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An estimation-based approach for range image segmentation:
on the reliability of primitive extraction
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Abstract

This paper presents a new algorithm for estimation-based range image segmentation. Aiming at surface-primitive extraction
from range data, we focus on the reliability of the primitive representation in the process of region estimation. We introduce
an optimal description of surface primitives, by which the uncertainty of a region estimate is explicitly represented with a
covariance matrix. Then the reliability of an estimate is interpreted in terms of “measure of uncertainty”. The segmentation
approach follows the region-growing scheme, in which the regions are estimated in an iterative way. With the probabilistic
model proposed in this paper, surface homogeneity is de:ned and tested by an optimal criterion. A notable feature of
the algorithm is that the order of merging is organized to lead the growth towards the most reliable representation of the
merged region. Concerned with man-made objects in the scene, we restrict the class of surface primitives to be quadric or
planar. The proposed algorithm has been applied to real data and synthetic data and demonstrated with experimental results.
? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Image segmentation can be de:ned as a process of par-
titioning a given image into a set of meaningful regions. A
meaningful region represents a region in which all pixels
possess similar properties. As an outcome of the segmenta-
tion, symbolic descriptions are usually applied to model the
partitioned regions in high-level modules of a vision system.

Essential in segmentation is the de:nition of “homogene-
ity” of partitioned regions. It is often impossible to de:ne
the homogeneous property purely from a strict mathemati-
cal context, because the expected result of segmentation is
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controlled by the whole recognition or measurement strategy
of a vision task. For 2D gray-level images, the homogene-
ity criterion can be based on segments of “visually pleasing
regions” [1], i.e., segments of the image are in accordance
with our perceptual experience about the pattern of illumi-
nation. But such intuitive visual judgement is meaningless
for 3D data. In fact, in segmentation of range images, the
partitioning principles not only depend on the nature of the
input image, but also on the kind of symbolic representa-
tions of the objects, because any segmentation task must
be put in perspective with the :nal objective of a vision
system. Especially in a model-based recognition system,
the low-level segmentation routine is highly interrelated to
the strategy of representation of the objects.

The methods of range image segmentation can be brieLy
classi:ed into two approaches: region-based (e.g. Refs.
[1–7]) and edge-based (e.g. Refs. [8–12]). In region-based
methods, pixels having similar properties are grouped to-
gether and :nally the images are partitioned into a set of
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homogeneous regions. In surface-based object represen-
tations, such a homogeneous region is modeled with a
surface primitive one. From this point of view, the task of
range image segmentation is in fact a process of primitive
extraction and the homogeneity is de:ned on the parameter-
ized model of the surface primitive. Thus, a homogeneous
region is thought to “:t well” the parametric description,
whereas two regions are thought to be homogeneous if they
can be expressed as two observations of the same surface
primitive.

Critical in a region-based approach is the clustering of
data subsets. Basically, a homogeneity test determines the
process of clustering. However, errors in the estimates of
region parameters are inevitable because of the noise in the
range data. Therefore, the reliability of the homogeneity test
by estimation-based algorithms could suNer from the lack of
explicit representation of uncertainties of region estimates.
In Ref. [13], a Bayesian segmentation methodology is pro-
posed with parameterized models. In that approach, instead
of direct parameter estimation, a so-called “probability of
homogeneity” is derived from the a posteriori probability
conditioned by two joint observations in the spatial domain.
Thus, the uncertainties in the region’s parameters are con-
sidered in the homogeneity test in an implicit way. Although
that methodology provides an optimal test of homogene-
ity between regions using parameterized models, it is still
unknown as to how a homogeneous region “:ts” the used
model, because no parameters are estimated in that approach.

In this paper, we present a new algorithm of region-based
approach. It is based on the optimal description of surface
primitives, with which the uncertainties in the estimates of
region parameters are explicitly represented with a proba-
bilistic model. In the optimal description of surface primi-
tive, the region parameters are estimated through a :tting
procedure. The uncertainties of the estimates are represented
with the covariance matrix of the region parameters, which
is formulated simultaneously in region estimation. Conse-
quently, we propose a probabilistic model with normal pdf to
characterize the statistical properties of the estimates of the
primitives. Then the criterion for homogeneity test in region
clustering is established on Bayesian principle. Therefore,
an estimation-based optimal clustering algorithm can be
implemented, with equal optimality of the approach of
Ref. [13]. However, the degree of :tting of a homogeneous
region to a modeled primitive is represented as well. It
means that the reliability of primitive extraction can be
evaluated.

Often a problem that occurred in the existing region grow-
ing approach is that the segmentation results rely on the
order of merging the subset of data in the growing pro-
cess. To control the reliability of primitive extraction in an
estimation-based segmentation routine, we de:ne a metric
of “measure of uncertainties” to describe the reliability of
a region estimate. Therefore, the order of merging is orga-
nized to let the segmentation process converge to the “most
reliable” representations of surface primitive.

Commonly used parameterized models in segmentations
are piecewise polynomials [2,11,12,14–16]. Low degree
polynomials, i.e. degree 1 or 2, have been popular in
modeling smooth curved surface primitives, especially in
industrial applications [3,17]. In this paper, we focus on the
quadric and planar representations of surface primitives.
One should note that such simple primitives are power-
ful in modeling even more complicated objects, using the
relational structure representation (RS).

2. Optimal description of region parameters

To yield the result of segmentation of a range image
described as a list of surface primitives, our approach is
driven by surface-based representations of the range data.
In this section, we brieLy introduce the optimization in
region-based parameter estimation, with which the uncer-
tainties of estimated parameters are explicitly formulated in
region estimation.

