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Abstract

This paper considers a k-out-of-N system with identical, repairable components. Maintenance is initiated when the number of failed

components exceeds some critical level. After a possible set-up time, all failed components are replaced by spares. A multi-server repair shop

repairs the failed components. The system availability depends on the spare part stock level, the maintenance policy and the repair capacity.

We present a mathematical model supporting the trade-off between these three parameters. We present both an exact and an approximate

approach to analyse our model. In some numerical experiments, we provide insight on the impact of repair capacity, number of spares and

preventive maintenance policy on the availability.
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1. Introduction

Today’s technological systems, such as aircrafts, nuclear

power plants, military installations and advanced medical

equipment, are characterised by a high level of complexity.

The requirements for the availability and reliability of such

systems are very high. Preventive maintenance is necessary

to meet these requirements. To this end, we need sufficient

resources, such as maintenance capacity and spare parts.

Components that are very expensive are usually repaired

after failure, if technically possible. The maintenance

capacity is defined as the number of repairmen or repair

facilities. This capacity is needed for both component repair

and replacement. Throughout this paper we will also use the

terms ‘repair capacity’ or just ‘capacity’ which are synonym

for maintenance capacity.

So we have a trade-off between spare part inventories on

the one hand and repair capacity on the other. Increasing the

repair capacity implies a shorter throughput time for the

spare parts in the repair process, and therefore less spares

are needed. The other way around, increasing the number of

repairable spare parts creates a buffer against uncertainties

in the failure and repair process, which allows for a higher

repair shop utilisation, and thus less repair capacity. Also,

there is a (weaker) link between maintenance policy and the

required repair capacity and number of spare parts, because

more frequent maintenance will probably lead to more

frequent repair jobs with less work content, and therefore to

a more stable work load for the repair shop.

In this paper, we will examine the interaction between

preventive maintenance policy, spare part inventories and

repair capacity for a k-out-of-N system with exponentially

distributed component life times and repair times. That is, a

system consists of N identical components of which at least

k components are needed for the system to perform its

functions. All N components are subject to failure and have

the same failure rate. This is called hot standby redundancy.

As a variant of this model, we will also consider cold

standby redundancy, where standby components cannot fail.

In the latter of the two cases, we assume that the time to

switch a component from standby state into operation is

negligible. We consider situations with high set-up costs for

maintenance, so that replacement of components is only

initiated if a minimum number of components m # N 2 k

has failed. A certain (deterministic) lead-time L . 0 is

allowed between maintenance initiation and the start of
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maintenance for the preparation of maintenance activities.

We focus on calculating the availability of this system,

given the number of repairable spare parts S and the repair

capacity c:

Our study is motivated by several systems that we

encountered at the Royal Netherlands Navy. An example

is the Active Phased Array Radar (APAR), see Fig. 1.

This radar has a cubical shape. On each of the four sides,

it has a so-called face, consisting of thousands of transmit

and receive elements. Each face covers a quarter of a

circle, and together they cover the whole space around the

ship of which it is a part. The elements on a face are

identical and are partly redundant. A certain percentage of

the total number of elements per face is allowed to fail,

without losing the function of the specific radar face. Say

that this percentage is 10% and that the total number of

elements is 3000, then we have a 2700-out-of-3000

system1.

To maintain the radar, it has to be taken off the frigate,

because repair and replacement of elements has to be done

in a dust-free environment and because special equipment

and skills of the personnel are required. So, the set-up costs

for maintenance are high. Therefore, maintenance is

performed periodically only and not upon each element

failure. Also, some lead-time is needed to prepare for

maintenance, for example for the planning of the activities

in the repair shop and possibly for navigating the frigate to

the dockyard.

Another example for which a similar trade-off applies is

the Active Towed Array Sonar (ATAS) for searching mines

and submarines. The ATAS consists of several tens of

hydrophones, let us assume 64 pieces. Say that 10% failed

components is acceptable for full operation, then we model

the ATAS as a 58-out-of-64 system. A smaller example is

the frigate communication system (say, a 6-out-of-8

system).

2. Literature

Several authors have mentioned preventive maintenance

policy, spare parts and repair capacity as necessary pillars in

an overall maintenance concept (see e.g. Ref. [5]). Only few

papers actually deal with quantitative models integrating

these elements. The best-known repairable spare parts

models are the models based on METRIC, see Ref. [18].

Although METRIC uses the assumption that the capacity to

restore spare parts is infinite, extensions have been made to

include finite repair capacities. Various approaches have

been considered, such as applying closed queuing networks

[9], open queuing networks [23], Markov chains [2] and

replacing infinite capacity queues by appropriate finite

capacity queues ([19,24]). For a recent overview of the

further spare part management literature, we refer to Refs.

[13,16].

Only few papers deal with the simultaneous optimisation

of spare parts and repair capacity. Ebeling [6] proposes a

single echelon multi-item model where each item has its

own resource capacity. A more general trade-off between

repair capacity and spare part inventories, where multiple

items share the same repair capacity, is given in Ref. [20].

Their model is different from ours, because (1) they do not

consider hot standby redundancy and (2) they consider

Poisson arrivals of failed parts at the repair shop and not

batch arrival caused by high set-ups, as in our case.

