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The emission of sound by statistically homogeneous bubble layers 

L. van W I J N G A A R D E N  and J. BUIST* 
University of Twente, P. 0 Box 217, 7500 AE Enschede, The Netherlands; *present address: Ultracentrifuge 
Nederland, P.O. Box 158, 7600 AD Almelo, The Netherlands 

Abstract. This paper is concerned with the flow of a bubbly fluid along a wavy wall, which is one Fourier 
component of a linearized hydrofoil. The bubbles are dispersed, not throughout the whole of the liquid, but only 
over a certain distance from the wall, as occurs in practice with cavitation bubbles. Outside the bubbly regime there 
is pure liquid. 

The interface between the bubbly fluid and pure liquid fluctuates for various reasons. One of these is the relative 
motion between bubbles and liquid. This is considered here in detail. A calculation is made of the sound emitted by 
the bubbly layer into pure liquid as a result of this stochastic motion of the interface. 

I. Introduction 

Cavitat ing ship propellers emit  sound. This may reach in the region around 1 K H z  an 
intensity of 150 dB in the far field spectrum. The dangers associated with such a strong sound 
emission are obvious for navy vessels, but also with merchant  ships the strong sound 
emission causes great discomfort  inboard. The spectral distribution of the emitted sound 
looks like that sketched in Fig. 1, taken from the thesis by Buist [1]. Such distributions can 
be measured  on model  scale. It is, at the present  time, not possible to predict f rom such 
measuremen t s  what the full scale emission is, in magnitude and in spectral distribution. A 
study on cavitation sound prediction is being made by us in cooperat ion with the Mari t ime 
Research Institute in the Netherlands ( M A R I N ) .  

It has been  known for a long time that the sound stems from the collapse of cavitation 
bubbles.  Recently,  however ,  evidence was gained that only at high frequencies does the 
sound come f rom individual bubbles,  while at lower frequencies interaction between bubbles 
is important .  

The  work by O m t a  [2] and Buist [1] showed in particular, that a broad plateau at 1 K H z  is 
genera ted  by clouds of collapsing bubbles. At  M A R I N  experiments  were carried out in this 
connection.  A hydrofoil (for a detailed description see Buist [1]) was positioned in a 
cavitation tunnel. Small gas bubbles were injected in the flow adjacent to the hydrofoil. In 
this way a bubbly flow passed closely near  the foil. Under  influence of the pressure 
distribution associated with the flow along the hydrofoil,  the bubbles grew and collapsed.* 
Pressures in the water  flow, resulting f rom this interaction between the bubbly layer and the 
outer  (pure liquid) flow, were measured.  Bubbles could, at the injection site, be produced 
intermittently or continually. In both cases the measured sound intensity, as derived f rom 
the pressure fluctuations, agreed well with the theory in Omta  [2] and Buist [1]. In these 
theories the hydrodynamics  of collapsing clouds of bubbles is considered. For  the phenom-  
ena inside a cloud, equations are used which were derived in Biesheuvel & van Wijngaarden 

tin practice bubbles contain both gas and vapour. The difference in behaviour with gas filled bubbles is quantitative 
rather than qualitative. 
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Fig. I. Schematical representation of the spectral distribution of the sound emitted by a cavitating ship propeller. 
From Buist [1]. 

[3]. These equations are established by averaging on the mesoscale. The latter is a scale in 
between the microscale (in the case of a bubble cloud represented by the inter bubble 
distance) and the macroscale (for example the chord length of the hydrofoil). Such average 
equations predict a steady flow, both in the bubble layer and in the outer flow, when external 
parameters as incidence, rate of injection of bubbles and incoming flow velocity, are kept 
constant. 

Such a flow, by its steady nature, does not emit sound. Nevertheless, sound emission is 
observed. This has two causes. Firstly, bubbles cluster together and form clouds, which is an 
unsteady process. Secondly, fluctuations around the average quantities contribute to sound 
emission. These fluctuations are suppressed by the averaging process. It is important to 
estimate the contribution by the fluctuations, because, if they are important, the use of 
average equations would be dubious or would, at the least, not provide a sufficiently 
complete description of the generated sound intensity. In the present paper our attention is 
focused on the sound emission by fluctuations. In a bubbly flow various fluctuations may 
occur. Buist [1], see also Buist [4], considers fluctuations of the local void fraction caused by 
fluctuations of the pressure inside the bubbles. He concludes that the sound intensity 
produced by these can be estimated to be 90 dB, which is considerably smaller than the 
observed sound intensity of cavitating flows which is as mentioned earlier, 150 dB. 

