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The charge regulation concept is combined with the Navier-
Stokes and Nernst-Planck equations to describe the ion retention
of nanofiltration membranes consisting of narrow cylindrical pores.
The charge regulation approach replaces the assumption of a con-
stant charge or a constant potential at the membrane pore surface,
and accounts for the influence of pH, salt concentration, and type of
electrolyte on ion retention. In the current model, radial concentra-
tion and potential gradients are considered to be negligibly small
(valid for narrow enough pores), resulting in a one-dimensional
transport description. The model describes typical experimental
data for nanofiltration membranes, such as the change of ion re-
tention with pore radius, ion concentration, pH, and pressure both
for monovalent and multivalent ions. For a constant solvent ve-
locity, the model in some cases predicts an optimum pore size for
retention. Nonequal retentions for anions and cations are predicted
at low and high pH values, as well as a minimum solvent velocity
for very low salt concentrations. For higher salt concentrations, and
at a fixed pressure difference, an increase in solvent velocity with
increasing ion concentrations is predicted, in agreement with other
one-dimensional transport descriptions found in the literature, but
in contrast to some experimental data. C© 2002 Elsevier Science (USA)
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INTRODUCTION

Nanofiltration (NF) membranes consist of a thin separation
layer with pore sizes in the 1–10 nm range, in between the pore
sizes of reverse osmosis and ultrafiltration membranes. NF mem-
branes can separate ions from aqueous solutions using electro-
static effects and typically have higher solvent fluxes, but lower
retentions, than reverse osmosis membranes.

Theoretical studies on mass transport in NF membranes use
different approaches, such as derivative models from the Gener-
alized Maxwell-Stefan (GMS) theory (1–11), the concept of hy-
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drodynamics (12), a combination of both (13, 14), or irreversible
thermodynamics (15, 16). We use the GMS description, which
simplifies to the Nernst-Planck (NP) equation for dilute sys-
tems (17). Combining the NP approach with proper descriptions
of momentum transfer (Navier-Stokes), electrostatics (Poisson),
continuity of mass, electroneutrality, zero electric current, and
the interactions with the membrane material suffices to com-
pletely specify the mass transport of ions. Because solving the
full NP and Poisson equations for the complex structure of a
membrane is mathematically formidable, simplifications of the
governing relations are very useful. Therefore we assume the
membrane to be constructed of a collection of straight capil-
lary pores with a small and uniform radius. For small enough
pore radii radial gradients in the electrostatic potential and the
concentration of ions can be neglected (9, 10, 13, 14).

To understand the ion retention behavior of NF membranes
as a function of feed solution conditions, pressure, and surface
charge, mass transport of the ions and solvent through the mem-
brane pore as well as chemical interactions with the membrane
pore surface must be considered. Transport descriptions for
NF membranes generally assume a constant surface potential
or surface charge (1, 2, 5–9, 13, 14). However, it is known
from practice as well as from theory that the surface charge
and surface potential change with pH, salt concentration, and
the extent of electrostatic double-layer overlap (like in narrow
pores) because of the specific interaction of ions in solution
with the pore surface (18–23); these effects are considered
in the charge regulation (CR) approach (24–27). For charged
membranes, Jacazio et al. (2) and Westermann-Clark et al. (8)
were the first to realize this dependence of surface charge on
material and solution properties, though they did not incorporate
the ion-surface interactions in their model description. Bowen
et al. (12) used a Freundlich-like isotherm to determine a homo-
geneous membrane charge density as a function of the ion con-
centrations in the feed and found no influence of the type of
electrolyte. Sasidhar et al. (28) and Takagi et al. (29) followed
the same approach and used a Langmuir isotherm to describe
specific adsorption of counterions at the membrane surface.
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Similar to (12), Takagi et al. (29) related the Langmuir adsorp-
tion parameters to the feed concentrations of the species. Basu
et al. (3) integrated the charge regulation concept into a space-
charge model for transport through microporous mica, but
they did not focus on the separation properties of the material.
Like Basu et al. (3), Hall et al. (18, 19) combined charge
regulation with mass transport, but focused more on retention
behavior, see also (20). Also, the transport of hydroxyl ions and
protons was explicitly accounted for in (18–20). In the work of
Hall et al. (18, 19) the charge regulation adsorption parameters
were obtained by fitting the model to membrane retention data
of binary electrolyte solutions. Starov et al. (20) used charge
regulation data (18, 19) in a homogeneous mass transport
model. In a previous effort (21), we used the charge regulation
concept for a pore at thermodynamic equilibrium to describe
the increase of retention with decreasing pore size and the
decrease of retention when the pH approaches on the isoelectric
point (IEP). In the present effort the equilibrium model (21)
is extended by combining the charge regulation approach with
the Nernst-Planck equation, the Navier-Stokes equation, and
continuity of mass to predict the ion separation behavior of
a hydrophilic NF membrane. The membrane is modeled as a
collection of cylindrical pores with the pore-mouths on both
sides of the membrane at thermodynamic equilibrium with the
adjacent solution phase. Furthermore, we assume the pore radius
small enough for the radial concentration and potential gradients
to be negligibly small (uniform potential approach (9, 10, 13,
14)). The resulting model is then one-dimensional in the axial
direction. Apart from the use of charge regulation, the present
model also explicitly takes into account the concentration of
protons and hydroxyl ions (i.e., the pH) in the solution (18–20).
Sodium chloride is used as a model electrolyte, which can be
acidified or alkalized by the addition of HCl or NaOH, respec-
tively. Also mixtures with other univalent and divalent cations
are considered. We will confine ourselves to the description of
a stationary experiment in a dead-end permeation setup with a
constant feed salt concentration (infinitely large feed reservoir),
and without any sweep flow on the effluent side. The ion con-
centrations on the effluent side are not fixed, but are a unique
function of the ion and solvent flow through the membrane.

