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Abstract--The model matching problem consists of design- 
ing a compensator for a given system, called the plant, in 
such a way that the resulting input-output  behaviour 
matches that of a prespecified model. In this paper a local 
solution of the nonlinear model matching problem is given 
for the case that the model is decouplable by static state 
feedback. The main theorem states that under genetic 
conditions on the plant the problem is solvable around an 
equilibrium point if and only if it is solvable for the 
linearization of plant and model. The generic conditions are 
identified. They naturally appear in the solution of the 
dynamic input-output deeoupling problem for the plant. The 
theory is illustrated by means of two examples. 

1. INTRODUCTION 

IN THIS paper we study the so called model 
matching problem (MMP) for nonlinear systems. 
That is, given a nonlinear control system, to be 
referred to as the plant P, together with another 
nonlinear system, to be called the model M, the 
question is whether or not it is possible to design 
a suitable precompensator for the plant such that 
the input-output behaviour of the precompens- 
ated plant matches that of the given model M. 
The idea is that in case a positive answer to this 
question exists, one is able to follow all the 
desired input-output trajectories of the model 
with those of the plant with precompensator. 

The model matching problem has received a 
lot of attention during the last decades and 
considerable progress towards a characterization 
of necessary and sufficient conditions for its 
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solvability has been made. Let us first quickly 
review the main contributions on the problem 
under consideration. The linear model matching 
problem was completely solved in the early 
seventies, first by Moore and Silverman (1972), 
using Silverman's structure algorithm (Silv- 
erman, 1969) and then by Morse (1973) using a 
geometric setting. Later it was realized (Morse, 
1976; Emre and Hautus, 1980) that the model 
matching problem is equivalent to a certain 
disturbance decoupling problem with distur- 
bance measurements. Finally, Malabre (1982) 
stated equivalent solvability conditions in terms 
of certain structures at infinity. 

A first step towards the solution of the 
nonlinear model matching problem was taken in 
(Isidori, 1985a), where sufficient conditions were 
given in case the model is a linear system. A 
very important and innovative contribution for 
the general nonlinear MMP was given in the 
paper of Di Benedetto and Isidori (1986). In this 
paper a detailed problem formulation and 
sufficient conditions for the existence of a local 
solution were given. Moreover under some 
rather restrictive assumptions on the model and 
plant necessary and sufficient conditions for the 
existence of a local solution were given. 
Essentially the approach taken in Di Benedetto 
and Isidori (1986) was very much inspired by the 
recently developed nonlinear differential geo- 
metric theory, see for instance the survey by 
Isidori (1985b), and it forms a direct generaliza- 
tion of the geometric linear theory (Morse, 
1976; Emre and Hautus, 1980; Malabre, 1982). 
Following the approach of Di Benedetto and 
Isidori (1986) other partial solutions have 
appeared (Di Benedetto, 1988a, 1988b; Huij- 
berts, 1989a). To what extent the machinery of 
Di Benedetto and Isidori (1986) allows for a 
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complete answer to the problem is still an 
unsolved problem. 

In the present paper we take a different 
approach for studying the nonlinear MMP. 
Throughout we assume the model to be 
input-output decouplable by static state feed- 
back (see Section 4 for a precise definition). 
Although this assumption is certainly restrictive, 
it can be argued that in practical circumstances it 
is often desirable. Given the forementioned 
assumption an obvious condition for the local 
solvability of the MMP is that the plant P is 
input-output decouplable by adding a dynamic 
precompensator. The dynamic input-output 
decoupling problem has been solved by Descusse 
and Moog (1985) and later on in a slightly 
different way by Nijmeijer and Respondek 
(1988). The solvability of the MMP now may be 
checked by using a minimal order decoupling 
precompensator for the plant P. 

The present method has an important feature 
that it is completely analytic and avoids concepts 
such as controlled invariant distributions and so 
on, as were used in Di Benedetto and Isidori 
(1986). All computations are straightforward in 
terms of the data of P and M and may be 
executed by formula manipulation, using e.g. 
MACSYMA, MAPLE or REDUCE.  There is 
however another essential aspect of our solution 
we want to emphasize. Namely, we show that 
under generic conditions---a mathematical phra- 
sing of almost always--the nonlinear MMP is 
solvable around equilibria of model M and plant 
P if and only if the corresponding linear MMP is 
solvable for the linearized model L M  and plant 
LP. In our opinion this has important practical 
implications, in that in engineering practice one 
often studies a specific control problem by 
addressing the problem on the linearization 
around a given working point. The result given 
here may be viewed as an a posteriori 
justification of this methodology. In this way the 
paper fits in the philosophy developed by Gras 
and Nijmeijer (1989), where the relation 
between the input-output decoupling problem 
for a nonlinear system and its linearization 
around a working point have been investigated. 
In fact, as a byproduct we extend the results of 
that paper by discussing, the dynamic input- 
output decoupling problem under linearization. 

Finally, after having submitted this paper, we 
received a very interesting preprint by Moog et 
al. (1989) in which, using differential algebraic 
tools, a solution of the nonlinear MMP is given 
that generalizes the results of Moore and 
Silverman (1972) to nonlinear systems, and 
which apparently matches with the sufficiency 
results given here. 

The paper is organized as follows. In the 
following section we will formulate the linear 
model matching problem and give conditions for 
the solvability of this problem. In Section 3 a 
formulation of the nonlinear model matching 
problem will be given along the lines of Di 
Benedetto and Isidori (1986). Furthermore we 
will, after we have treated the results of Di 
Benedetto and Isidori (1986), state our main 
theorem. This main theorem holds true under 
generic conditions on the plant P. The 
conditions naturally appear in the solution of the 
input-output decoupling problem for the plant 
P. This solution will be given in Section 4. 
Moreover, we will give some results on the 
minimal order linear input-output decoupling 
problem in Section 4. In Section 5 the main 
theorem will be proved and a characterization of 
models that can be matched starting from a 
specific plant will be given. In Section 6 the 
theory will be illustrated by means of two 
examples. The first one, which is borrowed from 
Di Benedetto and Isidori (1986), see also Di 
Benedetto (1988a), illustrates the constructive- 
ness of our method. The second one, which is 
taken from De Luca and Ulivi (1988), illustrates 
our method in case the plant is a voltage 
frequency-controlled induction motor. In Section 
7, final conclusions will be drawn. 