Another type of fluctuations mentioned by Buist [1], but not taken further into considera- 
tion, is caused by relative motion between bubbles and liquid. Relative motion in a bubbly 
flow occurs whenever there are accelerative forces. In vertical pipe flow, for example, this is 
buoyancy. In the case of the flow of a bubbly fluid along a hydrofoil it is the pressure 
gradient associated with the curvature of the foil. This works on both the gas and on the 
liquid, but because of the different inertia, both phases obtain different velocities under the 
same pressure gradient. The relative motion causes fluctuating velocities in the bubbly part 
of the fluid and therefore also of the interface between this and pure liquid outside the 
bubbly layer. The fluctuations of the interface, in turn, lead to sound emission in the pure 
liquid. Our aim is to calculate the intensity of this. We don't take a complete hydrofoil but 
consider instead an infinitely long wavy wall of wavelength A only. The wavy wall is a well 
known concept in aerodynamics because, within the context of linear theory, the flow along 
a thin hydrofoil can be obtained from the analysis of one wavelength by Fourier synthesis. 

The flow configuration is sketched in Fig. 2: along a wavy wall the height of which is in a 
two-dimensional x, y frame given as the real part of 
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Fig. 2. Flow of  a b u b b l e / l i q u i d  m i x t u r e  a long  a w a v y  wal l .  B e t w e e n  the  wal l  and  the  he igh t  y = H + 77 is a m ix tu r e  

of  a i r  b u b b l e s  and  wate r .  Fo r  y ~ H + r/, t he re  is pu re  water .  

{ 2 ~rix ~ 
y = e exp~,-----~] , (1.1) 

is a flow in part consisting of a bubbly liquid, and pure liquid in the remainder. The average 
interface is at y = H,  the local interface at y = H + r/(x, t). The undisturbed velocity is U~ in 
both parts, independent of x, y and the time t. In the bubbly flow the macroscale is the 
wavelength A, the microscale is the mean distance between bubbles. When the number 
density of the bubbles is indicated n, this is proportional t o  n -1/3. In order that averages be 
meaningful, we must require 

n - l / 3 ~ A .  (1.2) 

The averaging is done over a region with linear dimension l, say, small with respect to A but 
large with respect to n-1/3, as symbolically indicated in Fig. 2. The part of the displacement ~q 
which is due to the mean flow (on the scale l) and which we denote 7 h (x) is steady. The part 
which is due to the fluctuations is denoted ~2(x, t) and interests us here. 

Flow of a bubbly liquid along a wavy wall occupying the upper half plane y/> 0, has been 
analysed by Agostino et al. [5] some years ago. They considered flows in which relative 
motion between phases can be neglected and calculated for such flows distributions of void 
fraction, velocity and pressure. Buist [1] extended the work by Agostino et al. [5], to the 
situation of Fig. 2. In the next section we shall use Buist's analysis to determine the relative 
motion between phases in situation of Fig. 2. Then, in Section 3, we shall investigate the 
influence of relative motion on the fluctuations of the interface, ~2(x, t). Finally, in Section 
4, we shall relate the sound energy emitted through a plane A-A ,  in Fig. 2, to the 
fluctuations 7/2(x, t) of the interface. 

2. Mean quantities including relative motion, in bubbly layer 

We start with the introduction of some parameters, characterising the bubbly mixture 
contained, in Fig. 2, between the wavy wall and pure liquid. Let the undisturbed radius of 
each bubble be a 0 and a(x, y) in the general case. Together with the number density n, a 
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defines the void fraction a 

4 3 
ce = ~ rrna . (2.1) 

Since a ~ ( a / n - l / 3 )  3, the void fraction is small when the bubble radius is small with respect 
to the inter bubble distance. This is always the case in cavitating flows and we may therefore 
in the following regard a as a small quantity, a < 1. Let  the (constant) liquid density be P0 
and let P0 be the pressure in the undisturbed state. It is well known (see e.g. Van 
Wijngaarden [6]) that a bubbly suspension has a sound velocity c m which is considerably 
lower than the sound velocity either in liquid or in gas, and given, for infinite wavelength, by 

2 YPo (2.2) 
C m ~ . 

P O  Olo  

where y is the ratio of specific heats of the gas in the bubbles. At  finite wavelength the 
pressure inside the bubbles is no longer equal to the pressure in the fluid adjacent to the 
bubble,  which leads to dispersion. In the case of Fig. 2 this depends on the frequency k U ~ ,  

where 

k = 2¢r /a ,  (2.3) 

as compared with the natural frequency 

1{3y p /p }1/2 
O)b = ao o o , (2.4) 

of  the bubble. 
For  to b >> kU= we have (2.2) whereas for wavelengths k such that kU= is comparable with 

