used for these examples). For the cutting plane
algorithm we also give the number of y-valid cuts performed in part 3 of A2. In
A1 we have chosen arepresentation of the unit sphere S2 in spherical coordinates
(r,p, ) € {1} x [=m, 7] x [0, Z]. The partitions of 52 are given by a uniform
rectangular grid on [, ] x [0, 5] by halving the gridlength in every refinement
step 3 of Al. We havealwaystakene = 1071 in A1.

From Table | we might conclude that the cutting plane algorithm is much more
efficient than the Lipschitz method. The number of y-valid cuts and the computer
time needed in algorithm A2 increases with the number d. This is shown by the
resultsin Tablell containing the computer timeto run A2 for m = 100 and different
n and d.

Tablell. Computer timefor A2 for m = 100
and different n and d.

d n number of evaluation time

~-valid cuts in seconds
1 4 2 0.60
1 5 2 1.26
1 10 2 4.83
1 20 3 32.13
15 4 2 0.82
15 5 6 2.80
15 10 53 94.14
50 3 12 197
50 4 39 11.25
50 5 127 63.93

We finally investigate numerically the relation between the problem (Q) and
the associated linear problems (Qg), £ = 1,...,n. Tablelll contains some results
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for m = 20. For different n and d we have randomly generated 10 problems
(Q) and indicate with the vector (aq, ..., a,) how many of the solutions of the
corresponding n problems (Qy) coincided with the solution of (Q). For n = 3 for
example, (1,4, 3, 2) meansthat out of the 10 problems, 1 had none of the solutions
of the (Qx)’s common with the solution of (Q) , 4 problems had one of the solutions
of the (Qx)’s common with the solution of (Q) etc. and for 2 problems al three
solutions of the (Q)’s coincided with the solution of (Q).

Tablelll. Relation between (Q) and problems (Qx) for m =
20 and different n and d.

n d (ao,a1,a2,a3) mn d  (ao,a1,a2, a3, as)

3 1 (0,0,1,9) 4 1 (0,0,0,2,8)
3 10 (0,34,3) 4 10 (2,3,4,1,0)
3 40 (7,3,0,0) 4 40 (5,55,0,0,0)

Tablelll indicatesthat the smaller d themoreit can be expected, that all solutions

of the problems (Q;.) are the same and that by Theorem 5 this solution yields the
solution of (Q).
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