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Simulations of crystallization and melting of the FCC (1 0 0)
interface: the crucial role of lattice imperfections
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Abstract

We present nonequilibrium simulations of growth and melting of the atomic FCC (1 0 0) interface. Using Nos!e–

Hoover dynamics we have carefully studied size effects and approximated the dynamics of the solid–liquid interface in a
large system as closely as possible. This led to a clear asymmetry of growth and melting rates close to equilibrium. It was
possible to explain these findings in terms of the lattice imperfections in crystalline phases in contact with a liquid phase,

which automatically developed during growth simulations but were absent in the melting simulations. It was shown that
when melting simulations were started with appropriate starting configurations, the asymmetry could be made to
disappear. # 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Although much is known about the thermo-
dynamics of the solid–liquid phase transition, the
kinetics of this transition is still poorly understood.
Part of this is due to the fact that, being a
combination of two dense phases, the crystal–melt
interface is not easily accessible to experiment.
Therefore, computer simulations can be of great
help in understanding the microscopic processes
involved in crystallization or melting. Over the
past few years, excellent reviews have appeared on

computer modelling and on theories of the
structure and dynamics of the crystal–liquid inter-
face [1–3].

Most crystallization and melting processes are
heterogeneous, i.e. they involve the motion of an
interface throughout the system. Among the first
to make an extensive study of this process, were
Broughton et al. [4–7]. They combined the solid
and the liquid phase in one simulation box and
calculated growth rates over a wide range of
temperatures. They, however, did not study
melting.

In an earlier paper of ours [8], we studied the
steady state velocity of the interface in a Lennard-
Jones system at small undercoolings and super-
heatings. We established growth and melting rates
as a function of the deviation from equilibrium by
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performing several nonequilibrium simulations.
On the basis of Onsager’s regression hypothesis,
we were able to obtain the same information from
fluctuations of the amount of crystalline material
during one single equilibrium simulation. In a
recent study we successfully applied the same
(universal) procedure to the calculation of trans-
port diffusion of guest molecules in a zeolite [9].

Over the past 15 years, much debate has evolved
on the question whether the interface response
should be symmetric around the equilibrium
temperature. An argument on the basis of micro-
scopic reversibility, already presented in the 1960s
[10], concluded that if molecules are added to or
taken from similar interface sites, then the curves
of crystallization rate and melting rate versus
temperature should be continuous with the same
slope through the melting temperature. The debate
was initiated again, however, by Tsao et al. [11]
who reported experiments of laser-induced zone
melting of silicon, in which growth of the melt into
the superheated solid appeared to be much faster
than growth of the crystal into the undercooled
liquid. Since they dealt with large deviations from
equilibrium, no sharp conclusion can be drawn
about a possible slope discontinuity at equili-
brium.

Kluge and Ray [12] performed molecular
dynamics simulations of crystallization and melt-
ing of silicon. They employed a Stillinger–Weber
potential and considered large deviations from
equilibrium. Their results show the same trends as
the experiments by Tsao. Tymczak and Ray [13]
performed similar simulations on sodium crystals
having BCC symmetry. They found a clear slope
discontinuity at equilibrium with melting being
substantially faster than crystallization. However,
since they mimic the electron density dependence
of the interactions by changing the potential with
temperature, it is impossible in this case also to
draw any conclusions about the occurrence of an
asymmetry between growth and melting rate in
systems interacting via Lennard-Jones potentials.

The only careful investigation at small under-
coolings and superheatings was presented by Moss
and Harrowell [14]. They performed dynamic
Monte Carlo simulations of the FCC lattice gas
and studied freezing and melting of the simple

cubic phase. Besides a clear slope discontinuity,
they also found a small range of supercoolings
where the growth velocity essentially vanished.

From all of the above, no clear picture arises of
the possibility or impossibility of a slope disconti-
nuity in the interface response near equilibrium. In
the present paper, we will present detailed mea-
surements of the growth and melting rates in an
atomistic simulation and will address some of the
subtleties that arise in performing such simula-
tions. We will show that a slope discontinuity
arises when starting growth and melting simula-
tions from well equilibrated liquid and solid
phases. The discontinuity will be seen to disappear
only when lattice imperfections occurring in
rapidly growing crystals are also taken into
account in the melting simulations.