OJb, the modified sound speed c,, holds, given by 

~ - 2  - 2 t  2t ,"  2 
C m = C m ~ O J b / ~ £ O  b - -  k2U2cc)} " ( 2 . 5 /  

In our present application it is highly unlikely that kU~  would ever become close to (.D b . With 
a 0 --- 10 3 m, to b - 10 4 s -1. Since we are under cavitating circumstances, PoU~ ~ 10SPa, which 
with P0 = 103 kg/m3 means U= -- 10 m/s.  Then kU~  = t% for wavelengths of a few millimeter. 
With hydrofoils such small wavelengths do not occur, perhaps approximately at the very 
leading edge. Elsewhere 3, is of the order  of the chord length and in consequence kU~  ~ w b. 

We shall therefore in the following neglect kU~ with respect to to b. Then,  a Mach number  M 
follows naturally as 

M = U J c  m . (2.6) 

In the present application M will be low. For  example, take a = 5%, P0 = 10SPa, P0 as before 
and y =  1.4. With, as above, U= = 10m/s ,  we obtain M =0.1 .  

Buist [1] derived expressions for pressure, velocity and void fraction for the configuration 
of Fig. 2, using in the region occupied by the bubbly suspension, the averaged equations 
given in Biesheuvel and van Wijngaarden [3]. From the analysis in Buist [1], it follows that 
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the pressure perturbat ion is the real part of 

P , .  - PI~ 
poekU2= e x p ( i k x )  [ 

(1 - M 2 )  '/2 e x p { - ( 1  - M2)"2ky} 

+ {(1 - a~,)(1 - M 2 )  1/2 - (1  - 2 a 0 ) } ( e x p ( ( 1  - M 2 ) " Z k ( y  - H ) }  + e x p { - ( 1  - M2)"2k(y 4- H ) } ) ]  

2 c o s h { ( 1  - Mz)~'2kH} + 2(1 - M Z )  ' n  s i n h { ( 1  - M2)'/2kH} 

(2.7) 

This is a rather  formidable expression, which for our purpose can be simplified considerably, 
since we are interested in low values of both M and a. To see the contributions to p,,, - Po of 
various effects, let us take first M = 0 and H---~ ~. Then 

P,, - P0 = - P0 ekU2= exp(ikx) e x p ( -  ky) ,  

which satisfies Laplace's equation and is -P0 U= times the velocity associated with potential 
flow along the linearized wavy wall. Next take H---~ ~ and M # 0. Then the second term in 
the square brackets on the right-hand side of (2.7) vanishes and the remainder is the 
pressure distribution of the wavy wall flow of a compressible flow with Mach number M, to 
be found in many textbooks on gas dynamics, e.g. Liepmann & Roshko [7]. At finite values 
of H,  the second term in the square brackets in (2.7) appears to be small at small M and a 0. 
Take  for example M = 0 and y = H. Then 

[ '  ] Pm -- Po = -poekU~ exp(ikx) e x p ( - k H )  1 + ~ a0(1 + e x p ( - 2 k H ) )  . 

We see that the contribution of the second term is of order a 0. In other  words, the pressure 
distribution in the bubbly layer deviates at zero Mach number to order  a 0 from the 
expression valid in pure liquid. This remains the case at small Mach numbers when M 2 is of 
order  ao, as can be readily verified. 

We shall therefore base our calculation of the relative velocity between liquid and bubbles 
on the pressure distribution given in (2.7), without the second term in the square brackets, 

P m  - -  PO 

O<~y<~H. 

poekU2~ 
( i ~ M - - ~ / 2  exp(ikx) e x p { - ( 1  - MZ)l/Zky}, 

(2.8) 

The velocity perturbations u - U= and v, in x and y direction respectively associated with this 
pressure perturbation,  are (real parts being implied) 

= ekU= 
u - U= (1 - M2) 1/2 exp(ikx) e x p { - ( 1  - M2)a/2ky}, (2.9) 

v = ekiU= exp(ikx) e x p { - ( 1  - M2)l/2ky}. (2.10) 

Relations (2.9) and (2.8) show the well known facts that the x-component  of the velocity is 
in phase with the wall elevation, the pressure in anti-phase. 