2.1. Modeling the uncertainties of surface parameters
with a covariance matrix

In reality, the performance of uncertainties in parameter
estimation could be very complicated and it is impossible
to perfectly :t an analytical mathematical model. Here, we
use the covariance matrix of an estimate to characterize the
major statistical features of the uncertainties. To formulate
the covariance matrix, we utilize a perturbation analysis of
the errors of the estimated parameters in surface :tting.

2.1.1. Covariance matrix of a quadric representation
The region parameters are estimated through :tting the

3D data points to a quadric or a planar representation. For
the estimation of quadric primitives, we applied the im-
proved renormalization method (the readers are referred
to Refs. [7,18,19] for details of the parameter estimation).
A remarkable feature of this method is its “bias-corrected”
optimization in parameter estimation, while the variance
of noise is estimated simultaneously in the :tting process.
The unbiased property of the estimate also suggests linear
approximation in the error representation of the parameters
with respect to the noise in data points.

A quadric primitive can be expressed in an implicit form

f(x; y; z) = a11x
2 + a22y

2 + a33z
2 + a12xy + a13xz + a23yz

+v1x + v2y + v3z + k = 0: (1)

Keeping the scale constraint k = 1, we de:ne a parameter

 = [a11; a22; a33; a12; a13; a23; v1; v2; v3]T vector to represent
the surface primitive.

� denotes the cost function of surface-:tting and given a
set of data points {xi}n

i=1, the estimate 
̂ is obtained by solv-
ing the minimization problem (9�=9
) = 0. The cost func-
tion � is established on the gradient-weighted least-squares



G. Wang et al. / Pattern Recognition 36 (2003) 157–169 159

criterion, de:ned as � =
∑n

i=1 d2
i , where di ∀i = 1; : : : ; n is

the geometric distance between the point xi and the surface.
We can take the Taylor expansion of d2

i up to a second-order
approximation of T
 and Txi ∀i = 1; : : : ; n, where Txi is
the noise perturbation and T
 is the error in the estimated
parameter 
̂. Assuming that Txi ∀i is an independent, iden-
tical distributed (iid) Gaussian noise, we have the expres-
sion of the covariance matrix of 
̂ as [7]

� = �2

(
n∑

i=1

wimimT
i

)−1

(2)

where mi = [x2
i ; y

2
i ; z

2
i ; xiyi; xizi; yizi; xi; yi; zi]T; wi =

1=‖∇f(xi)‖2.

2.1.2. Covariance matrix for a planar representation
Normally, a planar surface can be represented by the im-

plicit form

nTx + b = 0; (3)

where n=[nx; ny; nz]T is the unit normal vector of the plane.
By de:ning the surface parameter vector


nb = [
T
n ; b=nz]

T; (4)

where


n = [nx=nz; ny=nz]
T (5)

we can derive the covariance matrix of 
nb. Analogous to
the way of modeling uncertainties in the quadric represen-
tation, the covariance matrix of 
nb is formulated with the
expression [7]

�nb = �2M−1
p : (6)

For the purpose of segmentation with surface primitives,
what we are concerned with is only the normal vector 
n,
which is associated to the discontinuity of planar regions.
Consequently, the covariance matrix for the parameter vec-
tor 
n, denoted as �n, is obtained as the top-left 2×2 matrix
of �nb.

There has been research work concerning the formulation
of uncertainties in object descriptions. Waite and Ferrie [20]
discussed the non-uniqueness problem in volumetric repre-
sentations. They characterized the ambiguity of parameter
estimates in terms of the “ellipsoid of con:dence”, quanti-
fying the level of acceptability of a model and the informa-
tion that can be used to plan a new direction of view that
minimizes the ambiguity of subsequent interpretation. But
as was argued by the authors, the representation was limited
to partially communicating non-uniqueness at a single min-
imum in parameter space. The work of Subrahmonias et al.
[16] dealt with the object in higher order polynomial repre-
sentations. They used the asymptotic form of estimates to
describe the posterior distribution of the parameters in poly-
nomial :tting, and a criterion of minimum-error-probability
for recognition was proposed. However, the reality of their
probabilistic model, especially the derivation of covariance

information, relies on the assumption that a large number
of data are involved in :tting. Moreover, the knowledge of
noise perturbation in data acquisition was not adequate for
the description of the uncertainties in parameter estimation.

Unlike the work of Subrahmonias et al. [16] and Whaite
and Fererie [20], we formulate the covariance matrix of the
estimated parameters from the linear dependency of the per-
turbation T
 on the noise {Txi}. This linear assumption is
applicable in the case of a moderate level of noise in data ac-
quisition. However, since the estimate of T
 is statistically
unbiased, the liner dependency is expected to be tolerant to
even a signi:cant level of noise perturbation. It should be
noticed that the derivation of the covariance matrix in Eq.
(2) does not rely on the asymptotic assumption, so it is more
applicable to region-based estimation than the way it is used
in Ref. [16].

2.2. De9nition of homogeneity based on the optimal
description of surface primitive

Given the “unbiased” estimate of a region parameter 
̂
and its covariance matrix �, we proposed an analytical
probabilistic representation to model the estimate of 
̂.
This representation is suggested considering a few aspects:
(1) the covariance matrix � is derived from the approxi-
mation of the linear dependency in Eq. (1). Since the noise
{Txi} is assumed as Gaussian noise, the perturbation T

is consequently approximately normally distributed; (2) the
gradient weighted LSE can be interpreted [16] in terms of
maximum likelihood estimation (MLE), whose asymptotic
distribution is normal. BrieLy, the :rst- and second-order
statistics reveal the major statistical behavior of an estimate.
Thus, the normal pdf is a tractable model since it describes
all the statistics of the estimate by the expectation and the
covariance.