Some work is available on the integration of maintenance

and spares. Armstrong and Atkins [3,4] consider a model

where one spare component is ordered when the used one

has reached a certain age. If the spare is delivered before the

component fails, it is kept in inventory. If failure before the

ordering moment occurs it is possible, against higher cost, to

get a spare quicker. The authors determine the cost per

cycle. [10–12] use simulation to analyse an age replace-

ment preventive maintenance policy where (non-repairable)

spare parts are ordered based on a continuous review ðs; SÞ

inventory policy. For such systems replenishment is made

whenever the inventory position drops below the reorder

point s: This type of inventory system uses a variable

replenishment quantity, which is enough to raise the

inventory position up to level S: In our case we deal with

repairable parts without scrap (probability of no repair

possible is zero), which results in a constant number of

spares equal to S: Sarkar and Haque [17] also develop a

simulation model, in their case covering a block replace-

ment policy and a continuous review policy for spare parts.

Regarding the special case of redundant systems, Smith and

Dekker [21] analyse a 1-out-of-N system with cold standby

redundancy where an age replacement policy is applied to

the operating component. In fact, the N 2 1 standby items

act as spare parts.

To the best of our knowledge, only two papers address a

maintenance policy and finite repair capacity for k-out-of-N

systems. Fawzi and Hawkes [7] consider the case of hot

standby redundancy, where failed components are sent to

Fig. 1. The Active Phased Array Radar (APAR, left) consists of four ‘faces’,

each having a large number of elements (right); a face can be modelled as a

k-out-of-N system.

1 Because of confidential data, we only provide fictitious (but

representative) numbers in this paper.
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repair immediately upon failure. A single repair facility

handles both component repair and component replacement,

where pre-emptive priority is given to replacement

activities. Frostig and Levikson [8] give a method to

calculate the availability for k-out-of-N systems with both

cold and warm standby redundancy. Again, spares are sent

to the repair facility immediately upon failure. They

consider a single server repair facility for the k-out-of-N

case and a multi-server repair facility for the special case of

1-out-of-N systems only. As new aspects compared to these

two papers, we will address (1) bulk arrival of failed

components at the repair shop (caused by lead-times and

costs), (2) a multi-server repair shop, and (3) maintenance

lead times. For this model, we will determine the

operational availability of a system for a combination of

maintenance policy, number of spare parts and repair

capacity.

The structure of this article is as follows. First, we

describe the basic model in Section 3. In Section 4 we give

an exact algorithm to determine the availability of a k-out-

of-N system, depending on the maintenance policy and the

resources needed. We present some simple approximations

in Section 5. Next, we give numerical examples, illustrating

the trade-off between capacity, maintenance policy and

spare parts in Section 6. Section 7 deals with some model

variants, such as the inclusion of replacement times and cold

standby redundancy. In Section 8, we present our con-

clusions and we give some directions for further research.

3. Model and approach

3.1. Model and assumptions

In this section, we describe the k-out-of-N system with

hot standby redundancy and its maintenance process in

more detail. At the start of a system uptime, all N

components are as good as new. The failure process of

each component is characterised by a negative exponential

distribution with rate l; where we assume that the

component failure processes are mutually independent.

The system functions properly as long as at most N 2 k

components have failed. To prevent system downtime,

maintenance is initiated if m # N 2 k components have

failed. It seems reasonable to choose m ¼ N 2 k if the

maintenance set-up costs are high, but a lower number may

be chosen if some lead-time L $ 0 is required between

maintenance initiation and the actual start of maintenance

activities (which is true for the navy defence systems that

motivated our research). The system is assumed to be in use

during this lead-time and it is therefore likely to degrade

further.

The actual maintenance activities consist of replacing all

failed components by spares. However, if insufficient spares

are available in an as-good-as-new condition, the mainten-

ance completion is delayed until sufficient failed ones have

been repaired. We assume that the components have

independent and identical exponentially distributed repair

times with rate m: The capacity for restoring components is

limited and equal to c parallel channels. For the time being,

we ignore the replacement time of the components after

repair (see Section 7 for an extension in this direction).

When all failed components are replaced, the system cycle

starts over again. During the time until the next maintenance

initiation (i.e. when m components have failed) plus the

lead-time L; the same capacity c is available for restoring

components (see Section 7 for a generalisation to different

repair capacities during system maintenance time and non-

maintenance time). It is not guaranteed that the repair

capacity is always sufficient to repair the remaining spares

during the system uptime, so the number of available spares

when maintenance starts may be less than S:

Our analysis in the remainder of this paper is based on the

following additional assumptions

1. The failure process of components continues during the

maintenance set-up time L; even if more than N 2 k

components have failed; the reason is that the APAR

radar is always able to make partial observations in that

case, so that the system will not be shut down; we refer to

Section 7 for relaxing this assumption.

2. During maintenance, all failed components are

replaced by new components; if it would be optimal

to replace less components (say restoring up to

N1 , N), we have in fact an k-out-of-N1 system;

then, we conclude that too many components have

been included in the system design.

For an overview of notation, we refer to Appendix A.

3.2. Approach

In fact, we have two interrelated cycles, namely, a cycle

for the k-out-of-N system (uptime and downtime) and a

cycle for the component repair process, see Fig. 2.