The  pressure gradient, following from (2.8) produces relative motion between bubbles and 
liquid. Let  us first assume that this is dominated by inertia forces rather than by viscous 
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forces. Denoting the velocity in the liquid U(u, v) and of the bubbles V(Vx, Vy), we have, 
D / D t  being a material derivative following the bubbles (Biesheuvel and van Wijngaarden 
[3]), 

D DU 
Dt  m ( V -  U) = - V V p  m = po V Dt  " (2.11) 

Here  m is the virtual mass of a bubble, which has for spherical bubbles the value 1/2poV, V 
being the volume of one bubble. The above relation gives, for spherical bubbles, the result 
that the bubbles move at three times the liquid velocity. Incidentally, we note that using a 
material derivative following the liquid where U is concerned, which is sometimes advocated 
in the multiphase literature, would not make any difference because of the linearisation 
around U~. 

The relative velocity of the bubbles with respect to the liquid has therefore the compo- 
nents 

2ekU= 
V x - u = -- .7~,1/2 exp(ikx) e x p { - ( a  - m2)"2ky). 

(1 

Vy - v = 2 i ekU~ exp(ikx) e x p { - ( 1  - MZ)~/Zky} . 

(2.12) 

(2.13) 

Of  course, frictional forces affect the relative motion. The time which it takes viscous forces 
to influence the motion, the so-called relaxation time, o-, say, is the product of the virtual 
mass m and the mobility (127r/xa) -1, or for a sphere 

~ =  a ~ / 1 8 u ,  (2.14) 

where /~ and u are the dynamic and kinematic viscosities of the liquid respectively. With 
a = 10 -3 m and water as liquid, for which u = 10 -6 m2/s, o- is of the order  of 10 -1 - 10 °. The 

characteristic time for changes in the velocity is A/Uo~. The importance of viscous forces 
depends on whether the ratio between these times, i.e. 

U=o" (2.15) 
A ' 

is small or large. In the first case viscosity is important,  in the second case it is not. If we 
take, like we did earlier, U= = 10m/s ,  and if we take A = 10 1, then with o- = 10 -1, this 
parameter  is 10, with o- = 10 ° it is 102. In practice therefore the parameter  U=cr/A is likely to 
be large, and in consequence (2.12) and (2.13) are appropriate. Nevertheless, for complete- 
ness, we give also the relative velocity in the opposite case in which (2.15) is small. In that 
case the pressure force represented by the right-hand side of (2.11) is not balanced, like in 
that equation, by the rate of change of the impulse but rather by the frictional force 
127r /za(V-U) .  This gives the relative velocities, using (2.8) 

2 ek2U~ la__o 
V x - u -  9 v ( 1 - M 2 )  1/2 sin(kx) e x p { - ( 1 - M Z ) ' / 2 y } ,  (2.16) 

2 

1 ao ek zU2  cos(kx) e x p { - ( 1  - M Z ) I / Z y ) .  (2.17) V y - v -  9 v  
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Note that the ratio of the magnitude of these velocities to those given in (2.12) and (2.13) is 
just the parameter described in (2.15), or being given by (2.14). 

3. Sound emitted by fluctuations of 7/2(x, t) 

We consider a small portion of a wave length, for example B - B  in Fig. 2. When enlarged 
this looks as in Fig. 3. We see the interface */2 under which pass bubbles with relative velocity 
indicated by the arrows. Far above the interface in the pure liquid is the plane A - A ,  the 
sound emission through which is of interest here. How is the sound produced? The bubbles 
are randomly distributed through the liquid. Their motions relative to the liquid (the 
magnitude of which has been calculated in Section 2), induce a velocity in each point P '  in 
the liquid. This also is a randomly varying quantity. In particular we are interested in the 
velocity at a point P located in the interface. The y component v of this is related to the time 
derivative of "02 by 

0"02 + U~ 0"q2 
Ot - ~ x  = v .  (3.1) 

In its turn, the motion of the interface can be related to the intensity of the sound emitted 
through a plane like A - A  in Fig. 3. For this it is convenient to follow Buist [1] and to choose 
a frame moving with the free stream velocity U~. Such a frame has coordinates X, Y given 
by 

X = x - U ~ t ,  

Y = y .  

(3.2) 

In the moving frame (3.1) reduces to 

0"02 
Ot v . (3.3) 

Pictures similar to Fig. 3 are obtained at other locations in the wave of Fig. 2 when the 
arrows are tilted over an angle corresponding with the local value of (Vy - v ) / ( V  x - u).  

A 

"r?2(x,t) 

(D > 
0 - - >  0 ~' 0 > 

x p ;  

0 > Q > 0 > 

Fig. 3. Fluctuations ~2(x, t) of the interface between bubbly fluid and pure water, caused by the motion, relative to 
the water, of bubbles. 