The transport model predicts well-known NF separation char-
acteristics like an increase in retention with increasing pressure
difference as well as negative retentions for multicomponent
electrolyte mixtures. Other interesting features of the model are
nonequal anion and cation retentions at high and low pH values,
as well as an optimum pore size for retention at a fixed pressure
difference over the membrane.

THEORY

We will consider a membrane consisting of long and narrow
straight cylindrical pores of equal length extending from the feed

side to the effluent side and focus on a single pore, see Fig. 1.
The solution at the left side of the pore is the feed solution; the
EL, AND VERWEIJ

FIG. 1. Overview of a cylindrical membrane pore.

solution on the right side is the effluent. For long enough pores
entrance and exit effects can be neglected. Furthermore, if the
pore is narrow enough the ionic concentrations and electrostatic
potential are constant with respect to the pore radius, allowing
us to neglect radial effects and use a purely one-dimensional
description of flow. This approach is referred to as the uniform
potential (UP) approach (9, 10, 13, 14).

On the feed side of the pore the pressure pf [Pa], electrostatic
potential φf [V] and the concentrations of species i , cf

i [mol/m3],
are fixed as well as the pressure on the effluent side pe. The ion
concentrations ce

i and electrostatic potential φe in the effluent
are variables in the model and not known a priori. At stationary
conditions and without a sweep flow on the effluent side, the
concentrations in the effluent are related to the molar flux of
ions Ni [mol/m2 s] and the mass-average velocity ν [m/s] by
(1, 13, 14, 18, 20)

ce
i = Ni

ν
. [1]

In this work the variables Ni and ν are quantities averaged over
the pore radius. Since we only consider dilute systems the mass-
average velocity is set equal to the solvent velocity.

The pore slices at each end of the membrane are assumed
to be in thermodynamic equilibrium with the adjacent solution
phases, feed, or effluent. This implies that at the solution-pore
interfaces the Boltzmann equation (Eq. [4]) can be used (e.g.,
2, 8). All nonequilibrium aspects (i.e., transport) are considered
to depend only on the characteristics of the pore in between
the two equilibrium slices. Between these equilibrium slices the
Boltzmann equation is replaced by the Nernst-Planck equation
(Eq. [13]).

For stationary conditions, continuity of mass results in

d Ni

dz
= 0,

dν

dz
= 0, [2]

with z the axial coordinate. Hence, Ni and ν are constant every-
where in the pore.

When the molar fluxes Ni of ions and the solvent velocity

ν are known, the effluent concentrations can be obtained from
Eq. [1]. The retention by the membrane of each ion species i is
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then given by

Ri =
(

1 − ce
i

cf
i

)
· 100%. [3]

1. Thermodynamic Equilibrium

For dilute, ideal systems at thermodynamic equilibrium the
Boltzmann equation relates ion concentrations ci [mol/m3] to
the electrostatic potential

c0
i = cb

i exp[−zi (ψ
0 − ψb)], [4]

with zi the charge number of species i , ψ the dimensionless
potential ψ = Fφ/RT , with φ the electrostatic potential [V], F
the Faraday constant [C/mol], R the gas constant [J/(mol · K)],
and T the temperature [K]. Here we have written the Boltzmann
equation for the equilibrium between a bulk (b) solution (being
the feed, f, or the effluent, e), and the solution phase just inside
the pore (0). In the feed solution we set the dimensionless elec-
trostatic potential ψ f to zero, but the potential in the effluent ψe

is not fixed.
For electric field strengths higher than ≈20 MV/m, hydration

of ions may be important and this effect can be incorporated in
Eq. [4] (3, 11).

2. Charge Regulation

Ionic species present in the pore solution adsorb on the mem-
brane pore wall resulting in the formation of a surface charge
according to the principles of charge regulation. When several
different ionic species are present, competition for the fixed num-
ber of surface sites, called competitive adsorption, takes place.
In this work we assume an oxidic surface with a fixed number
of hydroxyl sites [−OH]s (18–23, 27). These surface sites are in
thermodynamic equilibrium with the protons (formally, H3O+)
in the solution next to the surface that may adsorb or desorb
at the surface, resulting in [−OH+

2 ]s or [−O−]s surface groups.
Cations and anions adsorb on these negative and positive sur-
face groups, respectively. This adsorption approach is termed
the 2-pK model.

An oxidic material can be characterized in terms of the to-
tal fixed number of chargeable hydroxyl groups on the mem-
brane pore wall, cs

tot [mol/m2], the isoelectric point, which is the
pH at which the number of positively and negatively charged
surface groups on the material is equal, and �pK , the differ-
ence between pK + and pK − (24–26). The parameters pK +

and pK − describe the equilibrium between the uncharged sur-
face hydroxyl group [−OH]s and the charged groups [−O−]s

and [−OH+
2 ]s. They are related to the pH at the isoelectric

point by

pHIEP = 1

2
(pK + + pK −). [5]
In this paper we assume that cations Cn+ and anions Am− adsorb
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only on a single charged surface group, irrespective of the ion
valency, forming either [−O−Cn+]s (adsorption constant KC )
or [−OH+

2 Am−]s groups (KA). Note that only for monovalent
cations, C1+, and monovalent anions A1−, these ion pairs are
neutral, while for a divalent cation like Ca2+, the adsorbed com-
plex has a 1+ charge. More complex surface adsorption re-
actions (27) can be built into the charge regulation model as
well as the strong adsorption of specifically adsorbing divalent
ions (30, 31). However, the 2-pK model used here describes
the main features of competitive ion adsorption and charge
regulation.