Denoting by 
 the “true” parameters describing the sur-
face primitive and with 
̂ an estimate obtained from the
measurements, the normal pdf of 
̂ is expressed by

f(
̂|
) = C exp{− 1
2 (
̂ − 
)T�−1(
̂ − 
)}; (7)

where C is the normalized constant.
In reality, the true 
 is unknown. To test the homogeneity

of two regions, what we are concerned with is in fact a
probabilistic representation that two estimates come from
the same primitive, irrespective of the true parameters of
that primitive.

Suppose that 
̂1 and 
̂2 are two estimates from measure-
ments, the likelihood of the homogeneity condition that 
̂1

and 
̂2 are two observations of the same surface primitive
is expressed by the joint pdf of 
̂1 and 
̂2 as

f(
̂1; 
̂2|H) =
∫

f(
̂1; 
̂2|
) d


=
∫

f(
̂1|
)f(
̂2|
) d
: (8)
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Substituting Eq. (7) into Eq. (8) and assuming that the
covariance matrices both for 
̂1 and 
̂2 are unchanged in the
integration, the integration of Eq. (8) yields the following
expression:

f(
̂1; 
̂2|H) = C exp{− 1
2 (
̂1 − 
̂2)

T�−1
1;2 (
̂1 − 
̂2)}; (9)

where C is again the normalized constant and

�1;2 = �1 + �2: (10)

In Eq. (10), �1 and �2 are the covariance matrices for

̂1 and 
̂2 that are independently obtained from the measure-
ments.

According to (9), the homogeneity test can be imple-
mented in the probability space as a hypotheses test prob-
lem. The hypotheses are stated as

H0: E{
̂1} = E{
̂2} (homogeneous);
H1: E{
̂1} 
=E{
̂2} (inhomogeneous):

We de:ne an “optimal distance” as

d2
1;2 = 1

2 (
̂1 − 
̂2)
T�−1

1;2 (
̂1 − 
̂2); (11)

used to test the hypothesis. Given a selected threshold Td,
if d2

1;2¿ Td, then H0 is rejected and H1 is accepted, mean-
ing that 
̂1 and 
̂2 are inhomogeneous. Otherwise, they are
thought to be homogeneous. The threshold Td is associated
with the so-called signi9cance level, denoted by �, which
can be expressed as Td =T (�). Theoretically, the value of �
can be chosen according to the design of the probability of
the type-1 error. In practice, however, because the covari-
ance computation was derived approximately, the threshold
Td still needs to be determined empirically.

2.3. De9nition of the reliability of a region estimate

In region-based segmentation, two regions are merged if
they are tested as homogeneous. After the merging, how-
ever, we still need to know in what degree the current region
:ts a primitive representation. In other words, for primitive
extraction, a region-based segmentation process must ac-
count for the reliability of the estimate of a region. Such a
reliability of an estimate can also be quanti:ed in the sense
of homogeneity test with respect to a single region.

Since the covariance matrix � of an estimate represents
the uncertainty in estimation, we de:ne a metric of “mea-
sure of uncertainty”, denoted by Munct , to characterize the
reliability of a region estimate:

Munct ≡ ‖�‖2 (measure of uncertainty): (12)

Hence, the larger the Munct , the lesser is the reliability of the
estimated region and vice versa.

It should be pointed out that the “measure of uncertainty”
is de:ned on the parametric domain, rather than the spatial
domain. Naturally, the smaller the noise level, the smaller
are the errors in parameter estimation. But in spatial do-
main, the residue of the cost function only reveals the noise
level, and so partially communicates the uncertainties of the

estimate. However, the uncertainty in parametric domain
not only relies on the noise variance, but also relies on the
observability of the formation of the problem. Typical of
the case resulting in a large measure of uncertainty is the
ill-posed solution of the estimate.

3. The algorithm of the estimation-based segmentation

In this section, we describe the algorithm of segmentation
based on the optimal description of surface primitives. A
Lowchart of the approach is depicted in Fig. 1.

The approach consists of three modules. In order to hold
the generic constraints of piecewise smoothness for region
estimation, outliers are extracted from the input range data
in the :rst module. Here, the outliers are de:ned as either
error data points or discontinuity points (i.e., edge or bound-
ary points). This is achieved by :tting the data points in a
small sampling window to a planar description and testing
the goodness of :t. The central point of the window whose
planar :tting is recognized as “bad” is marked as an out-
lier. By moving the sampling window over the whole range
image, centered at each pixel each time, we extract the out-
liers of the input range image. In the second module, the

Unlabeled points Labeled segments 

Dominant regions 

sels 

Point-based refinement 

Estimation of region parameters 
        and covariance matrix 

planar quadric 

Region growing by 
     merging sels 

Separation of quadric/planar 
         representations 

Selection of seed patch 

Initial partitioning 

Range image 

Outlier detection First module 

Second module 

Third module 

Fig. 1. Flowchart of the segmentation algorithm.
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whole image is initially partitioned into small regions with
a rectangular grid pattern. Following Ref. [15], these initial
grid regions are noted as “surface elements”, or sels. These
sels then pass through the merging process, according to the
criterion of homogeneity test. The merging process starts
with a seed of subregions consisting of a few neighboring
sels. Such a group of neighboring sels is denoted as a patch.
When the growth of a patch stops, a new patch is selected and
the process repeats until no more seeds can be found. At the
end of the second module, the merged sels represent several
isolated segments with diNerent labels in the range image.
Such a segment is denoted as the dominant region. In the last
module, a process of point-based re:nement is applied, with
which the points near the boundary of dominant regions are
reclassi:ed according to a measure of the distance between
the point and the estimated surface.

In estimation of the seed patch, a planarity test is ap-
plied according to the result of the quadric :tting of the seed
patch. If the seed turns out to be planar, then it is repre-
sented as a planar patch and the region-growing process is
carried out using the planar representation. Otherwise, the
seed and its updated region are estimated through a quadric
representation.