The system cycle starts with all N components as good as

new. After maintenance initiation and the set-up period L; a

number of n components have failed ðm # n # NÞ: During

maintenance, these n components are replaced. Then, the

system is restored and the next cycle starts. Because the

initial state at the start of each cycle is the same, this seems

to be a renewal process. The spares cycle starts at the

beginning of the maintenance period, just before the k-out-

of-N system comes in for maintenance. Then, s spare parts

are available ð0 # s # SÞ; while the remaining S 2 s spares

still have to be repaired. If sufficient spares are available

ðs $ nÞ; all failed components are replaced and the system is

operational again without delay. Otherwise, the system is

down during the time to repair the remaining n 2 s

components needed. After maintenance completion, the

repair process continues until the end of the cycle, i.e. just

before the next maintenance period starts.
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It is clear that the number of components at the start of a

spares cycle depends on the number of components repaired

during the cycle and the number of spares to be repaired at

the start of the preceding cycle. Therefore, these cycles are

dependent, and thus they do not constitute a renewal

process. As a consequence, the combination of the two

interrelated cycles is not a renewal process either. As a

solution, we will derive the steady state distribution of the

number of spares s at the start of a spares cycle. An exact

steady state distribution provides us a way to an exact

availability analysis.

The operational availability equals the expected uptime

during a cycle (i.e. when at least k components are

operational) divided by the expected cycle length. The

expected uptime equals the expected time until maintenance

initiation EðTmÞ plus the expected time during the set-up

time L that at least k components are operational EðUmÞ: So,

we find

AVm;S;c ¼
EðTmÞ þ EðUmÞ

EðTmÞ þ L þ EðDm;S;cÞ
ð1Þ

where EðDm;S;cÞ is the expected maintenance time to restore

the system to the new state. Eq. (1) implies that it is

sufficient to find exact expressions for EðTmÞ; EðUmÞ

and EðDm;S;cÞ as function of the three decision variables

m; S and c:

4. An exact algorithm for the basic model

We first derive the expressions for L ¼ 0; next we extend

our analysis to a positive set-up time.

4.1. Zero set-up time (L ¼ 0)

We only have to calculate EðTmÞ and EðDm;S;cÞ; as

EðUmÞ ¼ 0: The operational time until maintenance

initiation Tm can be derived by splitting this period in the

time until the first component failure, the time between the

first and the second failure, etc. The memoryless property of

the exponential distribution gives us that the time between

the ith and the ði þ 1Þth failure is exponentially distributed

with rate ðN 2 iÞl: So, the expected time until the mth

failure equals

EðTmÞ ¼
Xm21

i¼0

1

ðN 2 iÞl
ð2Þ

To derive the expected maintenance duration EðDm;S;cÞ;

we condition on the number of available spare parts s just

before the system arrives for maintenance at the repair shop.

Then, the system downtime equals the time for restoring the

m 2 s spares needed to repair the system

EðDm;s;cÞ ¼
XS

s¼0

E½Rcðm 2 s; S 2 s þ mlsÞ�pm;S;cðsÞ ð3Þ

where Rcðm 2 s; S 2 s þ mlsÞ is the time to restore m 2 s

spares using c servers if S 2 s þ m components are waiting

to be repaired, and pm;S;cðsÞ is the steady state probability of

having s spares ready for use at the start of the maintenance

period (just before the system arrives), given m; S and c:

Below, we will derive expressions for the two components

involved in Eq. (3). We start with E½Rcði; jÞ�; where we omit

the conditioning variable s since it does not contain

information and where we put i ¼ m 2 s and j ¼ S 2 s þ m

for simplicity. As obviously E½Rcði; jÞ� ¼ 0 if i # 0; we focus

on the case i . 0: Then, we can determine the expected

maintenance period analogously to the derivation of E½Tm� by

splitting the period in the time until the first repair completion,

the time between the first and the second repair completion,

etc. We consider two situations, j # c and j . c: If j # c; the

time to restore the components is determined by the number of

components to be restored j and not by the repair capacity c; so

the mean time until the next repair completion equals 1=jm:

Otherwise, the repair capacity is the bottleneck, and the mean

time until the next repair completion equals 1=cm: In fact, we

have the recursive relation

E½Rcði; jÞ� ¼
1

min{j; c}m
þ E½Rcði 2 1; j 2 1Þ� ð4Þ

We can elaborate this, finding the expression

ERcði; jÞ

¼

0 if i# 0

Xi21

h¼0

1

ðj2hÞm

� �
if 0, i# j# c

i

cm
if j. c and i# j2 c

j2 c

cm
þ

Xi2jþc21

h¼0

1

ðc2hÞm

� �
if j. c and j2 c, i# j

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð5Þ

We will determine the steady state probabilities pm;S;cðsÞ

of having s spares ready for use at the start of

Fig. 2. Scheme of a system’s cycle with the number of failed components (above) and the spares’ cycle with the number of ready for use spares (beneath).
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the maintenance period (just before the system arrives)

using a Markov chain. Because both failure and repair times

are exponentially distributed, the transition probabilities

solely depend on the state s at the beginning of a spares

cycle. Each entry ði; jÞ of this matrix equals the probability

qi;j that j spares are available at the start of a maintenance

period while i spares were available at the start of the

previous maintenance period ði; j [ ½0;…; s�Þ:

For computational efficiency, we first aggregate all states

s # m in a single state M; so that the dimension of the Markov

chain reduces from S þ 1 to S 2 m þ 1: The aggregation is

useful, because we have insufficient spares available to repair

the system immediately for all s # m: Therefore, the number

of spares to be repaired when the new system uptime starts

equals S anyway, and so the probability of being in state s at

the start of the next cycle is the same for all s # m: We will

disaggregate the aggregate state M into states s ¼ 0; 1;…;m

later on. Note that we have pm;S;cðMÞ ¼ 1 as a special case if

S , m; because we always have insufficient spares.