2. THE LINEAR MODEL MATCHING PROBLEM 
Consider a linear plant P, described by 

equations of the form: 

k = A x  + Bu 
e (1) 

y Cx 

with state x e R n, input u e ~ " ,  output y e R '~ 
and matrices A, B, C of appropriate dimensions. 
Also, let a linear model M be given, which is 
described by the equations: 

ffM _.~ AMx M + BMu M 
M (2) yM = CMx M 

with state x M e R ' ' ,  input u M e R " ,  output 
yM e R m and matrices A M, B M, C M of 
appropriate dimensions. 

The compensator Q used to control P is a 
linear system described by equations of the 
form: 

{ ~ = K x c  + L x + M u M  
Q Fxc + Gx + Hu M (3) 

with state xc e R ~ and matrices K, L, M, F, G, 
H of appropriate dimensions. The composition 
of (1) and (3) is denoted by P o Q. 

Then the model matching problem consists of 
finding (if possible) an integer v and a 
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compensator Q of the form (3) such that the 
transfer matrices of M and P o Q  coincide, so 
that one is able to design a precompensator Q 
for the plant P such that the input-output 
behaviour of P° Q matches that of the model M. 

A way to solve this problem is as follows. 
Define the matrices 

A E = [ O  ; u ]  B E = [  B 2 u ]  

C e =[C -CU].  
(4) 

Theorem 1. (Morse, 1973). The model matching 
problem is solvable if and only if 

Im [2M] C Im [ B ]  + °U* (5) 

where ~F* is the maximal (A E, Be)-invariant 
subspace in Ker C e. [] 

The above problem also admits a direct 
interpretation in terms of the structure at 
infinity, cf. Malabre (1982). 

Theorem 2. The model matching problem is 
solvable if and only if the system (1) and the 
system defined by the matrices (A E, B E, C e) of 
(4) have the same structure at infinity. 

3. THE NONLINEAR MODEL MATCHING 
PROBLEM 

The definition of the nonlinear model 
matching problem will follow the same lines as 
the definition of the linear model matching 
problem. We employ the definition of Di 
Benedetto and Isidori (1986). 

Consider a nonlinear plant P, described by 
equations of the form: 

{ = f ( x )  + ~=~ uigi(x) 
P (6) 

y ,=h , (x )  ( i e ( 1  . . . . .  m}) 

with state x e ~, an open neighbourhood in R", 
inputs u~ ~ R, outputs Yi e R,  f, g~ . . . . .  gm are 
real analytic vector fields on N" and h t ,  • . .  , hm 
are real analytic functions. 

Furthermore, let a nonlinear model M be 
given, which is described by the equations: 

.~M =fM(xM ) + ~ u y g T ( x  M) 

M ( y ~  = hiM(xM) ( i e  {1 . . . . .  m}) 
(7) 

with state xMe ~M, an open neighbourhood 
in ff~"", inputs u ~ e R ,  outputs y ~ e R ,  
f u ,  g~ . . . . .  g U are real analytic vector fields on 
I~ "M and h~ . . . . .  h~ are real analytic functions. 

The compensator Q used to control P is a 

nonlinear system described by equations of the 
form: 

Q f u = a(xc, x) + b(xc, x)u M 
= C(Xc, x) + d(xc, x)u M (8) 

with state xc ~ ~ ,  an open neighbourhood in 
R ~, and real analytic a, b, c, d. The composition 
of (6) and (8) is again denoted by P o Q. 

In Section 2 we saw that in the case of linear 
systems the objective of model matching is to 
design a compensator Q such as to impose the 
coincidence between the transfer matrix of M 
and that of PoQ. In the case of nonlinear 
systems, where the input-output behaviour may 
be described in terms of Volterra series 
expansions, the object of model matching is to 
impose the coincidence of corresponding Vol- 
terra kernels. 

Recall that the o u t p u t  y ( t ) = ( y l ( t )  . . . . .  
y,,(t)) of a nonlinear system of the form (6) has a 
Volterra series expansion of the form [see e.g. 
Isidori (1985b)] 

y(t) = Wo(t, Xo) + ~ wi(t, rl, Xo)Ui(tl) drt 

fof; + wi,i2(t, r,, r2, Xo)Ui,(r,) 
i t,i2= 1 

× Ui2('t'2) dl" 1 d• 2 +" • • (9) 

where Xo is the initial state at time t = 0. 
Let u wh..¢(t, rt . . . . .  r ,  Xo u) denote the 

(1"1 . . . . .  k)-th kernel of model M and similarly 
P*Q 

wh...i,(t, r l , . . . ,  tl, (Xo, X~o)) the (11 . . . . .  ji)-th 
kernel of the compensated plant P oQ. Since 
w u . depends on the initial state Xo M of M and 

I r ' J i  
P*Q wh...i, on the initial state (Xo, X~o) of Po Q, when 

imposing the coincidence between these kernels 
one must specify how Xo M and (Xo, Xco) are 
chosen. Depending on this choice, one may 
formulate different matching problems. The 
most usual definition of the model matching 
problem, due to Di Benedetto and Isidori 
(1986), is given below. 