Finally, the outcomes of the segmentation include the la-
beled regions, either in quadric or planar representations,
and the unlabeled points.

3.1. Outlier detection

Given the input range data, a small rectangular window
is used as the mask to test the local geometry of each point.
The size of the window is pre-de:ned, according to the
sampling resolution of the range data as well as the size of
the objects in consideration. As an example, the window size
used in our experiments is 5× 5 (point2). Obviously, if the
window covers the boundary and partially embeds diNerent
object surfaces or diNerent objects, or contains any local
irregularity of an object, then this region will show a bad
:tting to a planar representation and then the centre point of
the window will be considered as an outlier.

Treating the points {xi ; i = 1; : : : ; m} sampled within the
window as 3D random points, we compute the eigenvalues
of the matrix

Z=
1

m − 1

m∑
i=1

(xi − Ux)(xi − Ux)T; (13)

where Ux = (1=m)
∑m

i=1 xi.
The smallest eigenvalue ofZ, denoted by cmin, can be used

as a measure of planarity of these points. If cmin exceeds a
threshold, i.e., if cmin¿ Twin, then this patch is thought to
be inhomogeneous and the central point is classi:ed as an
outlier. For robust detection, the threshold is set by

Twin = rwincwin; (14)

where Ucmin is the median of cmin for all the windows in the
range data, and rwin is a chosen constant.

In parallel, if the diNerence in depth values between the
center point and its nearest neighboring point exceeds a
pre-de:ned threshold, this center point is also thought to be
an outlier.

Moving the window over the entire range image, centered
at each point, the outliers are extracted using the above two
criteria.

Although the outlier detection in the :rst module is
not critical for the proposed region-based segmentation
approach, it provides a preliminary description of the “in-
homogeneity” of the scene. More importantly, a successful
outlier detection reduces the risk of falsely merging two
inhomogeneous regions, as well as the computational bur-
den of surface :tting in the region-growing process. The
extracted outliers will be re-evaluated in the third module.

3.2. Estimation-based region-growing scheme

After detection of outliers, the range image passes
through the estimation-based region-growing stage.
Initially, the range image is manually partitioned into a set
of regular grid pattern. Then the region-growing process
starts with these over-segmented small partitions, i.e., sels.
Selecting the size of a sel is done manually. On the one
hand, it should be suVciently small so that points from a
smooth surface lying within the sel are thought to be ho-
mogeneous and planar descriptive. On the other hand, an
extremely small size of the sel might cause diVculties in
parameter estimation at the beginning of growing because
of insuVcient shape information in a very small patch.
Moreover, the smaller the sels, the more iterations the up-
dating process takes, and more computational time will be
required. In practice, the size of the sel can be set about the
same as that of the window used in outlier detection.

If the number of outliers in a sel exceeds a threshold, then
it is marked as “ambiguous”, meaning that it may cover a
part of the object boundary or local irregularities. Others are
termed as “ordinary” sels. Only the ordinary sels participate
in the region-growing process. For each of these ordinary
sels, the local variance of the noise is estimated with the
value of cmin as computed in an outlier detection.

The seed for region growing is selected as an array of
neighboring sels, a subregion noted as patch. In our ap-
proach, the type of the array is selected in notion of a
second-order neighborhood system, treating the grid-pattern
sels as “pixels”. So the maximum size of a patch is nine
sels and we set the minimum size to six. Starting with such
a seed patch, the region grows by merging the neighboring
ordinary sels of the current region and the region is updated
in an iterative way. This process is controlled by the crite-
rion of the homogeneity test, which can be interpreted as the
clustering principle of the sels. The clustering principle is
based on the hypothesis test implemented with the optimal
description of surface representations as stated in Section 2.

Denote the current region at the kth iteration as R(k). For
a neighboring sel S, the merged region is represented as
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R(k+1) = R(k) ∪ S. Suppose that (
k ; �k) are the estimates
of parameters for the current region R(k), where 
 denotes
the surface parameter vector and � denotes the covariance
matrix. After merging the sel S, the estimates for R(k+1)

are (
k+1; �k+1). Assuming that R(k) and S belong to the
same surface that can be represented with their primitive
representation, then the estimates of the surface parameters

k and 
k+1 are two observations of the same primitive.

According to the description in Section 2, the homogene-
ity between the estimates before and after merging can be
tested by a measure of the “optimal distance” between R(k)

and R(k+1) . Now the optimal distance is computed as

d2
k; k+1 = 1

2 (
k − 
k+1)
T�−1

k; k+1(
k − 
k+1); (15)

with

�k;k+1 = �k + �k+1:

If d2
k; k+1¿ Td, then the merging is rejected, meaning R(k)

and S are inhomogeneous. Otherwise, they are thought to be
homogeneous and the merging of S with R(k) is acceptable.

Once the sel passes the test and is merged, the re-
gion R(k+1) is represented with the updated description
(
k+1; �k+1) and the next neighboring sel is tested. If all the
neighboring sels of the current region fail to pass the test,
the growing process of the selected seed stops. From the
remaining ordinary sels, a new seed patch is selected and
the growing process as described above is repeated. The
whole process is completed when no more seed patches are
found. At the end of this module, the input range image is
segmented into several fundamental regions, each of which
consists of a set of sels, which are noted as the dominant
regions. The rest of the range image includes “ambiguous”
sels and some ordinary sels, whose number of neighbour-
hood is less than the minimum requirement of a patch.

We would like to address some new features of the
estimation-based merging algorithm.

3.2.1. The order of merging
In general, any segmentation implemented with the

region-growing principle meets two fundamental questions:
(1) When does the growing stop? (2) In which order should
the candidate sels be chosen for merging with the patch?