The four surface reactions we will consider are

−OH+
2

K +
⇀↽ −OH + H+(s)

−OH
K −
⇀↽ −O− + H+(s)

−O−Cn+ KC
⇀↽ −O− + Cn+(s)

−OH+
2 Am− K A

⇀↽ −OH+
2 + Am−(s),

where H+(s), Cn+(s), and Am−(s) are the proton, cation, and
anion in the solution next to the surface, respectively. The equi-
librium constants K for these four reactions are defined as

K + = cs
H[−OH]s

cref[−OH+
2 ]s

, K − = cs
H[−O−]s

cref[–OH]s
,

[6]

KC = cs
C[−O−]s

cref[−O−Cn+]s
, K A = cs

A[−OH+
2 ]s

cref[−OH+
2 Am−]s

.

The concentrations of the surface complexes ([−OH]s,
[−OH+

2 ]s, [−O−]s, [−O−Cn+]s, [−OH+
2 Am−]s) have units

[mol/m2], the ion concentrations in the pore solution next to
the surface cs

i have units [mol/m3], and cref is the thermo-
dynamic reference concentration (cref = 1000 mol/m3, corre-
sponding to 1 mol/dm3). The adsorption equilibrium constants
K +, K −, K A, KC , and cs

tot describe the interaction of the
(membrane) material with the respective ion and the solvent for
the given adsorption model and are independent of such factors
as pore size, geometry, pH, and ion concentration. Because they
are material specific, they can be determined independently by
techniques like electrophoretic mobility measurements or elec-
troacoustic methods.

The surface charge σ [C/m2] is given by

σ = F

(
[−OH+

2 ]s − [−O−]s +
nC∑
i=1

(ni − 1)
[−O−Cni +

i

]s

−
n A∑
i=1

(mi − 1)
[−OH+

2 Ami −
i

]s

)
, [7]
with nC and nA the total number of cation and anion species,
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respectively. The total number of surface sites cs
tot [mol/m2] is

equal to the sum over all surface sites,

cs
tot = [−OH]s + [−OH+

2 ]s + [−O−]s +
nC∑
i=1

[−O−Cni +
i

]s

+
n A∑
i=1

[−OH+
2 Ami −

i

]s
. [8]

Combining Eqs. [7] and [8] with the adsorption reactions in
Eq. [6] results in a surface charge given by

σ = Fcs
tot

cs
H

K +

[
1 −

n A∑
i = 1

(mi − 1)
cs

A,i

K A,i

]
− K −

cs
H

[
1 −

nC∑
i = 1

(ni − 1)
cs

A,i

KC,i

]

1 + cs
H

K +

(
1 +

n A∑
i = 1

cs
A,i

K A,i

)
+ K −

cs
H

(
1 +

nC∑
i = 1

cs
A,i

KC,i

) .

[9]

In case of only one type of monovalent anion and one type of
monovalent cation, Eq. [9] results in a surface charge given by
(3, 21, 23, 36)

σ = Fcs
tot

(
cs

H

)2 − K +K −

K +cs
H + (

cs
H

)2 + K +K − + K +K −cs
C/KC + (

cs
H

)2
cs

A/K A

.

[10]

In some of the simulations we will use the divalent calcium
ion as well. With the assumption that this ion only adsorbs at
one single [−O−]s site, the surface charge can be calculated with
Eq. [9] (n A = 1, nC = 2).

In the model, the surface charge is calculated at every axial
position in the membrane and is supplemented by another ex-
pression for the surface charge resulting from the constraint of
electroneutrality in each pore slice.

3. Electroneutrality

In every pore slice the sum of the mobile charges (the charges
related to the ions in the pore solution) is assumed compensated
by the immobile charge on the pore surface. Hence, the surface
charge σ [C/m2] is given by

σ (z) = −1

a

a∫
0

F
ni∑

i=1

zi ci (z, r )r dr, [11]

with ni the number of ionic species (ni = n A + nC), a the pore
radius [m], r the radial coordinate [m], and ci a function of z
and r . In the uniform potential model (9, 10, 13, 14) the concen-
trations are constant over the radial coordinate (see Fig. 1), and
Eq. [11] becomes

ni
σ (z) = − Fa

2

∑
i=1

zi ci (z). [12]
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4. The Nernst-Planck Equation

The Nernst-Planck equation can be derived from the full
Maxwell-Stephan equation for dilute, ideal systems (17) and
is given by

Ni = −Di

(
dci

dz
+ zi ci

dψ

dz

)
+ ciν. [13]

The diffusion coefficients Di [m2/s] are equal to the Maxwell-
Stefan ion-solvent diffusion coefficients at infinite dilution (17).
The constraints of the porous membrane matrix hinder transport,
and the diffusion coefficients as well as the convective velocity
can be adjusted to account for these geometrical effects (11, 14,
32, 33). For example, Bowen et al. (12) use a correction from
the theory of hydrodynamics for both diffusion and convection.
Another particular elegant manner to include matrix effects—
hindered transport of both solvent and ions—is the inclusion
of the Einstein correction, simultaneously in the diffusion co-
efficient Di (Eq. [13]) as well as in the viscosity µ (Eq. [15]).
This approach was used by Yang and Pintauro (11) and allowed
them to quantitatively describe membrane retention data (their
Fig. 3). In the present paper we will not apply such corrections
and assume that transport by diffusion and convection in the
membrane pore is equal to transport in free solution.

In principle, the Nernst-Planck equations should be solved
for all charged mobile species (hydroxyl ions, protons, anions,
and cations). However, for the hydroxyl ions we apply the water
dissociation reaction instead, which is fast compared to the trans-
port processes. The water dissociation reaction is given by

Kw = cH+cOH− , [14]

where Kw is the water autoprotolysis constant [mol2/m6]. Con-
trary to (18–20) we assume Eq. [14] to be valid at each location in
the membrane. Because the molar fluxes are related to the efflu-
ent concentrations by Eq. [1], the flux of hydroxyl ions follows
directly from the flux and the effluent concentration of protons
(Eq. [14]).