Definition 1. Nonlinear model matching prob- 
lem (MMP). Given a plant P = ( f , g ,  h), a 
model M = ( f u ,  gU, h u) and a point (Xo, x0 u) 

x ~M c R n × ~.M, find neighbourhoods U of 
x0 and U M of Xo M, an integer v, an open subset V 
of ~c c R v, a compensator Q = (a, b, c, d) with 
a, b, c, d real analytic functions defined on 
V x U, a map F : U x U M ~-, V, with the property 
that 

¢°Q . , (X, F(x, xm))) wj,..q,(t, rl, • • ti, 
_ _  M - wh..4,(t, rl . . . . .  ri, x M) (10) 

for all i >  1, for all l<-j i<-m and for all 
(x, x u)  ~ U x U u. [] 
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In Di Benedetto and Isidori (1986) an attempt 
has been made to generalize the solution of the 
linear problem, cf. Section 2, to obtain a local 
solution to the nonlinear MMP. This is done by 
defining an extended system E associated with 
model and plant: 

~E ~ fE(xE ) + i~l uigE(x E) d r. i~=l uiMpE(x E) 
E 
Lyf=hie(xE) (i ~.{I ..... m}) 

(11) 
where x E = (x, x M) and 

r ; ( ,  1 f f ( x  e) = Lf~(xM)j, gie(xe) = 

[ O ] hie(xe) = hi(x) - hff(xM) P:(:)= 

Define: (12) 
-- span {gf . . . . .  g~} 

(13) 
= span {pf  . . . . .  p~}. 

Theorem 3. (Di Benedetto and Isidori, 1986). 
The following equivalent conditions are sufficient 
for local solvability of MMP. 

1. ~e  c A* + cgz (14) 

where A* is the maximal (fE, gE).invarian t 
distribution contained in Ker dh E. 

2. The structure at infinity of the extended 
system (11) (w.r.t. the inputs u~ . . . .  , u,,,) 
and that of the plant (6) are the same. [] 

Now define relative degrees p~(x) . . . . .  p,,,(x) 
for the plant P 

p~(x) = inf {k e N s.t. ~g:~-~h,(x) 
0 for somej}.  (15) 

In the same way we define relative degrees 
pff(x M) for the model M, pffO(x, xc) for the 
compensated plant PoQ, and p~(x e) for the 
extended system E. 

The following will be a standing assumption 
throughout the paper. 

(A1) All relative degrees defined above are 
finite and constant on an open and dense 
submanifold, i.e. pi(x) = Pi < % Pff(xM) = Pff < 
~, pffO(x, xc) = pffO < oo, pie(x e) = pe  < oo on an 
open and dense submanifold. 

Lemma 1. Let Q locally solve MMP for (M, P). 
Then p.e.e = pff. 

Proof. Let P° Q be given by 

{~ = f (2)  + g(2) uM 
= = h ( x )  

(16) 

where ,~ e • x ~c. The fact that Q solves MMP 
for (M, P) implies that u M does not influence the 
outputs hi~(x ~" ) = hi(x) - hff (x M) of the extended 
system E, i.e. we have solved a disturbance 
decoupling problem. By analyticity of the data 
this implies that for all k e n  and for all 
i, j ~ {1 . . . .  , m}: ~,~/~:hi(x ) = Sgg~.Le~Mh ff (xM) and 
hence in particular pffQ = pff. [] 

The decoupling matrix A(x) of P is defined on 
the open and dense submanifold where (A1) is 
satisfied in the following way: 

( A (x ) )ij = .~&.~ff~- i hi(x ) 
( i , /~  {1 . . . . .  m}). (17) 

Similarly we define decoupling matrices A M, 
A j'*°, A E for M, Po Q, E respectively. 

Theorem 4. If the decoupling matrix A(x) of P 
has full rank for all x on an open and dense 
submanifold of ~, then MMP is locally solvable 
if and only if 

p~<---pff for all i~{1  . . . . .  m}. (18) 

Moreover, in this case (18) is equivalent to the 
conditions in Theorem 3. 

Proof. See Di Benedetto and Isidori (1986) and 
Huijberts (1989a). [] 

Next we formulate our main result on the 
MMP, of which the proof will be given in 
Section 5. 

Theorem 5. Consider an analytic plant P and an 
analytic model M. Let Xo and x g  be equilibrium 
points of, respectively, P and M. Assume the 
decoupling matrix of the model has full rank 
around x0 M. Let LP, LM denote the lineariza- 
tions of P around x0 and M around xg  
respectively. Then under generic conditions on P 
the MMP is locally solvable for (M, P) if and 
only if it is solvable for (LM, LP). [] 

Roughly phrased, the theorem says that the 
MMP is "almost always" solvable for (M, P) 
provided the problem is solvable for the 
linearization (LM, LP). We refer to e.g. Tchori 
(1986) for a precise mathematical definition of a 
generic property, and we will identify checkable 
and verifiable conditions on P for which the 
above result holds true. These conditions 
naturally appear in the solution of the 
input-output decoupling problem for the plant 
P. This problem will be discussed in the next 
section. 

Notice that Theorem 5 in principle only 



Local nonlinear model matching 977 

addresses the MMP in a neighbourhood of the 
equilibria xo and Xo M. However, it is rather 
straightforward to see that the analytieity of P 
and M imply that whenever a local solution of 
the MMP exists around (xo, x0M), then there 
exists a local solution around points in an open 
and dense submanifold of • × ~M. The theory 
developed in the following sections can be 
directly extended to this situation. 