The answer to the :rst question is in fact the criterion of
the homogeneity test for region-based approaches. The sec-
ond question, however, has not yet been fully treated until
now. An intuitive answer to the second question is that the
points adjacent to the current region with the “best” out-
put from the homogeneity test, are given highest priority
for merging. For example, the sel that generates the small-
est value of d2

k; k+1 could be taken into R(k+1) :rst. However,
such a priority only comes from the degree of homogeneity
of two estimates, but the degree of reliability of the region’s
estimate after merging is neglected. In other words, merging
the “best homogeneous” points cannot guarantee the yield
of the “best reliable” representation of the updated region
R(k+1). This is because the uncertainties in parameter esti-

1 

R(k) 

S1 

S2 

Fig. 2. Selection of the candidate sel for the next merging.

mation not only depend on the noise level of the data points
involved in the surface :tting, but also depend on the spa-
tial locations of these points. This can be illustrated with the
heuristic example of Fig. 2.

Suppose that the current region R(k) is a rectangular por-
tion of a cylindrical surface whose length extends along the
axis of the cylinder, and that both the sels S1 and S2 pass the
homogeneity test. Intuitively, merging S1 into R(k) yields the
estimate of R(k+1) less reliable than that of merging S2 into
R(k). The merging of S1 results in an extension of the length
of R(k) along the axis, and R(k+1) is still “Lat” somehow (as-
suming its width is narrow compared with the radius of the
cylinder), so the parameter estimation of R(k+1) is unstable.
On the contrary, merging of S2 will embed more information
of the “curving” of the surface in estimating R(k+1), resulting
in a lesser uncertainty in shape description (assuming that
the noise level remains the same). Therefore, although S1

could result in a smaller distance measure between R(k) and
R(k+1), the sel S2 should have a higher priority for merging
in view of the reliability of surface representation.

In fact, from the expression of the optimal distance of
Eq. (11), it can be seen that a large value of the covariance
matrix �k+1 results in a small value of d2

k; k+1. However, this
does not help to improve the reliability of the representation
of the current region R(k+1).

According to the above argument, in the proposed ap-
proach, the merging priority in the region-growing process
is determined by the “measure of uncertainty” Munct as de-
:ned in Eq. (12). Therefore, among all the neighboring sels
that pass the homogeneity test, the one that generates the
smallest Munct is merged :rst. In order to reduce the burden
of parameter estimation for each candidate sel, in practice,
the value of Munct is estimated only by approximation. In-
stead of recomputing the region parameters after merging
each sel, the current estimate 
k is used for the computation
of Munct , just by adding data points of each sel into the cur-
rent group of points in R(k). Thus, the sel with the smallest
Munct has the highest priority of passing through the homo-
geneity test. If it fails to pass the homogeneity test, then we
choose the next in the queue ordered by the value of Munct

from the smallest to the largest.
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3.2.2. Selection of the seed patch
Although there is more than one candidate of the patch to

be selected as the seed of growing, an optimal choice is still
based on the reliability of representation in surface estima-
tion. Following the same principle as discussed above, the
patch with the smallest measure of uncertainty ‖�patch‖2 is
selected as the seed. Here, �patch is the covariance matrix
estimated in :tting data points in the patch to the quadric
representation. It should be noticed that the selection of the
proper seed patch is important in the region-growing ap-
proach. Since the estimates of the parameters for the homo-
geneous region are updated while the patch expands, an im-
proper choice of the seed patch could lead to an unreliable
result in surface representation.

Proceeding in the same way as for selecting the queued
sels, the selection of the seed for the next region is also
queued according to the value of ‖�patch‖2 in search of the
rest candidates.

The overall region-growing approach consists of the fol-
lowing steps:

1. Partition the range image into sels, and classify these sels
as “ambiguous” or “ordinary”.

2. Estimate all the possible patches by merging a set of
neighboring sels and applying the surface-:tting method
described in Section 2. From these patches, select the
seed patch that has the smallest value of measure of
uncertainty.

3. Starting from the seed patch, the region is updated by
merging its neighboring sels that pass the homogeneity
test. The smaller the measure of uncertainty in merging
the sel, the higher is the priority in the queue for merging.
The region parameters are updated after each merge.

4. If all the neighboring sels of the current region fail to pass
the homogeneity test, then the growing process stops and
the current region is assigned a label.

5. For the remaining sels, repeat steps 2–4 to generate
new-labeled regions. The whole process ends if no more
patches are found.

At the end of the second module, we obtain a set of labeled
regions, i.e., the dominant regions consisting of a set of
sels. These dominant regions represent diNerent clusters in
parameter space for surface representations, but not an exact
partitioning of the whole image in spatial domain. Points
near the boundaries of these dominant regions should be
treated in a re:ned process, i.e., these sels should be split
at point level and further classi:ed. This is implemented in
the third module, as described below.

3.3. Point-based re9nement

There are two kinds of sels that should be consid-
ered to pass through the re:nement process: merged and
non-merged. The merged sels are those at the boundary
between two or more neighboring dominant regions. In this

situation, points in these boundary sels are reclassi:ed as
either their current segment or other neighboring segments.
The non-merged sels adjacent to a dominant region are
split down to points and these points are further classi:ed
as surface points of this adjacent segment or non-surface
points. In both situations, the criterion for classi:cation is
based on the spatial “closeness” of a point to the speci:ed
surface. Simply, we can use the geometric distance be-
tween a point and a surface as the measure of such a spatial
closeness.