5. The Navier-Stokes Equation

Solving the full Navier-Stokes (NS) equation is a formidable
task. We will therefore limit ourselves to systems with a con-
stant mass density and viscosity. Neglecting radial velocities νr

and pressure gradients ∂p/∂r and using the uniform potential
approach, we only have to consider the axial component of the
NS equation. At mechanical equilibrium, with cylindrical sym-
metry (i.e., ∂/∂θ = 0) and zero tangential velocity, the axial
component of the NS equation reads

−dp + µ

[
1 ∂

(
r
∂νz

)
+ ∂2νz

2

]
− RT

ni∑
zi ci

dψ = 0,

dz r ∂r ∂r ∂z

i=1 dz
[15]
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with p the pressure [Pa] and µ the Newtonian viscosity [Pa · s].
Integrating Eq. [15] twice subject to the boundary condi-
tions

∂νz

∂r

∣∣∣
r=0

= 0
[16]

νz|r=a = 0,

and using Eq. [2] results in

νz(r ) = a2

4µ

[
1 −

(
r

a

)2](
dp

dz
+ RT

ni∑
i=1

zi ci
dψ

dz

)
. [17]

Integrating over the pore radius a, the average velocity ν is
obtained (9)

ν = − a2

8µ

(
dp

dz
+ RT

ni∑
i=1

zi ci
dψ

dz

)
. [18]

If the electrostatic term in Eq. [18] is neglected the classical
parabolic Hagen-Poiseuille flow profile is obtained (34), but the
expression shows that also for the uniform potential approach
the flow profile is always parabolic.

Instead of the pore-ensemble approach it is also possible
to model a membrane as a porous packed bed. In this con-
cept the permeability of the material κ [m2] replaces a2/8 in
Eq. [18] (34, 35). The permeability depends on the porosity,
the tortuosity, and the size of the particles of which the porous
medium consists. In the present paper, however, Eq. [18] is used
instead.

6. Zero Electric Current

Charged mobile species of opposite sign cannot move through
the membrane independently since even minute amounts of
charge separation will give rise to very large electrostatic fields.
These fields will immediately adjust the ion molar fluxes to ob-
tain a zero electric current,

F
ni∑

i=1

zi Ni = 0. [19]

7. Uniform Potential Assumption

In our model only transport through narrow pores is consid-
ered. As a result, gradients in the radial concentrations and radial
electrostatic potential can be neglected; this is the uniform po-
tential approach (9, 10, 13, 14). Indeed, this assumption becomes
increasingly exact when equally charged opposing surfaces ap-
proach each other (36). To assess the validity of this assumption

for our system of cylindrical pores, and to select a proper base
case, we calculated the radial concentration and electrostatic po-
ROPHILIC MEMBRANES 135

tential profile using the exact Poisson-Boltzmann equation for a
system consisting of monovalent ions only,

λ2

ρ

d

dρ

(
ρ

dψ

dρ

)
= sinh(ψ). [20]

The Debye ratio λ is the ratio of the Debye length λD over the
pore radius a, λ = a−1

√
εrε0 RT · (2F2cf)−1, with cf the ionic

strength, and ρ the dimensionless radial coordinate, ρ = ra−1.
Figure 2a shows the deviation between the concentration at the

pore surface and at the pore centerline for a monovalent salt as a

FIG. 2. Deviation from the uniform potential approach as a function of the
dimensionless surface potential ψ s and λ (λ is the ratio of the Debye-length and
the pore radius) calculated using the exact Poisson-Boltzmann equation for a
monovalent symmetrical electrolyte. The star is the base case. (a) Deviation in
cation concentration between the pore center (r = 0) and the pore wall (r = a).

(b) Deviation in electrostatic potential between the pore center and the pore
wall.
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TABLE 1
Data Used in the Simulations

cs,tot = 8.3 × 10−6 mol/m2 which follows from 20 A
❛

2 per site (25)

�pK = pK − − pK + = 3 (25), pHIEP = 9.25 (alumina)
thus K − = 1.778 × 10−11 and K + = 1.778 × 10−8

K A = KC = 7.0 × 10−5

Pore size (2a) = 4 nm and membrane thickness (pore length) Lm = 1 µm
Kw = 1 × 10−8 mol2/m6

DH+ = 9.31 × 10−9, DNa+ = 1.33 · 10−9, DCl− = 2.03 × 10−9,
DCa+ = 0.79 × 10−9 m2/s (47)

For the feed solution cf = 1 mol/m3, pHf = 6

µ = 8.85 × 10−4 Pa · s, pf − pe = 0.5 MPa
F = 96485 C/mol, R = 8.3144 J/(mol · K), T = 298.15 K

εr = 78, ε0 = 8.854 · 10−12 C/(V · m)

function of the dimensionless surface potential ψ s and the Debye
ratio λ while Fig. 2b shows the deviation in electrostatic potential
in the center of the pore ψ0 from its value at the surface ψ s .
Bowen et al. (14) made a similar assessment for the applicability
of the uniform potential approach.

When the radial potential distribution was obtained from
Eq. [20] the concentration profile was calculated using Eq. [4]
(setting the electrostatic potential in the feed to zero). Analyzing
Fig. 2a and Fig. 2b shows that for dimensionless surface poten-
tials ψ s below 1.0 (φs < 25.7 mV) the deviation in the radial
ion concentration is lower than the deviation in radial potential,
while the opposite is true for ψ s > 1.0.

To select a proper base case (Table 1), we combined Eq. [20]
with the charge regulation expression (Eq. [10]) and the elec-
troneutrality condition (Eq. [12]). For our base case a deviation
in the concentration of approximately 10% was considered ac-
ceptable and the base case was selected accordingly (the single
star in Fig. 2a and Fig. 2b shows the position of the base case).