4. THE INPUT-OUTPUT DECOUPLING PROBLEM 

We consider a nonlinear system (6). Then the 
(dynamic) input-output decoupling problem is 
defined as follows 

Definition 1. Input-output decoupling prob- 
lem. Find (if possible) an integer v, a 
compensator of the form (8) for (6) and an initial 
state Xco e R v for the compensator such that the 
overall system is input-output decoupled. That 
is, each of the new inputs influences one and 
only one of the outputs• 

It is well known [cf. Isidori (1985b)] that the 
input-output decoupling problem for analytic 
systems is locally solvable by static state 
feedback (i.e. we can take v = 0) if and only if 
the decoupling matrix of (6) has full rank for all 
x. The problem of dynamic input-output 
decoupling was studied by Singh (1980, 1981) via 
a generalization of Hirschorn's nonlinear version 
(Hirschorn, 1979) of the Silverman structure 
algorithm (Silverman, 1969). In Descusse and 
Moog (1985) an interesting extension to strongly 
left-invertible nonlinear systems of linear dyna- 
mic decoupling, as was used in Wang (1970), was 
given. A more transparent algorithm for the 
input-output decoupling problem was given in 
Nijmeijer and Respondek (1988), thereby 
generalizing and expanding the algorithm of 
Descusse and Moog (1985). Essentially this 
algorithm (as well as the others) works on an 
open and dense submanifold of points (x, xc) in 

x ~c. Our basic assumption will be that given 
the equilibrium point Xo for P there exists an 
equilibrium point (Xo, Xco) for the precompens- 
ated system Po Q at which the algorithm can be 
effectively applied. To make this more transpar- 
ent we shortly discuss the first step of the 
algorithm of Nijmeijer and Respondek (1988). 
Given the plant P we compute its decoupling 
matrix A(x) according to equation (17). Clearly 
the rank of A(x) is constant on an open and 
dense submanifold ~1 of ~. Assume Xoe $C ~. 
Next a regular static state feedback. 

u = a(x) + fl(x)a (19) 

is applied to P, and which leaves the equilibrium 

point Xo invariant. Note that applying such a 
feedback does not change the rank of the 
decoupling matrix A(x). The first step of the 
algorithm proceeds with adding a bank of 
integrators 

I Zil ~" Zi2 

[ zi,, = v~ (20) 
/ 
k (4=zil 

for i = 1 , . . . ,  m and certain integers k i E ~. 
Note that for some indices i, ki = 0, which shows 
that some of the inputs a are not integrated. 
Obviously, adding (19), (20) to P yields a system 
on • x ~, where :~ = (Zll . . . . .  zzk, . . . . .  z,,,1, 
. . . .  z,,~.,) and this system possesses an equilibrium 
point (x0, z0) e ~ x ~. We now compute the de- 
coupling matrix of P together with (19), (20), to be 
denoted as A(x, z). Again this decoupling matrix 
has constant rank on an open and dense sub- 
manifold ( ~  x ~)~ of • x ~. We assume (Xo, Zo) 
belongs to (~' x ~:)~. The algorithm of Nijmeijer 
and Respondek (1988) now repeats the above steps 
of applying state feedbacks (19) and adding a bank 
of integrators as in (20). Moreover the algorithm 
terminates after a finite number of steps. Our basic 
assumption can now be stated as follows: 

(A2) Consider the system (6) around the equi- 
librium point Xo e ~. Then we assume that at each 
step of the above algorithm the decoupling 
matrix A(x, z) has constant rank in.a neighbour- 
hood of the equilibrium point (Xo, Zo). 

Essentially (A2) says that the algorithm of 
Nijmeijer and Respondek (1988) can be applied 
on a neighbourhood of the equilibrium point Xo. 
Given the analyticity of (6) this condition is 
generically met for vector fields f, g~ . . . . .  gm 
and functions h l . . . .  , h,,. 

Remark 1. Strictly speaking, the equilibria of a 
vector field f (x ,  u) are all (Xo, u0) satisfying 
f(xo, Uo)=0, whereas in assumption (A2) we 
restrict ourselves to equilibria of the form 
(Xo, 0), i.e. we let Uo = 0. If we do not restrict 
ourselves to the case that u0=0  the set of 
equilibrium points obviously gets larger. This 
freedom will be explored in Example 6.2 where 
it is shown that the conditions for solvability of 
MMP are met around an equilibrium (Xo, Uo) 
where ue#:0, while the conditions are not met 
around an equilibrium of the form (Xo, 0). Note 
however that an equilibrium of the form (x0, Uo) 
where Uo#:0 can be transformed into an 
equilibrium of the form (Xo, 0) by aplying a 
preliminary feedback. 

The following proposition shows the impor- 
tance of (A2) in that under this assumption the 
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solvability of the input-output decoupling 
problem for (6) around Xo is completely 
equivalent to the solvability of the input-output 
decoupling problem for its linearization around 
X 0 • 

Propos i t i on  1. Consider a nonlinear system (6). 
Let Xo be an equilibrium point of the system that 
satisfies (A2). Then the input-output decoupling 
problem is solvable for (6) if and only if it is 
solvable for the linearization of (6) around Xo. 

Proo f .  (Necessity) 
Assume that the input-output decoupling 

problem is solvable for (6) by means of a 
compensator of the form (8). Let Xco be such that 
(Xo, Xco) is an equilibrium point of P o Q. Since 
the compensator solves the input-output decou- 
piing problem and (A2) holds, the decoupling 
matrix of P o Q has full rank at (Xo, Xco). This 
also implies that the decoupling matrix of the 
linearization of P o Q  around (Xo, Xco) has full 
rank [see e.g. Gras and Nijmeijer (1989)]. 
Observe that the linearization of P oQ around 
(Xo, X¢o) is nothing else but the linearization of 
P o Q around Xo compensated by the linearization 
of (8) around (Xo, X~o). Hence the input-output 
decoupling problem is also solvable for the 
linearization of P around Xo. 