Denoting by d2(
) the squared distance from point x
to the surface whose parameters are noted by 
, identi:-
cation of a surface point is based on the comparison of
d2(
) with a threshold. If d2(
)¿ T , it is classi:ed as a
non-surface point. Otherwise, it is merged with the sur-
face of 
. The value of d2(
) is approximately computed
by d2(
) = h2(x; 
)|∇h|−2, where h(·) = 0 is the implicit
quadric representation of the surface. Considering that the
noise estimates might be diNerent for diNerent segments, we
select the threshold T = rpoint cseg, where cseg is the estimate
of noise variance for the concerned segmentation and rpoint

is a constant.
If there is more than one surface for which the criterion is

satis:ed, then it becomes an optimal classi:cation problem,
in which case the point is classi:ed as the surface in which
the distance is the smallest.

It should be pointed out that in this process the out-
liers that are detected in the :rst module also participate
in the classi:cation. This is because some of the detected
outliers are in fact surface points, but located near the
boundaries or edges of the object. After reclassifying those
points, the surface parameters of the re:ned segment are
recomputed.

Finally, the outcomes of the third module are the labeled
:nal segments and the unlabeled points.

4. Planarity test

In our approach, the planar primitives are distinguished
with quadric primitives. Although a planar surface can also
be represented by higher order polynomials, the represen-
tation could suNer from non-uniqueness of the solution.
Intrinsically, :tting a planar data set to higher order
polynomial is an ill-posed problem.

To avoid this problem, in the second module, where the
region parameters are estimated, we apply a routine of pla-
narity test to identify the planar surfaces. Then the planar
surfaces are estimated using the planar representation instead
of quadric representation and their region-growing proceeds
with planar representations.

Suppose that {xi} (i=1; : : : ; n) are points sampled from a
planar surface and they are used to :t a quadric presentation
of (1)

f(·) = pTm = 0; (16)
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where

m = [x2; y2; z2; xy; xz; yz; x; y; z; 1]T and
p = [a11; a22; a33; a12; a13; a23; '1; '2; '3; k]T with ‖p‖2

2 = 1:

Using the :tting criterion

p = arg min

{
n∑

i=1

f2
i

}
; (17)

the solution of p is given as the eigenvector of the matrix

M =
n∑

i=1

mimT
i ; (18)

associated with the smallest eigenvalue. In the noise-free
ideal case, the smallest eigenvalue of M is zero. However,
since the solution of p is non-unique, there are more than one
eigenvectors with zero eigenvalue. Considering the normal-
ization requirement for the algebraic coeVcients, there are
four eigenvectors with zero eigenvalues. Therefore, when
ordering the ten eigenvalues as (1¿ (2¿ · · ·¿ (10, ideally
(7 = · · · = (10 = 0.

Hence, we identify a planar patch in quadric represen-
tation just by checking the eigenvalue of (7. Of course, in
reality, the value of (7 is non-zero because of noise, but it
can be expected that for very “Lat” surfaces, this eigenvalue
is small. Therefore, we can simply use a threshold Tplane to
test the planar points. The criterion is as follows:

If(
(7

n

)
6 Tplane (n is the number of points); (19)

then the points belong to a planar surface, otherwise a
quadric surface.

In the second module, the seed patch is searched from the
candidate patches before the region-growing process. In this
searching stage, each patch is subjected to the planarity test.
Of all the planar patches that are found, a seed is selected
and the growth is carried out in planar representation.

5. Experimental results

The algorithm presented in Sections 2, 3 and 4 has been
applied to real range images2 and synthetic range data. The
experiments were carried out following the Lowchart of Fig.
1. Four diNerent scenes with trials for each were used to
test the proposed approach. The scenes include a Lat back-
ground and objects that are assumed being modeled with
either quadric or planar surface primitives. 2

2 The range images were obtained with the ranging system of the
Measurement & Instrumentation Laboratory, University of Twente.

Fig. 3. Segmentation results with real range images. Pic-
ture (a) is the original range image (depth value is mapped
to graylevel). (b) Shows the result of outlier detection (the
bright pixels), where the initial grid of sels is also displayed.
(c) Shows the result of merging sels. The labeled segments, i.e.,
the dominant regions, are shown with diNerent graylevels (outliers
are also displayed with higher brightness). (d) Shows the :nal seg-
mentation result after the re:nement step. Of the dominant regions
in picture (c), the planar regions have been marked with letter “p”,
others are regarded as quadric regions.

Figs. 3–6 show the segmentation results for the four
scenes. For each of them, a set of images is arranged to dis-
play the results:

(a) Original input range image. The depth value is mapped
to the grayscale.

(b) The result of outlier detection by the :rst module, in
which the detected outliers are displayed highlighted
(white points). The whole image has been initially seg-
mented with a grid of sels.

(c) The result of region growing by the second module.
Merging of homogeneous sels results in dominant re-
gions (displayed in diNerent graylevels).

(d) Final result of point-based re:nement by the third mod-
ule. Primitives are extracted as the regions bounded by
the white curves.

In order to reduce the computational burden and the de-
gree of correlation between neighboring pixels, each range
image was resampled at a lower resolution. For the inputs of
Figs. 3, 4 and 6 the resampling resolution was 2 pixels=point,
but for Fig. 5 it is 3 pixels=point. The used range data in our
computation were the set of resampled points.

In the :rst module, the size of the window used to detect
the outlier is 5× 5 (point2) and rwin =25 in the threshold of
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Fig. 4. Segmentation result of real range image.

Fig. 5. Segmentation results of real range image.