We calculate the transition probabilities qi;j by

conditioning on the time to maintenance initiation Tm ¼

t: Given that i spares are available just before a

maintenance period starts and m spares are needed for

repair, the number of spares to be repaired just after

maintenance has started equals S 2 i þ m: However, if

insufficient spares are available ði , mÞ; we have to wait

until the number of spares available have increased to m;

i.e. until the number of spares to be repaired has reduced

to S: Hence, the number of spares to be repaired at the

start of a system uptime equals min{S; S 2 i þ m}: This

number has to be reduced to S 2 j during the period t þ L

to arrive in spares state j at the start of the next cycle.

Therefore, we have

qi;j ¼
ð1

0
fmðtÞHcðmin{S; S 2 i þ m}; S 2 j; tÞdt ð6Þ

where fmðtÞ is the density function of Tm and Hcða; b; tÞ is

the probability that the number of failed spares will reduce

from a to b during t; i.e. exactly a 2 b out of a spares

will be repaired during t with c servers. As j ¼ M

represents the aggregate state 0;…;m; Hcða; S 2 M; tÞ

equals the probability that at most a 2 S þ m out of a

spares will be repaired during t: Because the number of

component failures during t has a binominal distribution

with parameters N and p ¼ 1 2 e2lt; we can derive that

the density function fmðtÞ can be written as

fmðtÞ¼
N

m21

0
@

1
AðN2ðm21ÞÞle2ðN2ðm21ÞÞltð12e2ltÞm21 ð7Þ

Regarding Hcða; b; tÞ; we first note that only a positive

number of components can be restored during t; so that

Hcða; b; tÞ ¼ 0 if b . a: If a ¼ b; no components have been

restored during t: As the repair rate equals min{b; c}m; we

have that Hcðb; b; tÞ ¼ e2min{b;c}mt: For b , a: we dis-

tinguish two cases: a # c (all failed components are being

repaired immediately) and a . c (c repairs started initially).

In the first case, the number of failed items remaining after a

period t is binomially distributed with parameters a and

p ¼ e2mt: For the derivation of Hcða; b; tÞ if b , a and a .

c; we refer to Appendix B. Altogether, we find that

Using Eqs. (7) and (8), we can find an explicit (but

complicated) expression for the transition probabilities qij as

defined by Eq. (6).

Next, we have to derive the steady state probabilities

pm;S;cðiÞ for the states 0 # i # m: We can use the following

set of equations to derive these probabilities from the steady

state probabilities pm;S;cðiÞ; m þ 1 # i # S and pm;S;cðMÞ for

the aggregate state representing the states 0 # i # m

pm;S;cðiÞ ¼ pm;S;cðMÞqM;i þ
XS

j¼mþ1

pm;S;cðjÞqj;i

0 # i # m

ð9Þ

Hcða;b; tÞ ¼

0 a, b or a, 0 or b, 0

e2min{b;c}mt a¼ b

a

b

 !
e2bmtð12 e2mtÞða2bÞ 0# b# a# c

Xc2b21

g¼0

c

b

 !
c2b

g

 !
ð21Þg

c

ðc2b2gÞ

� �a2c�"

� ðe2mðbþgÞt 2 e2cmtÞ2
Xa2c21

h¼1

ca2c

ðc2b2gÞh

 

�
ðmtÞa2c2h

ða2 c2hÞ!
e2cmt

!#
þ

c

min{c;b}

 !

�
ð21Þc2min{c;b}ðcmtÞa2max{c;b}

ða2max{c;b}Þ!
e2cmt 0# b# a and a. c

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð8Þ
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For the transition probabilities qMi; we use the fact that S

spares have to be repaired at the start of a system uptime if

the spares state at the start of the cycle was s # m; no matter

what the exact value of s was

qM;j ¼
ð1

0
fmðtÞHcðS; S 2 j; tÞdt ð10Þ

Note that, as usual in Markov chains, we have a

dependent system of equations, which we can solve by

replacing one arbitrary equation by the condition that the

sum of the entries of the vector pm;S;cðiÞ adds up to one. We

can solve this system of equations using any standard

numerical procedure, see e.g. Ref. [15].

Combining all stationary probabilities pm;S;cðsÞ with

Eq. (5) we find EðDm;S;cÞ from Eq. (3).

4.2. Positive set-up time (L . 0)

To solve the case L . 0; we extend our expressions.

There are three consequences of a positive set-up time. First,

we need the expected system uptime during maintenance

set-up time EðUmÞ; see Eq. (1), as the system fails if more

than ðN 2 k 2 mÞ components fail during L: Secondly, the

number of failed components in the system upon arrival at

the repair shop is uncertain, because we have an additional

number of component failures during L: Thirdly, the repair

shop has more time to restore spares.