(Sufficiency) 
Assume that the input-output decoupling 

problem is solvable for the linearization of (6) 
around x0. It is easy to see that, since (A2) 
holds, the algorithm from Nijmeijer and 
Respondek (1988) can be applied at the same 
time to (6) and the linearization of (6) around 
Xo, meaning that at each round the feedback 
applied to the linearization is the linearization of 
the feedback applied to (6) and that we add the 
same bank of integrators to (6) and the 
linearization. [] 

In the rest of this section, we will give some 
results on the input-output decoupling problem 
for linear systems. So, consider a linear system 
of the form (1). It is well known from the 
literature [see e.g. Wang (1970), Falb and 
Wolovich (1967)] that the input-output decou- 
piing problem is solvable for (1) if and only if (1) 
is invertible [see Descusse and Moog (1985) for a 
generalization to nonlinear systems]. 

Apart from the relative degrees as defined in 
(15) we can also define another type of 
characteristic numbers for (1), called the 
essential orders. The notion of essential orders is 
based on the work by Cremer (1971). Here we 
follow Commault et al. (1986) [for a generaliza- 
tion to nonlinear systems, see Glumineau and 
Moog, (1989)]. 

Def in i t ion  2. (Cremer, (1971). Given a matrix 
W, the ith row w~ of W is called essential if wg 
cannot be represented by a linear combination of 
other rows of W. [] 

r .  -- 

Now let us denote the ( t ~ m , / z m ) - m a t r i x :  

- C B  0 . . . . . .  0 

C A B  C B  0 : 

: : " . .  0 

C A ~ - a B  C A a - 2 B  . . . . . .  C B  

(21) 

Def in i t i on  3. Consider an invertible linear 
system (1). Let ci denote the ith row of C. The 
essential order of the ith output of (1) is the 
integer Ei defined by: 

ei = inf{/~ ~ N s.t. [c imta- lB • • • c iBO . • • 0] 

is essential in F~ }. (22) 

T h e o r e m  6. Consider an invertible linear system 
(1). Then we have: 
1. ei>-p~ 
2. ei, p~ cannot be decreased by static or 

dynamic feedback 
3. The input-output decoupling problem is 

solvable by static state feedback if and only if 

ei = Pi 
4. Among all possible decoupling compensators 

there is at least one for which the essential 
orders are not increased. 

Proo f .  See Commault et al . ,  1986; Dion and 
Commault, 1985; Descusse et al. 1986. [] 

R e m a r k  2. The assertions of the above theorem 
also hold for nonlinear systems (6). For a proof, 
see Glumineau and Moog (1989), and Xia 
(1989). [] 

We have as an immediate consequence (cf. 
Commault et al . ,  1986; Dion and Commault, 
1985): 

Coro l lary  1. Consider an invertible linear system 
(1). Then for this system there is a decoupling 
precompensator of minimal dimension such that 
the relative degrees of the decoupled system 
equal the essential orders of (1). 

5. PROOF OF THE MAIN THEOREM 
In this section we will first give a proof of the 

main theorem. After that we will make some 
comments on the characterization of models that 
can be matched starting from a specific plant. 
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Assume we are given a plant P with 
equilibrium point Xo and a model M with 
equilibrium point x y  such that the decoupling 
matrix AM(x M) of the model has full rank in a 
neighbourhood of x y .  For convenience we will 
first give a reformulation of our main theorem, 
where the generic conditions on P are made 
explicit. 

Theorem 7. Consider an analytic plant P and an 
analytic model M. Let Xo and x0 M be equilibrium 
points of respectively P and M. Assume that P 
satisfies (A2) and that the decoupling matrix of 
the model has full rank around xo M. Let LP, LM 
denote the linearizations of P around Xo and M 
around Xo M respectively. Then the MMP is locally 
solvable for (M, P) if and only if it is solvable for 
(LM, LP). [] 

Before proving the main theorem we will 
prove some preliminaries. 

Lemma 2. Let Q be a compensator that locally 
solves the MMP for (M,P), where the 
decoupling matrix AM(x M) has full rank around 
the equilibrium x0 M. Then Ae°Q(x, x¢) has full 
rank on an open and dense submanifold of 
~X~c. 

Proof. Let P o Q be given by: 

{~ = f(2) + g(2) uM 
= fi(2) = h(x) 

(23) 

where £ e ~ x ~c. Recall from Lemma 1 that the 
fact that Q solves MMP implies that p eoO = py. 

M Since Q solves MMP, for any x ,  there is an 2,  
such that for any u M and any k e IN : ~e&~]/~(£) = 
~gM.~MhM(x M) along the trajectories of P oQ 
and M starting at 2,  and x ,  M respectively. Hence 
in particular there is an 2 for which Ae'Q(2) has 
full rank. Then by analyticity of the data: 
Ae°Q(£) has full rank on an open and dense 
submanifold of ~ x ~c. [] 

This leads to: 

Proposition 2. Consider an analytic plant P and 
an analytic model M, where the decoupling 
matrix AM(x M) has full rank around the 
equilibrium xY. Then MMP is locally solvable 
for (M, P) if and only if there is a dynamic 
compensator Q such that P o Q is decouplable by 
regular static state feedback and p/eOQ _< p~. 

Proof. (Necessity) 
If Q locally solves MMP, then we know by 

Lemma 2 that A P°Q has full rank on an open and 

dense submanifold. Hence P oQ is decoup- 
lable by static state feedback. Furthermore by 
Theorem 4: p~°Q -< p/g. 
(Sufficiency) 

Follows immediately from Theorem 4. [] 

We now come to the proof of our main theorem: 

Proof (of Theorem 7). (Necessity) 
If MMP is solvable for (M, P) then by 

Proposition 2 there is a dynamic compensator Q 
such that P oQ is decouplable by regular static 
state feedback and pff°Q-< p.M. Since (A2) holds, 
this implies that there is a compensator LQ for 
LP such that LPoLQ is decouplable by regular 
static state feedback and p~eoLQ<p~M. Hence 
by Proposition 2, MMP is solvable for 
(LM, LP). 