2. Interaction model

To avoid possible complications with long-
range attractions (which would lead to different
long-range corrections in bulk and two-phase
systems), we required a pair potential which is
exactly zero beyond a certain cut-off radius. To
this end, we employed the shifted force 12� 6
potential as introduced by Clarke et al. [15] (where
it has the general form of an n�m potential). The
potential has the following structure:
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and

a ¼ ½2b6ð1þ ð6� 7gÞ=g7Þ

� b12ð1þ ð12� 13gÞ=g13Þ��1: ð4Þ

This form has the advantage over the standard
shifted force potentials that both e and r0 (the well
depth and the location of the minimum) retain
their original meaning after the shifting process. In
our simulations we will take the common value
rcut ¼ 2:5s where s is implicitly defined by
r0 ¼ 21=6s. All properties will be presented in
terms of e, s, and the mass m (common
Lennard-Jones units).

3. Simulation method

We performed molecular dynamics simulations
at constant number of particles (N), constant
pressure (P), and constant temperature (T). In
order to simulate a true isothermal–isobaric
ensemble, we used Nos!e–Hoover dynamics
[16,17] to integrate the equations of motion, in
which the thermostat and barostat variables are
taking part in the dynamics of the system. We
made a careful study of pressure and temperature
distributions in a bulk liquid and bulk solid in
order to tune the thermostat and barostat relaxa-
tion times so as to ensure that the distributions had
the correct width within reasonable simulation
time and that the pressure and temperature
fluctuations did not interact. This resulted in tT ¼
0:0748 s

ffiffiffiffiffiffiffiffi
m=e

p
and tP ¼ 0:748 s

ffiffiffiffiffiffiffiffi
m=e

p
, with a

timestep of Dt ¼ 0:000748 s
ffiffiffiffiffiffiffiffi
m=e

p
.

In order to derive the correct temperature
dependence of the bulk densities, we performed
NPT simulations on bulk systems of liquid (512
particles) and FCC solid (500 particles) at various
temperatures and pressure P ¼ 0:0025 e=s3. Aver-
age volumes were calculated over 200 000 time-
steps. The volumes per atom were least-squares
fitted to a straight function in T resulting in

v*l ¼ 0:76111þ 0:77153� T * ;

0:5805T *50:630 ð5Þ

and

v*s ¼ 0:85370þ 0:35466� T * ;

0:5805T *50:630: ð6Þ

With the fitted volumes, new bulk simulations
were performed at constant volume. The solid and
liquid boxes were made such that they had the
same cross section in the x; y-plane. The bulk NVT
simulations were run for 100 000 timesteps of
equilibration, whereafter co-ordinate files were
written every 10 000 timesteps. To make two-phase
boxes, one liquid configuration and one solid
configuration were taken, both copied four times
in the z-direction, and subsequently put on top of
each other. This way, two interfaces appear in the
boxes, with their surfaces along the x- and y-axes.
The resulting boxes consisted of 2000 initially
crystalline particles (5� 5� 20 unit cells) and 2048
particles initially belonging to the liquid phase. To
release excessive potential energies due to particle
overlap, 300 timesteps of NVT simulations were
performed with rigid temperature scaling at every
timestep. After this, NPT runs were carried out to
study growth and melting rates. The pressure
scaling routine was adopted such that the volume
relaxation in x-, y-, and z-directions took place
independently.

4. Results

In order to calculate the growth and melting
rates, we used an order parameter to distinguish
the crystal phase from the liquid phase. The order
parameter, which was introduced in Ref. [8], takes
advantage of the octahedral symmetry of the
nearest neighbours around a particle in an FCC
crystal. As can be seen in that paper, a function C
could be derived which discriminates very well
between ‘solid-like’ and ‘liquid-like’ particles. The
advantage of the order parameter is that it is
defined for each atom; so keeping track of the
growth of one phase comes down to merely
counting the number of particles belonging to the
crystal.