8. Solution Scheme

The 1D transport model consists of a coupled set of 3ni + 5
differential and algebraic equations (ni is the number of ionic
species) which is simultaneously solved for the independent
variables: the molar fluxes Ni , the solvent velocity ν, the ef-
fluent concentrations ce

i , and the dimensionless potential in the
effluent ψe (all independent of z), the concentrations of species
i, ci (z), the dimensionless axial potential gradient, (dψ/dz)(z),
the pressure, p(z), and the membrane surface charge σ (z) (all
a function of the axial coordinate z). The feed concentrations
cf

i are known a priori as well as the pressures in both solution
phases.

Because of thermodynamic equilibrium, the concentrations
and potential in the pore at the left equilibrium slice can be
calculated using Eqs. [4] (we define a reference potential by
setting the potential in the feed to zero), [10], [12], and [14].
The ion concentrations in the effluent ce

i are variables in the

model and therefore not known a priori, but are related to the ion
fluxes and solvent velocity by Eq. [1]. In between the equilibrium
EL, AND VERWEIJ

slices in the membrane the Nernst-Planck equation [13] is solved
for each of the ionic species as well as the integrated Navier–
Stokes equation [18] and charge regulation relations [10] at each
pore slice under the conditions of electroneutrality [12] and zero
electric current [19].

The system of equations [10], [12], [13], and [18] is dis-
cretized and written in a finite difference scheme, resulting in
a set of “pore slices,” while Eqs. [1] and [19] are only solved
once, independent of the number of pore slices in the model.

The unknown parameters are then calculated with a Newton-
Raphson iteration procedure. Before implementation, numerical
stability was checked by testing different finite discretization
schemes and changing the number of grid points. The com-
plete model is implemented in the mathematical program Maple
(Waterloo Maple, Ontario, Canada).

RESULTS AND DISCUSSION

1. Base Case

Model results will be discussed using a base case for which
we consider a pore radius a of 2 nm. The feed solution contains
1 mol/m3 NaCl at a pH of 6, obtained by the addition of HCl (for
pH > 7, NaOH is added). The applied pressure difference over
the membrane is 0.5 MPa. We consider a γ -alumina membrane
and use the material parameters given in Table 1.

For the base case, the deviation from the uniform potential
model assumption is 11.6% for the radial cation concentration,
3.8% for the electrostatic potential, and 3.1% for the surface
charge (see section 7 under Theory). In all other simulations,
the deviation in the radial concentration was smaller than 11.6%
unless otherwise specified (see Fig. 9b).

2. Limiting Retention

It is well known from practice that at increasing pressure dif-
ferences the retention increases but reaches a limiting retention
at very high pressures (11, 37–39); the charge regulation model
also predicts this phenomenon (Fig. 3). The initial increase in
retention for increasing pressure differences is a result of the
fact that water transport is enhanced more than ion transport:
the velocity of water is almost proportional to the pressure dif-
ference (see Fig. 2 in Ref. (38) as well as Eq. [18], the compo-
nent with the axial potential gradient is in general very small),
while transport of ions is reduced by migration (due to the axial
electric field that originates from the condition of zero elec-
trical current). For ever increasing pressure differences, how-
ever, convection becomes the most important transport mech-
anism for both water and ions, finally resulting in the limiting
retention.

In a previous paper (21), we modeled the retention of a hy-
drophilic membrane applying the CR model to a cylindrical
pore slice, far enough from either of the pore interfaces for axial
concentration gradients to be zero, and in thermodynamic equi-

librium with the feed solution. (Accidentally, in (21) the words
co-ion and counterion were switched in Eq. [13]. The coions
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FIG. 3. Anion and cation retention (equal) as a function of pressure differ-
ence. Base case conditions of Table 1 (NaCl + HCl) except for the pressure.

are the ions that are excluded from the membrane (same charge
as the membrane), while the counterions are the ions present
in excess in the pores (opposite charge)). In Fig. 4 we compare
the cation retention predicted with the equilibrium model (21)
with the results from the present model incorporating transport.
The models coincide only at very low values of the cation dif-
fusion coefficient. This is because for small enough diffusion
coefficients, the cation (the co-ion in a positively charged mem-
brane) will be “frozen” in the solvent flow, moving at the same
velocity as the solvent; in a binary electrolyte the counterions
are then forced to move with the same molar flux as the co-ions

FIG. 4. Anion and cation retention (equal) as a function of the diffusion

coefficient of the cation, C+, for the equilibrium model ((21), dotted line) and
the transport model (solid line). Base case conditions of Table 1.
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FIG. 5. Retention of sodium and another cation C+ as a function of the
diffusion coefficient of C+ for a mixture of 1 mol/m3 NaCl and 1 mol/m3 CCl,
pH 6. Base case conditions of Table 1.

because of the zero-current condition. For negatively charged
membranes, the anion is the co-ion and we expect the transport
model to approach the equilibrium model (21) for very low anion
diffusion coefficients.

3. Influence of Mobility and Charge on Retention

In Fig. 5 we show the effect on retention when instead of one
co-ion, two co-ions with different mobilities (diffusion coeffi-
cients) are present in the solution. In the simulation a mixture
of NaCl and CCl (C+ being an undefined monovalent cation)
of equal molarity is considered. Similar to the observations in
Fig. 4, a lower cation mobility (of C+ compared to Na+) results
in a higher retention for C+. The reverse effect occurs at mobil-
ities of C+ higher than that for Na+. For a very high mobility of
C+, the model even predicts negative retentions for C+ but this
occurs only at an unrealistically large value of DC+/DNa+ (not
shown).