(Sufficiency) 
Follows immediately by reversing the reason- 

ing of the necessity part. [] 

Proposition 2 also enables us to characterize 
models that can be matched starting from a 
specific plant. 

Theorem 8. Consider an analytic plant P with 
equilibrium point Xo satisfying (A2). Let the 
essential orders of its linearization around x, be 
denoted by e~. Then MMP is locally solvable for 
(M, P) where M is an analytic system and the 
decoupling matrix AM(x M) has full rank around 
the equilibrium x0 M, if and only if ei - p,M. 

Proof. (Necessity) 
Assume that MMP is solvable for (M, P) 

where the decoupling matrix AM(x M) has full 
rank around the equilibrium xff. Then, by 
Theorem 7 MMP is also solvable for (LM, LP). 
By Proposition 2 this implies that there is a 
dynamic compensator LQ such that LPoLQ is 
decouplable by regular static state feedback and 
pLeoLO < pLM. By Corollary 1 we have RLP*LQ > 
e~ and thus: e~ -< pff. 

(Sufficiency) 
Consider a model M for which the decoupling 

matrix AM(x M) has full rank around the 
equilibrium x~ and that satisfies ei-<pff. By 
Corollary 1 there is a decoupling compensator 
LQ for LP such that the relative degrees of 
LPoLQ are just ei. By Proposition 1 (or rather 
the proof of it) this implies that there is a 
decoupling compensator Q for P such that the 
relative degrees of P oQ also equal ei. Thus 
there is a decoupling compensator Q for P such 
that ppoO = E. i ~ pM and hence by Proposition 2 
we find that the MMP is solvable for (M, P). [] 

AUI0 26:6-C 
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6. E X A M P L E S  

Example 1. We first consider the example also 
studied in Di Benedetto and Isidori (1986) and 
Di Benedetto (1988a). Here the plant is of the 
form 

pJ'2~ = f ( x )  + gl(x)ul  + g2(x)u2 (24) 
ty, = h,(x) (i = 1, 2) 

where 

hi(x)  =x2 - x 3  

h2(x) =xl .  

rol 

(25) 

The relative degrees of the system equal 1 and 
1 on an open and dense submanifold containing 
the equilibrium (xo, uo) where Xo = (0, 1, 1, 0), 
uo= (0, 0), and the decoupling matrix on this 
submanifold is given by 

[ - 1 0 ]  
A(x )  = • (26) 

x3 0 

It can easily be checked that (A2) is satisfied 
around the equilibrium point Xo. The lineariza- 
tion of P around Xo is given by 

(~  = Fx + Gu 
L P  Hx 

0 0 0  G =  
0 0 0  

0 0 0  

(27) 

(28) 

where 

The essential orders of L P  equal 2 and 2, so in 
principle any two-input-two-output system that is 
decouplable by static feedback and has relative 
degrees at least equal to 2 and 2, can be taken as 
a model. In particular we can take the linear 
model that was proposed by Di Benedetto and 
Isidori (1986) [see also Di Benedetto (1988a)] 
and is given by 

2 M ~- A M x  M -4- B M u  M 

M (29) yM _ CMx M 
where 

A M  = 0 0 B M  = 

0 0 
0 0 (30) 

0 0 

Applying the algorithm of Xia and Gao (1988) 
yields the following minimal order decoupling 
compensator for the plant: 

I 
3~ c = U t 

ul = x4 - x~ (31) 

/'/2 ~ U2 

where v~, v2 are the new inputs. Differentiation 
of the outputs of P after we have applied (31) 
yields: 

0 ][v,] 
X 3 .-1.- X 4 - -  X c 132 

(32) 

Differentiation of the outputs of the model yields 

y ~ = u ~  ( i = 1 , 2 ) .  (33) 

Thus, MMP is solved for (M, P) if we take 

I  x:x, l 
U2 X3 + X4  - -  Xc I 

+ x3 1 LufJ" 
X 3 + x 4 - x c  X 3 + X a - - X c  

Combining (31) and (34), we obtain as 
compensator that solves MMP: 

~c=u~ 
U 1 ~ X 4 - -  X c 

(X 4 ~'- X c )  2 
a '  / 2 2 =  

X3 + X4 - -  Xc 

(34) 

which is exactly the compensator obtained in 
another fashion by Di Benedetto (1988a). Also, 
an easy computation shows that this compen- 
sator is equivalent to the one obtained in Di 
Benedetto and Isidori (1986). Hence, using our 
method we have produced in a constructive way 
the compensator that was derived heuristically in 
Di Benedetto and Isidori (1986) and Di 
Benedetto (1988a). 

Example 2. In this example our plant will be a 
voltage frequency controlled induction motor as 
described by De Luca and Ulivi (1988). As state 
variables we take the projections of the stator 
current and flux vectors on a reference frame 
(a~, fl) which is fixed to the stator windings, and 
the angular position of the voltage input vector. 
As inputs we will take the amplitude of the 
voltage input vector and the voltage supply 
frequency. The parameters R~ and R~ are the 
stator and rotor resistances, L~ and Lr are the 

X3 ~- u~ 
X 3 "4- X 4 - -  X c 

1 
+ (35) 

X 2 4- X4 - -  Xc u M  
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stator and rotor self-inductances and M is the 
mutual inductance. The speed w can be 
considered as a slowly varying parameter, due to 
the large separation of time-scales between the 
mechanical and the electromagnetic dynamics. 
In the sequel we will assume it to be constant• 

Defining .~ = (xl . . . . .  x4) and x = ($, xs), the 
state equations are written as 

~ =  [A'~I+ [g'(o xS) 01][u:] (36) 

where 

A = 

-(o~ + 3) 

O) 

- ~oLs 
0 

3 09 
~ O 9  

Ls oLs 

o9 3 
-(~x + fl) aL~ L, 

0 0 0 
- oloL~ 0 0 

and 

gl(xs) = 

I-COS X 5 

aL~ 

sin x s 

aLs I 

COS X 5 

Lsin xs_ 

(37) 

R~ R~ M 2 

 =oL-Z' 3=Z,E' o=l-L,C-- Z 
Suitable outputs for the system are defined in 

terms of the stator flux and the torque. Hence, 
the following nonlinear output functions will be 
used 

h l ( X  ) = (~2 = X  2 + x  2 
(38) 

h2(x) = T,, = xzx3 - xlx4. 