Results of growth and melting simulations are
presented in Fig. 1. Each curve stands for the
average of 50 simulations at a given temperature.
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Due to the substantial temperature fluctuations in
the isothermal–isobaric ensemble, a spreading
naturally arises in the results from different runs
at the same temperature. Therefore, several runs
with different initial configurations (combinations
of different configurations from the solid as well as
from the liquid runs) had to be carried out to
obtain good statistical accuracy. As can be seen
from the figure, the overall behaviour is universal;
after an equilibration period of less than 50
reduced time units, the number of crystalline
particles increases or decreases linearly in time.
This means that the supersaturation was kept
constant and the two interfaces were separated far
enough so as to not interact with one another.

Note that our system size is substantially larger
(a factor 2.5) than the one used by Broughton et al.
[6]. Their claim that their interfaces did not
interact was underpinned by checking only static
bulk properties and not dynamic properties. We
found that with a system of half the present size,
the region before the constant linear regime really
sets in is almost twice as long, making it much
harder to measure the growth rates accurately.

An alternative way of measuring growth rates is
by monitoring the volume evolution of the system
in time. The number of crystal particles at time t

can then be estimated by

NsðtÞ ¼
Ntotal � vl � VtotalðtÞ

vl � vs
: ð7Þ

The results of both methods for T ¼ 0:580 e=kB
are similar. This implies that the density front in
the simulation is moving at the same speed as the
order front. This holds true for all temperatures we
investigated.

From the linear part of the growth curves,
growth rates were calculated and plotted versus
temperature in Fig. 2 (filled circles). As can be seen
from the figure, this procedure led to an apparent
asymmetry of the growth and melting rates in the
vicinity of the equilibrium point. We checked
whether this asymmetry was independent of the
vertical box size, by performing simulations of
boxes of half the size. Moreover, since volume
measurements and order parameter measurements
gave the same results, we concluded that the
asymmetry was not an artifact of the measurement
method.

There was one feature of the method which was
inherently asymmetric and, therefore, might be the
cause of the asymmetry. That is, the crystals
emerging from the growth simulations had in-
corporated certain imperfections which were not

Fig. 1. Growth and melting curves from nonequilibrium

simulations showing the number of solid-like particles versus

time. Results are shown for a range of temperatures varying

from 0:580 s
ffiffiffiffiffiffiffiffi
m=e

p
(upmost curve) to 0:630 s

ffiffiffiffiffiffiffiffi
m=e

p
(lowest

curve).

Fig. 2. Temperature dependence of growth and melting rates.

A clear asymmetry is seen between growth and melting rates

from the old method (filled circles). Rates from melt simulations

where lattice imperfections were taken into account are shown

as filled squares.

H.L. Tepper, W.J. Briels / Journal of Crystal Growth 230 (2001) 270–276 273



present in the bulk crystals. When looking at
Fig. 3, where only the disordered (‘liquid-like’)
particles have been drawn, one sees that the crystal
at the end of a growth simulation (denoted with
NPT) contains imperfections. An example of a
starting configuration of a two-phase run (contain-
ing an equilibrated solid in the middle) is shown in
the first snapshot of Fig. 3, which indeed shows no
liquid-like particles in the crystalline phase. Unlike
the discussion of imperfections by others like
Burke et al. [7] and Huitema et al. [18], almost
all of these imperfections were interstitial atoms,
not vacancies. Virtually all layers contained the
maximum amount of particles, i.e. 50 (which was
easily checked by integrating the longitudinal
density profile layer by layer), but, on average,
one particle per layer was located away from its

lattice site. Burke et al. reported a substantial
increase of the vacancy concentration upon
decreasing temperature. Unfortunately, they did
not explain the way they measured the vacancy
concentration. Again, it should be noted that they
investigated much larger undercoolings than we
did. Huitema et al. reported on undercoolings
comparable to ours, but their results suffer from
poor statistics and they also do not explain their
way of quantification of the number of vacancies.