Eq. (14). In addition, if the depth value of the centered point
diNers from one of its (4-connective) neighboring points
over a threshold Tdepth =1 (mm), that centered point is also

Fig. 6. Segmentation results of real range image.

marked as an outlier. In the beginning of the second module,
the whole image is manually partitioned into grid-sized sels.
The size of each sel in the experiments is 5× 5 (point2). If
a sel contains a number of outliers exceeding a pre-de:ned
fraction, i.e., 20% of the total points in a sel, then this sel
is marked as “ambiguous” and will not participate in the
merging process. All others are considered to be “ordinary”
sels. Selection of the seed patch and the order of merging the
ordinary sels were ruled by the principle as stated in Section
3.2. Except for the homogeneity test, another criterion to
control the merging process is that if there are enough points
in the sel whose distances to the current surface exceed
a certain threshold (these points are regarded as non-:tted
points), the current merging is rejected. The threshold of
distance is d2¿ rdd2

med, where d2
med is the median of the

squared distances within the sel, while the constant used in
the experiment is rd = 25. The threshold of the number of
non-:tted points was Tn=20% of the total number of the sel.

An important parameter in the merging process is the
threshold Td for the “optimal distance”. Usually, a large
value of Td may cause under-segmentation, whereas a small
value of Td could cause over-segmentation. In practice, the
value of Td should be selected empirically. In our experi-
ments, we set the value of Td by referring to the histogram
of the optimal distances between all the candidate seed
patches and their neighboring sels. We experimentally set
Td around the last peak of the histogram, which is thought
to be the bound of the “most possible” distances between
two homogeneous estimates. The selected values of Td and
the histograms for the instances of Figs. 3–6 are depicted
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Fig. 7. The histogram of d2
s in the process of searching the seed

patch. The x co-ordinate is on a log-scale. The values of Td as
used in the experiments are also given. (a) Result with respect
to Fig. 3. The used threshold Td = 30. (b) Result with respect to
Fig. 4. The used threshold Td = 15. (c) Result with respect to
Fig. 5. The used threshold Td=90. (d) Result with respect to Fig. 6.
The used threshold Td = 80.

in Fig. 7. According to our experiments, small changes in
the value of Td (for example, variation within ±20%) did
not signi:cantly change the segmentation results. This also
illustrates that the optimal distance yields a reliable measure
for class separability.

In the experiments, the threshold for the planarity test in
Eq. (19) was set to Tplane = 0:0005. At the end of region
growing, a group of the merged sels is labeled as a dominant
region, as shown in (c) of Fig. 3. In the third module, these
dominant regions are re:ned by reclassifying non-merged
points. All the neighboring sels of these dominant regions,
whether ambiguous or ordinary, are split at point level. The
threshold distance in order to identify a non-surface point
was selected as Tpointdist = 0:8 mm. Points whose distance
exceeds this threshold and those in isolated sels were all
marked as “unlabeled”. In these segmentation results, the
planar segments were marked with the character “p”, while
others were in quadric representation.

It should be pointed out that in experiments, some regions
that were considered as planar (e.g. the supporting plate of
the cylinder in Fig. 6) were tested as quadric and have grown
in the quadric representation. This is due to noise perturba-
tion in the input range images, leading to errors in the shape
description of the planar patch. Of course, if the thresh-
old Tplane in the planarity test increases, then more regions
could be recognized as being planar. In order to avoid an
over-segmented result, we prefer reducing the risk of treat-

Fig. 8. Segmentation result with synthetic data. (a) The scene
consisting of synthetic data. The radius of the larger cylinder is 20.
The sampling interval is 0.8. Gaussian noise of standard deviation
�=0:02 has been added to the three co-ordinates for each point (in
the picture, noises are only added to z-co-ordinates for the purpose
of plotting). (b) The perspective view of the dominant regions by
merging sels. The size of the sel is 4 × 4. The seven regions are
labeled with Figs. 1–7. (c) The result of the histogram of d2

s . The
used parameter Td = 100. (d) The :nal result of re:nement. The
:gured regions correspond to the labels in (b). In order to view
diNerent segments, labeled regions have been detached at the z
direction.

ing a curved patch in planar description. In fact, the reason
to separate planar and quadric representations is to avoid
the possible ill-posed problem when :tting low-dimensional
surface data to a higher dimensional representation. As long
as the ill-posed problem is tolerated, a low threshold value
for Tplane is recommended.

From the experiments, it can be noticed that the bound-
ary points of a curved surface were usually diVcult to be
merged. This might be due to inaccurate range data acqui-
sition at the boundaries. Such results seem “imperfect” ac-
cording to our perceptual experiences. However, as argued
at the beginning of this paper, in the sense of primitive ex-
traction, what we are concerned with and expect from the
segmentation is the reliability of surface representation. A
“visually pleasing” judgement for range image segments
should be discarded.

The segmentation algorithm was also applied to synthetic
data. In Fig. 8(a), the 3D scattered data points generated
from a synthetic object surface and a planar background
are depicted. Gaussian noise has been added to the three
co-ordinates of each point. The standard deviation of
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Table 1
Estimated parameters of the segmented surfaces of the object in Fig. 8

Estimate of surface parameters Actual values

1 8:2 × 10−5, 0, 8:3 × 10−5, 0, 0, 0, 8:3 × 10−5, 0, 8:3 × 10−5, 0, 0, 0,
−0:016464, −0:000037, −0:008264 −0:016529, 0, −0:008264

2 1:06 × 10−4, −3:4 × 10−5, 1:02 × 10−4, 0, 1 × 10−6, 4 × 10−6, 1:06 × 10−4, −3:3 × 10−5, 1:06 × 10−4, 0, 0, 0,
−0:021221, 0.006540, −0:010630 −0:021246, 0:006557, −0:010623

3 8:1 × 10−5, 0, 8:2 × 10−5, 0, −2 × 10−6, −1 × 10−6, 8:1 × 10−5, 0, 8:1 × 10−5, 0, 0, 0,
−0:016155, −0:000032, −0:007954 −0:01613, 0, −0:008064

4 3:2 × 10−5, 0, 5:5 × 10−5, −2 × 10−6, 8:9 × 10−5, −6 × 10−6,
−0:011376, 0:000846, −0:015185

Their actual values are also given.

the noise is � = 0:02. The sampling interval at x and y
directions is 0.8.