If we look for equilibria of the form (Xo, 0) (cf. 
Remark 1), we find Xo = (2, xs) = (0, xs), since A 
is invertible. In these equilibria the relative 
degrees are infinite, so (A2) does not hold in 
these equilibria. It is easily seen that with 

1 3 2 o  -I" 0)2 
Xo = - ocoL---~ ' 0, - o c ( 3 2 o  2 + o92) ,  

3w(a  - 1) 0), 
~(32o 2 + o9~)' 

Uo=(1,0), (Xo, Uo) is an equilibrium. This 
equilibrium can be transformed into an equi- 
librium of the form (Xo, Vo) with Vo=0 by 
introducing the preliminary feedback 

[] [] u l = 1 + . (39) 
U2 X 5 13 2 

The relative degrees of the system after we 
have applied the preliminary feedback equal 1 

and 1 on an open and dense submanifold 
containing Xo, provided M#:0  and M 2:~ 

2 2 2 
Lro9 - Rr L~, and the decoupling matrix on this 

Lro9 2 
submanifold is given by 

A(x) = 

 -x2) cosx, 
(40) 

A straightforward calculation, using REDUCE 
shows that (A2) is satisfied around the 
equilibrium point Xo. The linearization of the 
system around Xo is given by 

(~=  Fx + Gv (41) 
LP Hx 

where 

"-(o: + 3) 

o9 
F= 

-- a'aLs 

0 

0 

--O9 

-(o: +-3) 

0 

- o:aLs 

0 

" 1 

0 
G =  

1 

0 

0 

3 
Ls 

to 

aLs 

0 

0 

0 

0 

0 

0 

0 

1 

o9 
0 

aLs 

3 1 

Ls oLs 

0 0 

0 1 

0 1 

H =  

E 0 0 

3o9(0 - 1) 320 + o92 

~(32o2 + o92) ~(32o2 + o92) 

--2fl2a+toE 9 flo9(0--1) f l ' ]  
0~(320~ + o92) - 0~(32a2 + o92) ~ j 

1 
0 oraLs 

It can easily be checked that the essential 
orders of LP equal 2 and 2. Hence any 
two-input-two-output system that is decouplable 
by static state feedback and has relative degrees 
at least equal to 2 and 2 can be taken as a model. 
Using REDUCE, compensators have been 
calculated for several models. The results have 
been omitted here, because of their lengthiness. 
We refer to e.g. Huijberts (1989b) for more 
worked examples. 
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7. CONCLUSIONS 

A local solution to the nonlinear model 
matching problem in case the model is 
decouplable by static state feedback has been 
given. The method to obtain this solution is 
completely analytic. 

An implication of the method that is proposed 
in this paper is that if we start from an 
equilibrium point of P oQ that satisfies (A2) 
and from an equilibrium point of the model, we 
in fact have perfect matching: also the zero-th 
order kernels of the Volterra expansions of P o Q 
and M coincide. 

It should be noted also that in this paper 
results from Isidori (1985a) are generalized for a 
linear model that is decouplable by static state 
feedback. 

A problem that remains unsolved is the model 
matching problem for models that are not 
decouplable by static state feedback. In this case 
the method of this paper does give some 
necessary conditions: the number of input- 
output channels of P that is decouplable by 
dynamic state feedback must be greater than or 
equal to the number of input-output channels of 
M that is decouplable by static state feedback. 
Further research is required to obtain necessary 
and sufficient conditions in this case. 

Another problem that remains unsolved is the 
problem of internal stability of the compensated 
plant after we have solved the nonlinear MMP. 
Up till now, this problem has only been 
addressed by Byrnes et  al. (1988) in the case 
where the plant is a SISO-system and by 
Huijberts (1989a), in the case where the plant is 
decouplable by static state feedback. The 
problem consists in the fact that, even if we start 
from an internally stable plant and an internally 
stable model, we may very well introduce 
unobservable unstable modes in the closed loop. 
In order to solve this problem, further 
investigation of the structure of a model 
matching configuration is needed, especially 
concerning the "fixed" and "free" modes of such 
a configuration. For linear systems this inves- 
tigation has already been performed in Morse 
(1973). For nonlinear systems this question is 
undoubtedly much more difficult. So far, only 
results about "fixed" modes in the solution of 
the input-output decoupling problem have been 
obtained in Isidori and Grizzle (1988). It is not 
clear if a similar analysis is applicable for the 
here considered nonlinear MMP. We leave this 
open for future research. 

Acknowledgments--We would like to thank C. Moog and 
X.-H. Xia for sending us the preprints of their very 
interesting papers on minimal dynamic precompensators. 

REFERENCES 

Byrnes, C. I., R. Castro and A. Isidori (1988). Linear model 
matching with prescribed tracking error and internal 
stability for nonlinear systems. In A. Bensoussan and J. L. 
Lions (Eds), Analysis and Optimization of Systems, 
Lecture Notes in Control and Information Sciences, Vol. 
111, pp. 249-258. Springer, Berlin. 

Commault, C., J. Descusse, 3. M. Dion, J. F. Lafay and M. 
Malabre (1986). About new decoupling invariants: the 
essential orders. Int. J. Control, 44, 689-700. 