Since it is now clear that the crystals grown
below equilibrium are structurally different from
the crystals with which we started our melting
simulations, the asymmetry might be explained by
this difference. In order to check this we took the
50 end configurations at a certain temperature and
started new simulations therewith at temperatures

Fig. 3. Snapshots of different stages in an equilibrium run (NVT) and of an end configuration of a nonequilibrium run (NPT) at

T ¼ 0:587 s
ffiffiffiffiffiffiffiffi
m=e

p
. Only the particles classified as ‘liquid-like’ are shown, providing a clear representation of the amount of mismatch

in the crystalline lattice.
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at the same amount of superheating as the amount
of undercooling at which they were produced. In
other words, the systems were put on the mirror
side of the equilibrium temperature (which was
estimated from Fig. 2 to be 0:608 s

ffiffiffiffiffiffiffiffi
m=e

p
). The

result of one such experiment is shown in Fig. 4.
As a guide, the mirror image of the original growth
curve is plotted above the new melting curve. The
slopes of both lines are in agreement. For
comparison, two melting curves starting with ideal
crystals at temperatures just below and just above
the present temperature are also displayed.
Clearly, the old method gives much smaller
melting rates. The experiment was repeated for
four different temperatures and displayed as
squares in Fig. 2. The asymmetry of the interface
response has now completely disappeared. This
phenomenon has been completely attributed to the
subtlety of preparing initial configurations. The
much smaller melting rates from the totally ordered
crystal might be the reason why Burke et al. [7]
failed to produce steady state melting. Instead,
their overheating was so large that they reached the
mechanical melting point, i.e. the point at which
the whole crystal disintegrates at once.

It is important to note that it is not the constant
pressure situation (which allows the crystal to
relax its volume), but either the presence of an
interface or the rapid incorporation of defects

during growth which causes the slightly disordered
structure. In an earlier paper [8], we showed that
the kinetic growth coefficient obtained from none-
quilibrium simulations can also be obtained from
the fluctuations of the number of crystalline atoms
in an equilibrium simulation. In the light of the
above, we investigated whether the crystalline
phase in such an equilibrium simulation contains
an equal number of imperfections as seen in the
nonequilibrium simulation. Snapshots of different
stages in an extensive equilibrium simulation are
shown in Fig. 3. Indeed, the number of imperfec-
tions is comparable. Note that the imperfections
extend throughout the whole crystal, and not just
in the regions where the crystal has melted and
regrown during fluctuations. This means that it is
the proximity of the liquid phase that causes the
slight disorder in the crystal and not just the rapid
incorporation of defects.

A more quantitative measure of the disorder is
provided in Fig. 5. There we have calculated the
BT-profile, as introduced by Jesson and Madden
[19], which is the laterally integrated average
number density of liquid material. Were the crystal
totally ordered, the value would have dropped to
zero. For comparison, also the laterally averaged
density profile is shown. It can be seen that the
density in the liquid and in the solid agree perfectly
with the bulk values obtained from the bulk

Fig. 4. Growth and melting curves showing the difference

between starting from configurations with and without lattice

imperfections in the crystalline phase. Fig. 5. Laterally integrated density and order profile in an

equilibrium simulation.
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simulations. This again shows that it is not enough
to just look at static bulk properties in order to
decide whether equilibrium is reached. We are at
present undertaking research to extract the kinetic
growth coefficient from the equilibrium simulation
in the spirit of Ref. [8].

5. Conclusions

In the present paper, we have investigated the
response of the FCC (1 0 0) crystal–liquid interface
to small superheatings and undercoolings with
respect to the equilibrium melting temperature.
This led to an asymmetry of the response, which
was explained in terms of lattice imperfections in
the crystalline phase. Such imperfections naturally
evolved in the growing crystal in contact with a
liquid phase, but were absent in the equilibrated
bulk crystal and thus also in the melting simula-
tions. When the melting simulations were started
from configurations produced during growth of
the two-phase systems (thus including imperfec-
tions in the crystalline lattice), the asymmetry
between growth and melting rates around equili-
brium completely disappeared.

Equilibrium simulations of a two-phase system
were shown to produce lattice imperfections
equivalent to the ones emerging in growth simula-
tions. This implies that equilibrium simulations as
advocated in Ref. [8] may provide an alternative

for calculating the interface response near equili-
brium in a more straightforward manner.
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