As the set-up time does not affect the expected

operational time until maintenance initiation Tm; we can

still use Eq. (2). The expected uptime during L depends on

maintenance policy m: As the number of component failures

during t ð0 # t # LÞ has a binomial distribution with

parameters N 2 m and e2lt; the probability that the uptime

exceeds t equals the probability that the number of failures

during t is at most N 2 m 2 k: From this observation, we

can derive that

EðUmÞ ¼
XN2m2k

i¼0

Xi

j¼0

N 2 m

N 2 m 2 i

 !
i

j

 !

� ð21Þj
1 2 e2ðN2m2iþjÞlL

ðN 2 m 2 i þ jÞl
ð11Þ

For the expected maintenance duration EðDm;S;cÞ; we

extend Eq. (3) by conditioning on the number of failed

components in the system n as well. Then, the expected

system downtime equals the time needed to restore the n 2 s

spares that are needed to repair the system

EðDm;s;cÞ ¼
XS

s¼0

XN
n¼m

E½Rcðn2 s;S2 sþnln;sÞ�PmðnÞpm;S;cðsÞ

ð12Þ

where PmðnÞ is the probability that n components have failed

at the start of system maintenance, given initiation upon

failure of the mth component. This is the probability that

n 2 m components failed during the set-up time L: As the

number of failures is binomially distributed with parameters

N 2 m and 1 2 e2lL; we find

PmðnÞ ¼
N 2 m

n 2 m

 !
e2ðN2nÞlLð1 2 e2lLÞðn2mÞ ð13Þ

As the expression for E½Rcði; jÞ� remains identical to

Eq. (5), we only have to modify the derivation of the

steady state probabilities pm;S;cðiÞ: To this end, we have

to modify the transition probabilities qij; because we have

to condition on both the time to maintenance initiation

Tm and the number of component failures during the set-

up time L

qij ¼
XN
n¼m

PmðnÞ
ð1

t¼0
fmðtÞHcðmin{S; S 2 i þ n};

�

S 2 j; t þ LÞdt

�
ð14Þ

We refer to Appendix C for an explicit expression of the

transition probabilities qij that can be derived from Eq. (14),

using Eqs. (7), (8) and (13). Given these modified transition

probabilities, the approach remains the same. First, we

aggregate all states s # m to a single state M; then we solve

the reduced Markov chain and finally we derive the state

probabilities for s # m from Eq. (9).

5. Approximation

Deriving the exact system availability given the decision

variables S; c and m is not simple, because the expressions

for the expected maintenance duration EðDm;S;cÞ are

complex. Therefore, we present an approximation in this

section. We reduce the complexity by calculating the first

two moments of the key stochastic variables involved rather

than calculating the complete distribution. This approxi-

mation is based on the empirical finding that many

stochastic systems are not very sensitive to the higher

moments of the underlying probability distribution func-

tions; see e.g. Ref. [22].

The expected maintenance time EðDm;S;cÞ depends on

the number of available spares just before the system

arrives for maintenance, denoted by Bm;S;c (having

probability distribution pm;S;cðiÞ). Let us further define

Am as the number of component failures during L

(having a binominal distribution with parameters N 2 m

and e2lL). Then, the number of components to be

repaired during system maintenance equals ½m þ Am 2

Bm;S;c�
þ; where we denote Xþ ¼ Max{X; 0} for any

variable X: If we assume that this number of components

exceeds the number of parallel repair channels, we can

approximate Eq. (5) as

ERcði; jÞ <
i

cm
ð15Þ
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As a consequence, we can rewrite Eq. (12) as

EðDm;s;cÞ <
E{½m þ Am 2 Bm;S;c�

þ}

cm
ð16Þ

Now the idea is to use a two-moment approximation for

the random variables Am and Bm;S;c: That is, we calculate

their first two moments and fit an appropriate distribution,

such that the expected maintenance time EðDm;S;cÞ can easily

be approximated. We may approximate the distributions of

Am and Bm;S;c by some discrete distributions or, more

conveniently, by some continuous distributions if their

mean is not too small (which is valid for large systems like

the APAR). For continuous distributions, we may use

Normal distributions or Erlang mixtures (cf. [22]). Normal

distributions are more convenient, because the difference of

two normally distributed random variables, Am 2 Bm;S;c; is

again normally distributed. Note that Am has a binominal

distribution, that converges to a normal distribution indeed

if N 2 m !1: For small numbers of components, a

continuous approximation may be inaccurate. Then, Adan

et al. [1] provide a method to fit a convenient discrete

distribution to the first two moments of any discrete random

variable on Zþ: Depending on the mean and variance, a

choice is made between a Poisson distribution and mixtures

of binominal, negative binominal or geometric distributions.