202 L. van Wijngaarden and J. Buist 

In the region located in Fig. 3 above the bubbly layer, there is motion of pure liquid and 
when we ignore viscosity this motion is irrotational and has in consequence a velocity 
potential, q~, say. The y component of its gradient is the vertical velocity at the interface 
which, by the kinematic surface condition, must be equal to v in (3.3). Hence we have 

Or/2 0 q~ 
0-t - (O-Ty)y=/4 " (3.4) 

The flow potential satisfies the wave equation 

02~0 "1"- 02'''~ -- 1 02~ (3 .5)  
a X  2 Oy 2 C 2 0 t  2 ' 

where c I is the velocity of sound in liquid, 1500 m/s  for the important case in which the liquid 
is water. The pressure disturbance p - P0 in the liquid is related to q~ by, 

P - P0 = -P0 -~" • (3.6) 

The energy flux, in Wat t /m 2, through A - A ,  has the momentary value 

I =  ( p - p o ) V ,  (3.7) 

and its mean value, indicated with the overbar, is 

t = ( p  - p o ) v .  (3.8) 

The mean can be taken with respect to time, at one location X, or with respect to X, at one 
time. When the process is statistically stationary these mean values are identical and both 
equal to the ensemble average, which is the average over all the possible configurations of a 
large collection of bubbles like in Fig. 3. Eventually we are interested in the spectral 
distribution of I, which calls for the use of Fourier transforms. Since, however, the Fourier 
transforms of stochastic variables as "02 and q~ do not exist recourse has to be made to either 
generalised functions or Fourier-Stieltjes transforms. We follow Buist [1] in employing the 
latter and introduce the Fourier-Stieltjes coefficient d~b, associated with ~o by t 

~o(X, y ,  t ) =  (27r)-1 f~ fK d~b(K, ~o, y ) e  i°~t e iKx (3.9) 

Likewise we define the Fourier-Stieltjes coefficient dx(K, o9) by 

"02(X, t ) =  (2~r) - l  f,~ ~K dX(K, w) el°" e iKx (3.10) 

Note that k is the wave number k = 2zr/A of the wavy wall, whereas K is used here as 
transform variable. 

*The definition of the Fourier or Fourier-Stieltjes transform is chosen here in which there is a factor (2~r) 1/2 in 
front of the transform with respect to one variable and consequently also in front of the inverse integral. In that ease 
the spectral relations used here, are in accordance with those in the well known book on stochastic phenomena by 
Stratonovich [8]. 
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The inverse transformations corresponding with (3.9) and (3.10) are 

d~b 
-=-(2rr) -1 f f  q~(X, y , t ) e  -i°'' e i~x d t d X ,  (3.11) 

do) dK 

dx  
- ( 2 7 0  -1 f f  r/2(X, t ) e  -i°'' e iKx dt d X .  (3.12) 

do) dK 

Using (3.11), (3.12) and the boundary condition (3.4), it follows from transformation of the 
differential equation (3.5) that 

e x p { - l ( y  - H)(o) /cl - K 2 )  1 / 2 )  
d~b(o), K, y ) =  co 7-L--g-----7~77 dx(o), r ) .  (3.13) 

to) /c t - K ) 

We are interested in the spectral density of the energy flux (3.8). According to the theory of 
Fourier transforms this is equal to the Fourier transform, or in the present case the 
Fourier-Stielt jes transform of the cross correlation 

f f  (p t)o(x + r, t+  ~-)dx d t ,  (3.14) 

where (p  - P0) and v are taken at the level YA of the plane A - A .  In (3.14) the spatial shift r 
and the time shift r are positive,* Taking the Fourier-Stieltjes transform of (3.14) with 
respect to r and r and dividing by (270 -2 gives 

(2 r)-2 f f (p-po)exp(io)t)exp(irx)dxdt f f u(x+r,t+'O 
× exp(-ioJ(t  + ~-)) e x p { - i r ( x  + r)} dr  d r .  (3.15) 

Using (3.3), (3.4), (3.6), (3.11) and (3.13), this can be written as 

{-p0ito '  dqb*(o)'K')i{to2/c~ - r2} 1/2 d~b(to, r )}/do)  d r  do)' d r ' .  (3.16) 

Here,  * denotes a complex conjugate. The product d~b*(to', r ')d~b(to, r )  is for stationary 
random processes zero unless to' = to and r '  = r ,  in which case 

d~* d ~  
dto do)' d r  d r '  = I I  . (3.17) 

11 is called the spectral density and the above derivation demonstrates that the spectral 
density of the emitted sound is the Fourier-Stieltjes transform of the cross correlation (3.14) 
and, using (3.15) and (3.16) given by 

,I,(r,  o)) = poO (o)2/c  - r2)l'2n . 