Yaroshchuk et al. (40) and Bardot et al. (41) measured re-
tentions in multicomponent mixtures (Cs + Li, Cs + Na + Li,
Cs + Na, and K + Li) on negatively charged membranes and
obtained decreasing retentions for cations with decreasing mo-
bility in the order Cs > Na/K > Li. In mixtures of Li+ with
Cs+ or K+, negative retentions for lithium could be found. In-
terestingly, this experimental behavior seems exactly opposite
to what our model predicts, namely that the less mobile cations
are better retained. However, Yaroshchuk et al. (40) and Bardot
et al. (41) measured retentions on a negatively charged mem-
brane, while the membrane considered in Fig. 5 is positively
charged. Hence, where in our calculations the positive ions are
the co-ions, in (37, 41) they are the counterions, which reverses
the retention-mobility behavior of the cations: in positive mem-

branes a reduced mobility of cations increases the retention while
in a negative membrane a reduced mobility of cations decreases
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FIG. 6. Retention for calcium and sodium ions as a function of pressure in
a mixture of 1 mol/m3 CaCl2 and 1 mol/m3 NaCl, pH 6. Base case conditions
of Table 1 except for the pressure difference and concentrations.

the retention, see also (37). Simulations at a pH of 11, where our
system becomes negatively charged, indeed showed a decreas-
ing retention with decreasing cation mobility (simulations not
reported), confirming that our model results are in qualitative
agreement with the experimental results in (40, 41).

Retention depends not only on ion mobility but also on ion
charge. Indeed, negative retentions have been found experimen-
tally for mixtures of ions with different valencies (1, 37). We
show in Fig. 6 that the present charge regulation model also pre-
dicts this effect. In the simulations for Fig. 6 we added 1 mol/m3

calcium chloride to a solution of sodium chloride of the same mo-
larity (pH = 6). The adsorption equilibrium constants of sodium
and calcium in the charge regulation relation (Eq. [9]) were
arbitrarily set equal (i.e., KNa+ = KCa2+ = 7 × 10−5). Calcium
is retained much better than sodium, and negative retentions
are found for sodium for low pressure differences (i.e., low
solvent velocities). The origin of the higher retention for cal-
cium lies mainly in its higher charge number: it is more ef-
fectively excluded from the pores by the positive electrostatic
potential, Eq. [4], which is due to the positive surface charge
on the membrane. Note that this behavior only occurs for posi-
tively charged membranes. For negatively charged membranes,
the retention of divalent cations is lower than the retention
for monovalent cations, for binary electrolytes with the same
anion.

4. Retention as Function of pH

The predictive power of the charge regulation model is clearly
shown in Fig. 7a where the retention is shown as function of the
pH in the feed solution. In the pH range commonly used in ex-
perimental work (pH 6–7) the retentions of anions and cations

are equal. This is because the concentrations of hydroxyl ions
and protons (H3O+) are very low and almost equal. For pH
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values lower than 4 and higher than 10 the anion and cation
retentions clearly start to deviate. The deviation in cation and
anion retentions at low and high pH is a result of the fact that
we have incorporated transport of protons and hydroxyl ions
in the model. At decreasing pH the proton concentration in the
system increases and the protons start to influence the reten-
tion of the other ions: in the pore and effluent the slow cations
(low mobility) are replaced by the much faster protons, causing
the higher retention of cations compared to those of the anions
(see Fig. 5). At pH values above the IEP the situation is reversed:
the hydroxyl ions replace the much slower anions, increasing the
retention of the latter (18, 19). When the feed salt concentration
is increased, the influence of hydroxyl ions and protons is re-
duced and more extreme pH values are required to observe the
diverging retention of cations and anions (Fig. 7b).

Apart from the influence of protons and hydroxyl ions (pH),
the retention of ions depends also on the surface charge. This is

FIG. 7. Anion and cation retention as a function of pH. Base case conditions

of Table 1 (NaCl + HCl) except for the pH. (a) 1 mol/m3 NaCl, (b) 5 mol/m3

NaCl.
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FIG. 8. Anion and cation retention (equal) as a function of the electrolyte
concentration in the feed. Base case conditions of Table 1 (NaCl + HCl) except
for the feed solution concentration.

most clearly observed at the isoelectric point of the membrane
(pHIEP = 9.25; Fig. 7a). Because the effective membrane sur-
face charge is zero at the IEP, a zero retention is predicted; see
(21) as well.

5. Retention as Function of Feed Salt Concentration

The CR model predicts that increasing the feed electrolyte
concentration will result in a decreasing retention, see Fig. 8 and
(21). The reason is the reduced surface charge and electrostatic
potential in the pore at increasing feed concentrations. As a
result, the concentrations of co-ions and counterions in the pore
become more equal to each other and to the feed concentration,
leading to higher ion fluxes and therefore lower retentions (see
Eq. [1]). Although this behavior is experimentally found for
some (inorganic) materials (37–39) it does not seem to apply as
a rule (42).

6. Retention as Function of Pore Size

When the pore size of a membrane is reduced the retention
will increase (19, 37, 39). This behavior is shown in Fig. 9a
for a constant solvent velocity ν. To obtain a constant solvent
velocity, the decrease in pore size must be counterbalanced by
an increase in the pressure difference, see Eq. [18]. For such
cases the retention always increases continuously with decreas-
ing pore size. However, when the pressure difference pe − pf is
kept constant and the pore size is varied (Fig. 9b) the retention
behavior is completely different: the retention increases with
increasing pore size for most cases considered. For very high
pressures of 2 MPa the retention attains a maximum for a pore
size of 5.5 nm (optimum pore size). In Fig. 9b the optimum pore
size is difficult to distinguish and occurs only at high deviations

from the uniform potential model (≈20% deviation). In other
simulations (not reported) with lower diffusion coefficients, the
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optimum in pore size occurs at a lower pore size, within the 10%
deviation limit, and is much more pronounced.