To apply a moment approximation, we need to find the

first two moments of Am and Bm;S;c: The number of

component failures during L; Am; is binomially distributed,

so that we have

E½Am� ¼ ðN 2 mÞ½1 2 e2lL�; ð17Þ

Var½Am� ¼ ðN 2 mÞ½1 2 e2lL�e2lL ð18Þ

For the derivation of the first two moments of Bm;S;c; we

use a stochastic equation, thereby avoiding the analysis of

the Markov chain (9). As the demand for spares equals m þ

Am; the number of spares available just before the next

system uptime starts equals ½Bm;S;c 2 m 2 Am�
þ: Let us

define ZcðTm þ LÞ as the number of spares that can be

repaired before the start of next maintenance period using c

servers. Taking into account ZcðTm þ LÞ; and the maximum

number of spares that can be ready-for-use S; we find the

following recursive relation

Bm;S;c ¼ Min{½Bm;S;c 2 m 2 Am�
þ þ ZcðTm þ LÞ; S} ð19Þ

Unfortunately, ½Bm;S;c 2 m 2 Am�
þ and ZcðTm þ LÞ are

mutually dependent. Therefore, we propose to approximate

ZcðTm þ LÞ by ~ZcðTm þ LÞ; being the number of spares that

can be repaired before the start of next maintenance period

using c servers if the number of items to be repaired is

infinite. Then, we achieve that (1) ½Bm;S;c 2 m 2 Am�
þ and

ZcðTm þ LÞ are mutually dependent, and (2) the moments of
~ZcðTm þ LÞ are easy to calculate (to be discussed below).

Now we can approximate the first two moments of Bm;S;c

applying the moment iteration approach that de Kok [14]

introduced to analyse the G=G=1 queue. That is, given an

initial estimate for the first two moments of Bm;S;c; we fit a

simple (discrete or continuous) probability distribution

function to the random variables Bm;S;c and Am: Based on

these approximate distributions, we calculate the first two

moments of ½Bm;S;c 2 m 2 Am�
þ: This is straightforward if

we use normal approximations, but more cumbersome for

discrete approximations, given the diversity of specific

distributions that we use. We solved the latter by brute

force, i.e. by calculating the first two moments for each

possible value of Am; cutting the series off when the

probability density has faded.

Next, we calculate the first two moments of ½Bm;S;c 2

m 2 Am�
þ þ ~ZcðTm þ LÞ: Then, again, we fit a (discrete or

continuous) distribution to these first two moments and we

calculate new approximations for the first two moments of

Bm;S;c from Eq. (19). We repeat these calculations until our

approximations for the first two moments of Bm;S;c converge.

Although convergence is theoretically not guaranteed,

application of this method has not led to convergence

problems until now (de Kok, 1994).

To apply the moment-iteration approach to the recursive

equation (19), we need the first two moments of ~ZcðTm þ LÞ:

We find these by conditioning on Tm: First, we note that we

can find that the variance of the time until maintenance

initiation, similarly to Eq. (2)

Var½Tm� ¼
Xm21

i¼0

1

ðN 2 iÞ2l2
ð20Þ

The number of components that can be repaired during a

period with length t is approximately Poisson distributed

with mean cmt; provided that the workload of the repair

shop is sufficiently high initially (and it is exact for c ¼ 1).

By conditioning on the length of the time until maintenance

initiation Tm; we find that the mean and variance of ~ZcðTm þ

LÞ equal

E½ ~ZðTm þ LÞ� ¼ cm L þ
Xm21

i¼0

1

ðN 2 iÞl

( )
ð21Þ

Var½ ~ZcðTm þ LÞ� ¼ cm L þ
Xm21

i¼0

1

ðN 2 iÞl

( )

þ ðcmÞ2
Xm21

i¼0

1

ðN 2 iÞ2l2
ð22Þ

Now we can approximate the expected maintenance time

EðDm;S;cÞusing Eq. (16), because it holds that E{½mþAm 2

Bm;S;c�
þ} ¼mþE½Am�2E½Bm;S;c�þE{½Bm;S;c 2m2Am�

þ}

and E{½Bm;S;c 2m2Am�
þ} has been evaluated in the

recursion (19).

Note that we can use a simple approximation for E½Um�

using a moment-approach as well. To this end, we calculate

the first two moments of the time to failure of a k-out-of-

ðN 2 mÞ system from Eqs. (2) and (20), and we fit an

Erlang-mixture on these two moments (cf. [22]). Let us
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denote the approximating distribution by Tp: Then we can

easily calculate E½Um� < E½min{Tp;L}�: For a pure Erlang

distribution, we have

E½min{Tp
;L}� ¼

r

l
1 2

Xr

i¼0

ðlLÞie2lL

i!

( )

þ L
Xr21

i¼0

ðlLÞie2lL

i!
ð23Þ

Finally, we note the moment iteration approach is very

simple if we may assume normally distributed random

variables, because (1) it is trivial to fit a normal distribution

to the first two moments of a random variable, and (2) sums

and differences of normally distributed random variables are

normally distributed again. This seems a reasonable

approach for large systems as the APAR.

6. Numerical experiments

We implemented the exact algorithm from Section 4

and the approximate algorithm from Section 5 (both the

discrete and the continuous variant). During preliminary

numerical tests, we found that our exact method works

well for small and reasonable large systems, up until

about 100 components. However, for very large numbers

of components (say .100), we encountered numerical

problems when calculating the transition probabilities

from Eqs. (C.1) and (C.2). This is due to the extremely

high binominal coefficients involved. Despite

standard numerical tricks to reduce these computational

problems (using recursive formulas and logarithms),

stability problems remain for very large systems. There-

fore, we have to use our approximate approach for such

systems.

In this section, we first discuss numerical results for a

moderately system size like the ATAS (58-out-of-64

system). We present trade-off figures between spare part

inventory and repair capacity using our exact method.

Running the same experiments for our approximate

approach provides insight in the approximation accuracy.