Alternative forms are, when we use (3.13) 

*Results for negative r and ~" can be obtained by making use of the symmetry properties of the correlation functions. 
Further x or X may be used, because the difference is an unimportant shift in the spectra. 



204 

~t'(K, o))= 

where 
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3 
Po o) 

(o)2/c ~ _ Kz),,~ I I , ,  (3.18) 

and 

dx* d x = H,~ do) dK , (3.19) 

• ( r , o ) ) = ( o ) 2 / c P ° o ) K 2 ) l / 2 I I  v (3.20) 

where (3.3) and (3.4) are used. 
Relat ion (3.18) is used by Buist [1], whereas we shall in the following section employ the 

relation (3.20). 

4. Es t imate  for II v 

Referr ing to Fig. 4, we consider the correlation 

v (x l ,  t ) v (x ,  + r, t + r) (4.1) 

be tween the y -componen t  of  the velocity induced in x~ at t ime t with that induced in x 1 + r at 
t ime t + r. The m e a n  value of this over  all possible xl and t is, with a stationary stochastic 
process,  a function of the shift r and the time shift z, 

C(r,  r)  = v (x , ,  t ) v (x  1 + r, t + "c) , (4.2) 

where the mean is indicated with an overbar.  
This can be taken as an ensemble average where the ensemble consists of  all the possible 

configurations at t ime t and at t ime t + z. For  each configuration bubbles which are close to 
the point of  observation (x 1 in Fig. 4 a and x 1 + r in Fig. 4 b) have more  influence that those at 
a larger distance. Those at a distance larger than a multiple of the bubble radius a hardly 
contribute.  Since the probabili ty of finding a bubble centre in a sphere around x 1 (or x I + r in 
Fig. 4 b) of such a radius, is just the concentration a we can, in an accuracy to order  a ,  
consider each configuration to consist of only one bubble. This is located in Fig. 4 a at a 
distance R 1 f rom xl and in Fig. 4 b at a distance R 2 from x~ + r. If  the Fourier-St ie l t jes  
t ransform of v is indicated with dB, we have, in analogy with (3 .14)-(3.17)  

do) dK - II° = (27r)-1 C(r, "1") e - i ~ ° r - i ~ r  dr d ' r ,  (4.3) 

C(r,  r) being defined by (4.2). 
We start with calculating the velocity induced in y direction in Fig. 4 a. The sound problem 

formula ted  in Section 1 and Section 2 is two-dimensional,  whereas here we have a 
three-dimensional  problem. We employ spherical coordinates R, 0 and 0, R and 0 being 
indicated in Fig. 4 a. The angular coordinate 0 is needed when we have to determine the y 
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t i m e  t 

fY i xl 

x ] 

R 1 

time t + T 

X l  r ' 

ey 

,, 

R 

Fig. 4. (a) At  time t, motion in the point x 1 of the interface is induced by a bubble at distance R~ from xl, with 
dipole strength m. (b) At  time t + 7 the influence is considered in a point Xl + r of the interface separated from the 
bubble by a distance R 2. The dipole strength of the bubble is m. 

component  of the velocity induced in x 1. With constant bubble volume the motion of the 
bubble is represented with a dipole of strength m proportional with and in the direction of 
the momentary  relative velocity of the bubble, q, say, 

m = qa3/2.  (4.4) 

The  flow potential  II is 

m . R  
I I - -  R 3  (4.5) 

The  velocity induced in any point at distance R from the centre is 

m m . R  
VII = R-- 3 - 3 --R-g- R .  (4.6) 

The component  of this in y-direction is, ey being the unit vector normal to the interface 

m . %  m - R  
o(xl, t) = R-----y- - 3 ~ ( R - e y )  . (4.7) 
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The dipole strength is equal to the instantaneous relative velocity of the bubble under 
consideration. In Section 2 we have calculated the average, over the mesoscale I. The true 
relative velocity fluctuates around this value. For present purposes it is sufficient to take a 
dipole strength m based on the mean velocity, given by (2.9) and (2.10). 