We examined the influence of pH and feed salt concentration
on the location of the optimum pore size. There were only small
effects for both parameters. The (constant) pressure difference
that we considered, however, had a profound influence on the
position of the optimum. For increasing pressure differences, the
optimum in pore size shifted to lower values though the effect
levels off at higher pressure differences (see Fig. 9b). The find-
ing in Fig. 9b is quite remarkable, but understandable as well.
A decreasing pore size will cause the double layers to overlap
more, thereby excluding more co-ions from the pore but admit-
ting more counterions. Hence, the co-ion concentration in the
pore decreases and the concentration of counterions increases,
which increases retention. This effect levels off for decreasing

FIG. 9. Anion and cation retention (equal) as function of pore size. Base
case conditions of Table 1 (NaCl + HCl) except for the pore radius. (a) Constant
solvent velocity of 0.01 mm/s. (b) Constant pressure difference of 0.1, 0.5, 1,

and 2 MPa. The dotted lines are the percentage of deviation from the uniform
potential assumption.
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pore sizes as the double layers become fully overlapped. A sec-
ond effect of a decreasing pore size is the decrease in solvent
velocity, and as was shown in Fig. 3, a decrease in solvent ve-
locity (i.e., a decreasing pressure difference) results in a lower
retention. Hence we have two phenomena that counteract each
other. Supposedly, with decreasing pore size, the electrostatic
exclusion effect becomes important first (before the solvent ve-
locity effect), but is also the first to level off, resulting in an
optimum pore size with respect to retention. Unfortunately, no
experimental evidence in the literature was found to support the
prediction of an optimum pore size for retention.

In other simulations instead of the pore size the pore length
Lm was varied, maintaining a constant pressure difference,
which showed that the solvent velocity to be inversely propor-
tional to the pore length, as can be expected from Eq. [18].
Interestingly, the ion retention remained constant with varying
pore length. This can be explained by the fact that the solvent
velocity and the ion molar fluxes decrease to the same extent
when the pore length is increased, thereby not influencing the
retention, see Eq. [1].

7. Surface Charge

In the present model, the surface charge is calculated at every
position in the pore (Fig. 10). However, for the base case of
Table 1, the change in surface charge across the membrane is
quite small and the use of a constant surface charge (independent
of axial coordinate) would not have been of much influence
for the prediction of retention and solvent velocity. In such a
simplified model, the surface charge is calculated for the left
equilibrium slice—only dependent on feed conditions, material
properties, and pore size—and this value used for each position
in the membrane pore. This simplified approach using a constant

FIG. 10. Surface charge across the membrane (dimensionless thickness: 0,

feed side; 1, effluent side). Base case conditions of Table 1 (NaCl + HCl) except
for the pH.
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FIG. 11. Dimensionless solvent velocity (solid lines) and normalized axial
potential gradient term (dashed line, Eq. [18]) as a function of the feed salt
concentration for pressure differences of 0.01, 0.05, and 0.1 MPa. Base case
conditions of Table 1 (pH 6) except for the pressure difference and the feed
concentration.

surface charge also gives the possibility of fitting the model to
experimental retention data to obtain the surface charge of the
pores in the membrane (e.g., 1, 13, 14).

Note, however, that the surface charge is a function of all
experimental variables (feed salt concentration, feed pH, pore
size, etc.) and therefore the surface charge would need to be
determined for each new experimental condition. The objective
of using the charge regulation boundary condition in this paper
is that when the K values and cs,tot have been determined for
the membrane material (by some experimental method), surface
charge and retention can be predicted a priori when the experi-
mental conditions are changed.

Besides, the surface charge is not always as constant across
the membrane as in Fig. 10: for example, in the simulations re-
lated to Fig. 11 the surface charge decreased up to 95% across
the membrane for salt concentrations of ∼30 mmol/m3. Further-
more, a large change in surface charge will certainly be the case
for membranes with changing material properties over the pore
length, as is the case for bipolar membranes. Because the surface
charge is calculated in each pore slice, the present model would
be naturally suited to describe such nonhomogeneous membrane
systems.

8. Solvent Velocity

In Fig. 11 the solvent velocityν, as predicted by the charge reg-
ulation transport model, is plotted on the left y-axis as function
of salt concentration and pressure difference. The solvent veloc-

ity is scaled with respect to the maximum solvent velocity at its
corresponding pressure difference, νmax, which is given by the
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Poiseuille equation: Eq. [18] with the (second) electrostatic term
omitted. For sufficiently high salt concentrations (>50 mol/m3;
not shown in Fig. 11), ν/νmax approaches unity because the
membrane becomes uncharged and the axial potential gradient
vanishes. For a zero salt concentration and at pH 7, ν/νmax = 1
as well, because charge separation is impossible (zero electrical
current, and anion and cation concentrations are zero). How-
ever, in Fig. 11 simulations were performed at pH = 6 (base
case), hence, even for a zero salt concentration ν/νmax was less
than unity.

According to the model, see Fig. 11, the solvent velocity in-
creases linearly with the pressure difference as long as the salt
concentration exceeds the (very low) value of ∼0.2 mol/m3. This
behavior is well known from experiments, e.g., (38).

The influence of the salt concentration on the solvent veloc-
ity ν is less straightforward. Starting at csalt = 0, with increasing
csalt, ν first decreases, reaches a minimum around ∼10–30 mmol/
m3 after which ν increases and levels off. Let us discuss the
minimum, the increase in solvent velocity above the mini-
mum, and the leveling-off of the solvent velocity one after the
other.

Minimum solvent velocity. The minimum in the sol-
vent velocity predicted by the charge regulation model is
caused by the second term between brackets in Eq. [18],
RT

∑ni
i=1 zi ci (dψ/dz). At high salt concentrations the summa-

tion over all ions is large but the surface charge is low (see Fig. 8).
For small surface charges the electrostatic potential in the pore is
low and the co-ion and counterion concentrations approach each
other, resulting in a decreasing axial electric field (i.e., dψ/dz
is small). For very low salt concentrations, however,

∑ni
i=1 zi ci

is low, but the surface charge and the axial electric field be-
come very large. These phenomena have an opposite effect on
RT

∑ni
i=1 zi ci (dψ/dz), and this term attains a maximum value

for very small salt concentrations (see Fig. 11, right y-axis),
leading to the observed minimum in the solvent velocity.