Next, we discuss numerical results for very large systems

like the APAR (2700-out-of-3000) using our approximate

method. We judge the accuracy of our approximation by

comparison to results from discrete event simulation and we

present trade-off figures.

6.1. Exact and approximate analysis of a 58-out-of-64

system (ATAS)

For a 58-out-of-64 system, maintenance can be

initiated for some value of m between 1 and 6. We

chose the set-up time L equal to 168 h ( ¼ 1 week). We

chose the time until component failure and component

repair around eighteen months and one week, respectively,

so l ¼ 0:00008 (failures/h) and m ¼ 0:006 (repairs/h). We

calculated the availability using our exact method for c ¼

1;…; 4 and S ¼ 0;…; 10: The calculation time per case is

less than 1 s.

In Fig. 3, we show the trade-off between the spare

part inventory level S and the repair capacity c for this

58-out-of-64 system. We show the combinations of S and

c yielding the same availability. For each point, we

selected the maintenance initiation level m such, that the

system availability is maximal (by enumeration over

m ¼ 1;…; 6). We see that the only few spares are needed

to compensate for less repair capacity if the target

availability is low: both combinations ðS; cÞ ¼ ð1; 1Þ and

(0,2) lead to an availability around 0.68. Considerably

more spares are needed to compensate for repair

capacity if the target availability is high: The combi-

nations ðS; cÞ ¼ ð8; 1Þ and (3,2) are more or less

equivalent for an availability around 0.95. Depending

on specific cost parameters, a trade-off between

spare part inventories and repair capacity can be made

using Fig. 3.

To examine the impact of the maintenance control

parameter m; we show in Fig. 4 the availability as function

of m and S for a given repair capacity c ¼ 3: If the criterion

is to maximise availability, we see that the optimal value of

m dependents on S : if S ¼ 0; the availability increases

Fig. 3. The availability as function of the number of spares S and the repair capacity c; where the maintenance initiation level m has been chosen such that the

availability is maximal.
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with m; whereas the availability decreases with m for S $ 1:

In the first case, the extra uptime gained from postponing

maintenance initiation is larger than the extra downtime

resulting from the component repairs. If we have spares

available, however, it is better to initiate maintenance at the

first failure. When the set-up costs for maintenance are high,

this might not be the best value for m: Instead of having one

spare and initiating maintenance at the first failure, we can

also choose for three spares and initiate maintenance at the

sixth failure. Both options give similar values for the

availability but the cost involved can be very different.

We also used our approximate method to evaluate the same

scenarios and we compared the results to the exact solution.

We found that our approximations yield similar results. As

can be expected, we find more accurate results using discrete

probability distributions than using continuous (normal)

probability distributions. The average error for the discrete

and continuous approach is 0.28 and 0.87%, respectively,

over 120 cases. The maximum error that we encountered is

4%, both for the discrete and the continuous approximation.

The advantage of the continuous approximation is that it is

much simpler and faster, because Eq. (20) is easier and faster

to evaluate if all random variables are normally distributed.

Very probably, the continuous approximation will be worse

for smaller systems and better for larger systems.

6.2. Approximate analysis of a 2700-out-of-3000 system

(APAR)

As a primary motivation for our research is the APAR

radar, we analysed this system with the following fictitious

parameters: N ¼ 3000; k ¼ 2700; l ¼ 0:00008; m ¼ 0:03

and L ¼ 168: In order to make trade-off figures, we

calculated the availability for a large range of values for m

(1…300), c (6…10) and S (5…200 with step size 5). Because

we consider a very large system, we expect that the use of

Normal distributions is probably as good as the use of

discrete distributions. Surely, it is much faster. To check the

accuracy of the approximation using Normal distributions,

we simulated 25,000 cycles for a representative subset of 120

cases out of the parameter range above. We found that the

deviation between approximate and simulated availability is

Fig. 4. The values of the availability for a combination of m; the number of failures until maintenance initiation for different values of the number of spares. The

capacity is chosen equal to 3.

Fig. 5. The approximate availability as function of the spare part inventory level S for various repair shop capacities c (m chosen such that the availability is

maximal).
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0.15% on average with a maximum of 1.64%. The most

serious approximation errors occur if m ¼ 1: For more

reasonable values of m (we further tested m ¼ 50; 150; 25),

the deviation between approximation and simulation is only

0.02% on average (and 0.25% maximum). Therefore, we

conclude that it is safe to use normal distributions.

In Figs. 5 and 6, we show the main results from our

numerical experiments. The first figure gives the approxi-

mate availability as function of the spare part inventory

level S for various repair shop capacities c; where m has

been chosen such that the approximate availability is

maximal. The corresponding values of m are given in

Fig. 6. We see that remarkably small values of m are optimal

if we use the system availability as criterion, irrespective of

costs. If the number of spare parts is somewhat small (which

could occur if these spare parts are very expensive) and

maintenance set-up costs are negligible, it is better to repair

the system more frequently. After a certain spare part level,

m increases almost linearly with the spare part stock level

(i.e. the maintenance frequency decreases).

Figures like the two as shown in this section can be used

to make a trade-off between spare part inventories and repair

capacities if the relevant cost factors are known. For

optimisation, enumeration is an option, because the

approximation based on normal distributions is very fast

(tens of thousands of problem instances can be evaluated

within one minute CPU time on a Pentium III 700 MHz PC).