The relative velocity is parallel to the surface, so the first term on the right-hand side of 
(4.7) has no component  in y-direction. With the coordinates indicated in Fig. 4 a, the second 
term in the right-hand side of (4.7) becomes 

3mR21 cos 01 sin 01 sin 01 (4.8) v(xl ,  RI )  = 

A similar expression can be written down for the situation sketched in Fig. 4 b with R2, 02, 02" 
Calculating the ensemble average amounts to multiplying the latter expression v(x 1 + r, R2) 
with V(Xl, R 1), in (4.8), with the volume element in the half space y ~< 0 in Fig. 4 a and 4 b and 
finally with the probability of finding a bubble centre in R 1 at time t and one in R 2 at time 
t + r. To calculate the ensemble average exactly, one should know more about the 
fluctuations of the velocity of each bubble, which result from interactions. When these 
fluctuations are completely random, the configurations at time t and time t + r are complete- 
ly uncorrelated and since the average of both V(Xl, R1) and V(Xl + r, R2) are zero, the 
contribution to the mean given in (4.2) from times 7, other than zero, will be small. We 
therefore  confine ourselves to the correlation for ~-= 0 and consider 

C(r) = v(xl, t)v(x 1 + r, t) . (4.9) 

We have seen in (4.3) how the wave number-frequency power spectrum 1-I v is related to 
C(r, z). The inverse of (4.3) is 

C(r, r)=(2~r)-l f f Hv(to, x) ei°" e iKr dto dK.  

Similarly, putting ~-= 0 

C(r) = (2~-) -] fK II~(K) e iKr dK,  (4.10) 

where 

H~(K) = f,o IIv(to' K) d to .  (4.11) 

We see that while in (3.20) I/v(K, to) occurs at the right-hand side, the wave number  
spectrum associated with C(r) gives us only the integral of IIv over all frequencies. However  
if the main contribution to C(r, r) comes from ~-= 0 as is made plausible above we put, 
approximately 

C(r, T) = C(r)60") 

and then, from (4.3) 



IIv=(2~r)-l f f  C(r),3(-r)e-iO'~ei~rdrdz 

= (2zr) -1 f C(r) e -iKr d r ,  
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(4.12) 

which is the inverse of (4.10). 
In other  words, the (reasonable) assumption that the mean contribution to C(r, ~') comes 

from the autocorrelat ion C(r, 0) enables us to determine II v, which we need in order  to 
evaluate ~(K, oJ) in (3.20). 

If we take ~- = 0, we have to consider the situation in Fig. 5. Taking 0 l = 02 = 0 etc., we 
have to formulate the ensemble average (4.9). The probability of finding a bubble centre in 
the element  of volume R 2 sin 0 dR dO d0 is 

nR 2 sin 0 dR dO dO, 

where n is the number  density. Using (4.8) for v(xl, R) and a similar expression for 
v(x 1 + r, R) we have 

1 fo  dO f~ 9mz(R cos0  - r ) c o s 0  sin30 dR dO 
C ( r )  = - ~ 7rn (--~ + r 2 ~ ~-~r ~os--~-/T . (4.13) 

The factor 7r/2 in front of the integrals in (4.13) is from integration of sinZ0 (resulting from 
sin 0 in the expression for V(Xl, R) and another  one in the expression for v(x I + r, R)) over 
the interval from 0 to 7r. Since the bubbles have a non zero radius, a, and the point x 1 must 
be in liquid, R runs from a to o0. The spatial shift r is positive. Carrying out the integration 
over  R and writing 

S = COS 0 

gives 

[ f f  { 2(a - s r )  (a-sr)(1--s2)r__..___~2}sds 
C(r) = 3/27rmen i 2 - (r e + a2 _ 2sar)l/e - (r---- 2 + a---f--2sar)3/z r3 

_ f l  I s2(1-s2)  ds ] 
( r Z + a Z ~ 2 s ~ r r ) 3 / 2  J " 

(4.14) 

(4.15) 

X r 
- -1  

m 

Fig. 5. S c h e m e  for  the  ca l cu la t ion  of  the  cross  co r r e l a t i on  b e t w e e n  the  ve loc i ty  p e r t u r b a t i o n  in x 1 and  x I Jr- r c aused  
by  a b u b b l e  m o v i n g  re la t ive  to the  fluid wi th  d ipo le  s t r eng th  m.  
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Evaluation of the integrals in (4.15), for details see the Appendix,  results in 

C(r) = 37rrn n -~ r3 5 r ~ " (4.16) 

If there is a bubble centre in x 1 + a, the point nearest to x 1 with which correlation can be 
made,  is x~ + 2a. Therefore  r runs from 2a to ~. With use of (2.1) and (4.4) we write 

C ( r ) =  3/8aq2a3(13 6 a 2 )  > 2 a  (4.17) , r . 

The correlation function C(r) tends to zero for r---~ ~, as it should, but rather slowly, like r -3. 