Increasing solvent velocity. An increasing solvent velocity
with increasing salt concentration is not typically reported in the
membrane literature because generally experimental salt con-
centrations are higher. However, an increase of solvent veloc-
ity with salt concentration was recently reported for the flow
through the microchannels of pit membranes within xylem ves-
sels in plants (43) for salt concentrations of 0–20 mol/m3 and
especially in the range 0–1 mol/m3, similar to the increase in
solvent velocity predicted by the present model (Fig. 11) up
to 0.3 mol/m3 (dependent on the pressure difference across the
membrane).

This qualitative agreement might suggest that the present
model that combines electroviscous effects with charge regu-
lation on the pore walls might have relevance for the description
of flow through the pit membranes of the xylem vessels in plants.
Note that in the experiments (43), a minimum in solvent velocity
at a critical salt concentration was not found, perhaps because

dissolution of ions from the cell surfaces into the water always
increased the salt concentration to above the minimum value.
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Decreasing solvent velocity. Contrary to the prediction of
the charge regulation model that the solvent velocity approaches
the maximum νmax with increasing salt concentration, experi-
ments with nanofiltration membranes (39, 42) show a decreas-
ing solvent velocity with increasing feed salt concentration in
the range of 1–100 mol/m3. To understand the reason for this
discrepancy, we performed additional simulations.

First, we used a one-dimensional uniform potential model
with a constant surface charge from literature (1) and found that
it predicts an increase in solvent velocity with salt concentration
as well.

Second, we focused our attention on osmotic effects. Indeed,
some authors have attributed the decreasing solvent velocity to
an increase in the osmotic pressure when the salt concentra-
tion increases (28, 42, 44, 45). Others, however, attributed the
decrease in solvent velocity only in a minor degree to osmo-
sis but mainly to other effects, such as the degree of dissoci-
ated charged groups and a change in the water concentration
in the membrane (38). Still, to investigate whether osmosis ex-
plains the decrease in solvent velocity, we incorporated osmosis
into the charge regulation model by adding to the transport model
the term responsible for osmosis, V̄i p, with V̄i the molar vol-
ume [m3/mol] of species i (46), and we used the full Maxwell–
Stefan transport description (17, 33) for the molar fluxes of all
mobile species, including water. Unfortunately, in these simu-
lations (not reported), the same result was obtained: the solvent
velocity increases with feed salt concentration and levels off,
without decreasing at higher salt concentrations. We therefore
believe the decreasing solvent velocity with increasing salt con-
centration (1–100 mmol/m3 range) in dead-end permeation se-
tups is not related directly to osmotic effects, but must be due
to another phenomenon, e.g., a transport resistance leading to
concentration polarization outside the membrane. These effects
can be incorporated using film models that are well known and
available in literature (e.g., 13, 17, 34).

CONCLUSIONS

We combined charge regulation with the relevant transport
relations to describe ion retention of and solvent flow through
a charged nanofiltration membrane consisting of cylindrical
capillaries. For the base case with a pore size of 4 nm, the
deviation from the uniform potential assumption was 11.6% for
the cation concentration and 3.8% for the electrostatic poten-
tial. The model results are in agreement with experimental ev-
idence for nanofiltration membranes and describe the changes
of ion retention with pore radius, ion concentrations, pH, and
pressure for a binary electrolyte as well as for multicomponent
mixtures with cations of different mobility and/or charge. Be-
cause protons and hydroxyl ions are taken into account, for the
base case markedly different retentions for anions and cations
are predicted at pH values below 4 and above 10. A minimum

solvent velocity is predicted for a low feed salt concentration of
10–30 mmol/m3.
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NOMENCLATURE

a pore radius [m]
cb

i bulk concentration of species i [mol/m3]
ce

i concentration of species i in the effluent [mol/m3]
cf

i concentration of species i in the feed solution [mol/m3]
cf ionic strength [mol/m3]
c0

i concentration of species i at the membrane interface
[mol/m3]

cs
A concentration of anions at the pore surface [mol/m3]

cs
C concentration of cations at the pore surface [mol/m3]

cs
H concentration of protons at the pore surface [mol/m3]

cs
tot total number of surface sites [mol/m2]

Di Maxwell-Stefan diffusion coefficients at infinite
dilution [m2/s]

F Faraday constant [C/mol]
KA anion adsorption equilibrium constant [−]
KC cation adsorption equilibrium constant [−]
K + proton adsorption equilibrium constant [−]
K − proton desorption equilibrium constant [−]
Kw water autoprotolysis equilibrium constant [mol2/m6]
Ni molar flux of species i in a fixed coordinate system

[mol/(m2 · s)]
ni number of ionic species
p pressure [Pa]
pHiep pH at the isoelectric point [−]
R ideal gas constant [J/(mol · K)]
Ri retention of species i [−]
r radial coordinate [m]
T temperature [K]
ν velocity [m/s]
z axial coordinate [m]
zi charge number of species i [−]
ε0 dielectric constant of vacuum [C/(V · m)]
εr relative dielectric constant [−]
λ Debye ratio [−]
µ Newtonian viscosity [Pa · s]
ρ dimensionless radial coordinate [−]
σ surface charge [C/m2]
φ electrostatic potential [V]
φs electrostatic potential at the pore surface [V]
ψ dimensionless electrostatic potential [−]
ψb dimensionless electrostatic potential in the bulk

solution [−]
ψe dimensionless electrostatic potential in the effluent [−]
ψ s dimensionless electrostatic potential at the pore surface

[−]
ψ0 dimensionless electrostatic potential at the membrane

interface [−]
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