Cremer M. (1971). A precompensator of minimal order for 
decoupling a linear multivariable system. Int. J. Control, 
14, 1089-I 103. 

De Luca, A. and G. Ulivi (1988). Dynamic decoupling of 
voltage frequency controlled induction motors. In A. 
Bensoussan and J. L. Lions (Eds), Analysis and 
Optimization of Syste~,  Lecture Notes in Control and 
Information Sciences, Vol. 111, pp. 127-137. Springer, 
Berlin. 

Descusse, J., and C. Moog (1985). Decoupling with 
dynamics compensation for strong invertibility affine 
nonlinear systems. Int. J. Control, 42, 1387-1398 

Descusse, J., J. F. Lafay and M. Malabre (1986). A survey 
on Morgan's problem. Proc. 25th Conf. on Decision and 
Control, Athens, pp. 1289-1294. 

Di Benedetto, M. D., (1988a). A condition for the 
solvability of the nonlinear model matching problem. 
Proc. Colloque International Automatique Non Lineaire, 
Nantes, France. 

Di Benedetto, M. D. (1988b). New results on nonlinear 
model matching. To appear in IEEE Trans. Aut. Control. 

Di Benedetto, M. D. and A. Isidori (1986). The matching of 
nonlinear models via dynamic state feedback. SlAM J. 
Control Optimiz., 24, 1063-1075. 

Dion, J. M., and C. Commault (1985). On linear dynamic 
state feedback decoupling. Proc. 24th Conf. on Decision 
and Control, Ft Lauderdale, FL, 1031-1037. 

Emre, E. and M. L. J. Hautus (1980). A polynomial 
characterization of (A,B)-invariant and reachability 
subspaces. SIAM J. Control Optimiz., 18, 420-436. 

Falb, P. L. and W. A. Wolovich (1967). Decoupling in the 
design and synthesis of multivariable control systems. 
IEEE Trans. Aut. Control, AC-12, 651-659. 

Glumineau, A. and C. H. Moog (1989). The Essential 
Orders and the Nonlinear Decoupling Problem. Int. J. 
Control, 50, 1825-1834. 

Gras, L. C. J. M., and H. Nijmeijer (1989). Decoupling in 
nonlinear systems: from linearity to nonlinearity. IEE 
Proc., 136, Pt. D., 53-62. 

lsidori, A. and J. W. Grizzle (1988). Fixed modes and 
nonlinear noninteracting control with stability. IEEE 
Trans. Aut. Control, AC-33, 907-914. 

Hirschorn, R. M. (1979). Invertibility of nonlinear control 
systems. SlAM J. Control Optimiz., 17, 289-297. 

Huijberts, H. J. C. (1989a). Nonlinear model matching, with 
an application to Hamiltonian systems. Preprints IFAC 
Non Linear Control Systems Design Symp. 1989, Capri. 

Huijberts, H. J. C. (1989b). Nonlinear model matching: a 
solution and two worked examples. Proc. 1990 ACC, San 
Diego, pp. 155-160. 

Isidori, A. (1985a). The matching of a prescribed linear 
input-output behavior in a nonlinear system. IEEE Trans. 
Aut. Control, AC-30, 258-265. 

Isidori, A. (1985b). Nonlinear control systems: an introduc- 
tion. Lecture Notes in Control and Information Sciences, 
Vol. 72. Springer, Berlin. 

Malabre, M. (1982). Structure ~i l'infini des triplets 
invariants. Application ~t la poursuite parfaite de mod~,le. 
In A. Bensoussan and J. L. Lions (Eds), Analysis and 
Optimization of Systems, Lecture Notes in Control and 
Information Sciences, Vol. 44, pp. 43-53. Springer, 
Berlin. 

Moog, C. H., A. M. Perdon and G. Conte (1989). Model 
matching and factorization for nonlinear systems: a 
structural approach. To appear in SlAM J. Control 
Optimiz. 



Local n o n l i n e a r  mode l  ma tch ing  983 

Moore, B. C. and L. M. Silverman (1972). Model matching 
by state feedback and dynamic compensation. IEEE 
Trans. Aut. Control. AC-17, 491-497. 

Morse, A. S. (1973). Structure and design of linear model 
following systems. IEEE Trans. Aut. Control, AC-18, 
346-354. 

Morse, A. S. (1976). Minimal solutions to transfer matrix 
equations. IEEE Trans. Aut. Control, AC-21, 131-133. 

Nijmeijer, H. and W. Respondek (1988). Dynamic 
Input-Output Decoupling of Nonlinear Control Systems. 
IEEE Trans. Aut. Control, AC-33, 1065-1070. 

Silverman, L. M. (1969). Inversion of multivariabte linear 
systems. IEEE Trans. Aut. Control, AC-14, 270-276. 

Singh, S. N. (1980). Decoupling of invertible nonlinear 
systems with state feedback and precompensation. IEEE 

Trans. Aut. Control, AC-25, 1237-1239. 
Singh, S. N. (1981). A modified algorithm for invertibility in 

nonlinear systems. IEEE Trans. Aut. Control, AC-26, 
595-598. 

Tchofi, K. (1986). On stable and typical properties of control 
systems. Scientific Papers of the Institute on Engineering 
Cybernetics of the Technicla Unioersity of Wroclaw, No. 
71. Wydawnictwo Politechniki Wroclawskiej, Wroclaw. 

Wang, S. H. (1970). Design of precompensator for 
decoupling problem. Electron. Lett., 6, 739-741. 

Xia, X.-H. and W.-B. Gao (1988). A minimal order 
compensator for decoupling a nonlinear system. Preprint. 

Xia, X.-H. (1989). New invariants---essential ranks of 
nonlinear systems. Preprint. 