It is interesting to note that the decay of C(r) with r is algebraic rather than the exponential 
behaviour  which is often encountered in turbulence. The wavenumber spectrum is now 
obtained by taking the Fourier transform of (4.17) with respect to r, 

F I I ' (K)  = 2(27r) -1 C(r) cos(/(r) d r .  (4.18) 
a 

Introducing (4.17) into (4.18) and evaluating the integrals gives 

3 / 4 a a3q 2 
1-I'~(/() - 2~- {0"l la-Z + O(a2/(2)a-2}" (4.19) 

The value of II '  v can be determined to any accuracy in (Ka). We need only the first term 
between brackets of (4.19), for the following reason. As follows from (3.20), for given to,/( 
runs from 0 to to /q .  Hence the maximum value of Ka is toa/c t. With to - 103, a ~ 10 -3 and 
c~ = 1500 m/s  this is small enough to neglect terms in (Ka) 2. 

5. Estimate for radiated sound intensity produced by relative motion 

Rather  than looking at the wavenumber- f requency spectral density, we consider the total 
emit ted sound intensity f ~O dto dK. We have found in the previous section that to the second 
order  in (/(a), II" does not depend on K. 

Hence,  carrying out the integration over K, we have from (3.19) 

f f ; /¢ '  H~' (K) d/( ~b(to,/() dto d/( = o3Po (to2/c2 _ _  / ( 2 ) 1 / 2  " 

Here  o3 is some representative frequency, for example at the centre of gravity of the spectral 
density distribution. Taking now for II'u(K ) the zeroth order  term on the right-hand side of 
(4.19) we obtain 

if ~b(to, K) dto dK = (2.1 × lO-2)Poaaq 2 , (4.20) 

as an estimate of the sound intensity emitted in a unit element along the frequency axis. The 
magnitude of this, of  course, depends on many parameters.  As an example, take Po = 103 kg/ 
m 3, o~ = 10 -2, a = 10 -3 m. The value of q is of the order  2ekU~,  when we base ourselves on 
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the case where inertia forces dominate over viscous forces in the relative motion. The value 
of U= will be close to 10m/s  under cavitating circumstances. For e k = 2 r r e / A  we take 
2rr x 0.1 = 0.2~r. With these values the right-hand side of (4.20) is 83 × 10 -4. With e k  = 

2~- x 10 -2, and the other values unchanged, this is 0.83 × 10 -4. 
If we express this in dB, defined as 

10 loglo(intensity ) + 120, 

we obtain 79 dB in the second case and 99 dB in the first case. The intensity is here in watt 
sec per unit length in x direction. This can be compared with the estimate of 90 dB given in 
Buist [1] due to fluctuations in void fraction due to pressure fluctuations. It turns out that 
relative motion gives contributions of equal magnitude. 

Conclusion 

In this paper it has been investigated what the sound emission is from a bubble-liquid layer 
into pure water, when attention is focused on relative motion between bubbles and liquid. It 
turns out that the intensity of the emitted sound is comparable to that produced by void 
fraction fluctuations of other nature such as investigated in the thesis of Buist [1]. Finally it 
should be noted that the present investigation is of interest not only in the context of 
cavitation sound in which it is considered here. It can be applied also in studies of flow noise 
whenever relative motion is important. A possible further extension could be the relative 
motion due to turbulence. Such a study would be complementary to Crighton & Ffowcs 
Williams [9], where the sound emission of a turbulent bubbly fluid is described caused by 
monopole radiation. 

Appendix 

The first and the third integral in the square brackets in (4.13) give together 

a f~ ( 1 -- s 2)_s d__~s 
r 1 { r  2 + a 2 - -  2sar}  3/2 ' 

whence 

3   -si)sd, 
C(r )  = - ~ rrm2n 1 {r  2 + a 2 - 2sar}  3/2 

Now define 

li j = f l  Sj as  
1 {r 2 + a 2 -2sa r} / /2  ' 

then 

3 [a 
C(r )  = - ~ rrm2n -r (113 - 133) 

 sds ; a r,sds] 
- 2  - 7 5 - +  2 . . . .  

1 r i { r  2 + a 2 - 2sar}  lj2 " 

2a 2 ] 
+ --5-r 111 - -  ~-~ J21  • 
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E v a l u a t i o n  o f  t h e  i n t e g r a l s  g ives  

2a  2 2 4a  
113 = r2(r2 - a 2) , 133 - a ( r  2 - a 2) ar  2 5 r  4 , 

2a  2 4a  2 

111 = 3 r  2 ; 121 = ~rr + 15r  - - - 3  " 

I n t r o d u c i n g  t h e s e  v a l u e s  in t h e  e x p r e s s i o n  fo r  C(r )  resu l t s  in (4 .14)  in t h e  m a i n  tex t ,  
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