The same segmentation approach was applied as for the
images in Figs. 3–6. Also, the parameters have been selected
to be the same, except for the threshold of the optimal dis-
tance in the merging criterion, which is set to Td =100, and
the size of the sel, now being 4 × 4. The segmentation re-
sult of the dominant regions is illustrated in Fig. 8(b) with
a perspective view at the z direction. The histogram of d2

s

is depicted in Fig. 8(c). Finally, the seven segmented re-
gions are shown in Fig. 8(d) after applying the process of
point-based re:nement (in exploded view along the z direc-
tion, for the purpose of visualization).

A notable result of the segmentation is that the bottom
cylinder portion in Fig. 8(b) was over-segmented into
two regions, i.e., labels “3” and “4”. This was caused by
noise perturbation in the data points. However, according
to the :nal estimate of the surface parameters for each
segment, it can be found that one of the two segments of
this over-segmented cylinder surface, i.e., label “3”, has
well recovered the true parameters of this cylinder repre-
sentation. But the other gives an unexpected result. This
result signi:cantly revealed the advantage of the proposed
approach for a primitive extraction in range image segmen-
tation. The estimated surface parameters of the object sur-
face regions and the actual surface parameters are listed in
Table 1.

6. Conclusions

This paper presented a new estimation-based approach for
range image segmentation. The core of the approach is the
optimization of the surface description. Since the uncertainty
in an estimate of region parameters is explicitly represented
with a covariance matrix, the de:nition of homogeneity and
the clustering criterion can be established within an optimal
framework. To do that, we applied a probabilistic model

with normal pdf to characterize the statistical properties of
a region’s estimate.

Our algorithm interprets the range image segmentation as
a phase of primitive extraction of the scene. Thereby, the
reliability of primitive representation and extraction is em-
phasized. Currently, the :rst- and second-order polynomials
are used to model the surface primitives. We de:ned the
“measure of uncertainty” as a test of the reliability of a sin-
gle estimate, which turns out to control the extraction of the
surface primitive. Therefore, the problem of order of merg-
ing in region-growing methods is solved by the criterion
of reliability of primitive representation. The new spirit in
the proposed algorithm is—the range images segmentation
is not thought of as “how the scene is partitioned”, but is
thought of as “how the scene is reliably described”. Experi-
mental results have proved the eNectiveness of the algorithm
and the applicability of such a spirit.

A susceptible question in using this method is the deter-
mination of the parameter Td, the threshold of the optimal
distance in the homogeneity test. It is not realistic to :x this
parameter for all kinds of range images. A solution to deter-
mine this parameter is to refer the histogram of the optimal
distance between the candidate seed patches and their neigh-
boring sels, which has been proved eNective in our experi-
ments. More systematically, we can consider the number of
:nal clusters in a given scene as a priori information. This
relates to the research work on the speci:cation of the num-
ber of clusters called cluster validation [21,22], in which the
number of clusters is determined by the maximum entropy
principle.

7. Summary

We proposed a new estimation-based approach for range
image segmentation with a region-growing scheme. The ob-
jects were modeled with quadric or planar surface repre-
sentations and the segmentation is interpreted as a process
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of primitive extraction. The proposed algorithm focused on
the “reliability” of the extracted surface primitive represen-
tation.

Elementary in this segmentation algorithm is the optimal
description of the surface primitives. We established a prob-
abilistic model with normal pdf to describe the estimate of
surface parameters, combined with the covariance compu-
tation in surface :tting. Consequently, the optimization in
estimation-based segmentation is realized with two outputs:
(1) the homogeneity of two region estimates is tested with
a criterion of “optimal distance”; (2) the uncertainty in a re-
gion estimate is explicitly described, as the novelty in our
approach, by de:ning a metric of “measure of uncertainty”
in terms of the norm of the covariance matrix. The sec-
ond output induces a solution for the problem of “order of
merging” in the region-growing method—the region always
grows towards the most reliable description of the :nal ex-
tracted primitive, i.e., the “measure of uncertainty” being
minimum.

The segmentation approach consists of three modules:
Outlier detection. To keep the smoothness constraint

in surface :tting, extraordinary error points and the
edge=boundary points are preliminarily extracted by local
operation. A square mask is used to test the central point
by computing the goodness of planar :tting with the mask.
These outliers do not participate in surface :tting in the
second module.

Estimation-based region growing. Initially, the range im-
age is manually partitioned into a set of regular grid pattern.
Then the region-growing process starts with these “surface
elements” (sels). A subregion (patch) is selected as the seed
of growing. Region parameters are estimated by incorpo-
rating the covariance computation, and the current region
grows by merging the neighboring sels. The order of merg-
ing is determined by the metric of “measure of uncertainty”.
A threshold of the “optimal distance” is selected to test the
homogeneity of the regions before and after merging a sel.
We select the threshold by checking the histogram of the
“optimal distance” between the candidate seed patches and
their neighboring sels.

In this stage, a planarity test routine is applied to distin-
guish quadric surfaces to planar surfaces. A patch identi:ed
as planar then grows in planar representation.

At the end of this stage, the range image is partitioned
into a set of labeled regions consisting of the merged sels
(dominate region).

Point-based re9nement. All the points in the neighbor-
hood of the dominant regions (including the outliers) are
reclassi:ed to be surface points or non-surface points by
checking the geometric distance between a point and the
dominant regions. Finally, the whole range image is seg-
mented into labeled segments and unlabeled points.

The proposed approach has been applied to the segmenta-
tion of real range images and synthetic data. The experimen-
tal results demonstrated the eNectiveness of the approach
proposed in this paper.
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