7. Model variants

In this section, we will discuss a some model extensions

and variants, namely (1) the repair capacity during system

uptime and maintenance time is different, (2) the component

failure process stops if less than k components are available,

(3) cold standby redundancy, and (4) account for component

replacement times.

7.1. Sufficient repair capacity

We can simplify the expressions from Section 4

considerably if we assume that the repair capacity is

sufficient to repair all spares during the time the system is

not maintained, Tm þ L: In that case, it holds that

pm;S;cðSÞ ¼ 1 and pm;S;cðiÞ ¼ 0; 0 # i # S 2 1; and so Eq.

(12) is simplified as

EðDm;s;cÞ <
XN

n¼Max{S;m}

E½Rcðn 2 S; nlnÞ�PmðnÞ ð24Þ

Now we can evaluate Eq. (24) simply by substitution of

Eqs. (5) and (13). A drawback of this approximation is that

it does not facilitate a proper trade-off between maintenance

policy, spare part inventory and repair capacity. Reducing

the repair capacity may lead to a serious violation of our

approximating assumption, so that our approximation will

become very inaccurate.

7.2. Repair capacity during (Tm þ L) differs from the

capacity during maintenance time

When a system fails and the number of spares is

insufficient, it is possible that additional repair capacity will

be deployed. Suppose that the normal repair capacity

(during Tm þ L) equals c1 and that the capacity during

maintenance equals c2 . c1: We can easily incorporate this

refinement by using repair capacity c ¼ c1 in Eq. (8),

affecting the steady state probabilities pm;S;cðiÞ; and repair

capacity c ¼ c2 in Eq. (12), affecting the mean system

maintenance time EðDm;S;cÞ:

7.3. System is shut down after more than Nk component

failures

If the system shuts down when less than k components

are available, the component failure process can stop before

maintenance starts. The only expression that has to be

Fig. 6. Value of m for which the system availability is maximal.
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modified in that case is the distribution of the number of

failed items in the system when maintenance starts, PmðnÞ;

because we have an upper bound on the number of failed

items. As a consequence, expression (13) remains valid for

m # n # N 2 k; but the probability mass for all n $

N 2 k þ 1 is concentrated in N 2 k þ 1

PmðN 2 k þ 1Þ ¼
XN2m

i¼N2kþ12m

N 2 m

i

0
@

1
A

� e2ðN2m2iÞlLð1 2 e2lLÞi ð25Þ

7.4. Cold standby redundancy

Let us assume that components cannot fail during

standby status and that the system is shut down if less

than k components are available. Then we have to modify

the expressions regarding the failure process. As the mean

time between two successive component failures in the k-

out-of-N system equals 1=kl; the time until maintenance

initiation has an Erlang-m distribution with scale parameter

kl; so we modify Eq. (7) and Eq. (2), respectively as

fmðtÞ ¼
ðklÞmtm21e2klt

ðm 2 1Þ!
ð26Þ

EðTmÞ ¼
m

kl
ð27Þ

The probability that n components have failed at the start

of system maintenance PmðnÞ can easily be derived, as the

number of component failures during the set-up time L is

Poisson distributed, with all mass for n $ N 2 k þ 1 being

concentrated in N 2 k þ 1

PmðnÞ¼

ðklLÞn2me2klL

ðn2mÞ!
m#n#N2k

12
XN2k2m

i¼0

ðklLÞie2klL

i!
n¼N2kþ1

8>>>><
>>>>:

ð28Þ

To derive the mean system uptime during maintenance

set-up EðUmÞ; we use that the probability of this uptime

exceeding t equals the probability that at most ðN 2 k 2 mÞ

components fail until t: As this number of failures is Poisson

distributed with mean kl; we find

EðUmÞ ¼
ðL

0
Pr{Um . t}dt ¼

ðL

0

XN2k2m

i¼0

ðkltÞie2klt

i!
dt

Some algebra yields

EðUmÞ ¼
N 2 k 2 m þ 1

kl
2

e2klL

kl

�
XN2k2m

j¼0

ðN 2 k 2 m 2 j þ 1ÞðklLÞj

j!
ð29Þ

We obtain an analytic expression for the transition pro-

babilities qij by substituting the expressions above in Eq. (14).

7.5. Including component replacement times

Next to component repair, component replacement is

a part of the maintenance activities. Let us assume that

the time required for a single component replacement v

is deterministic and that the same repair capacity is

needed for component repair and replacement (otherwise

the model extension is trivial). Component replacement

occurs as soon as sufficient components have been

repaired. Then, the system availability should be

calculated as

Am;S;c ¼
EðTmÞ þ EðUmÞ

EðTmÞ þ L þ EðDm;S;cÞ þ E½Vm�
ð30Þ

where Vm denotes the time needed for component

replacement. If all repair capacity is used for component

replacement, the fact that the number of failures during

the set-up time L is binominally distributed (see Eq.

(13)) leads us to

E½Vm� ¼ v
m þ ðN 2 mÞð1 2 e2lLÞ
� �

c

& ’
ð31Þ

where
�
x
�

denotes the smallest integer larger than or

equal to x: However, if only a single repair man is

used for component replacement while the remaining

capacity ðc 2 1Þ is used for repair, the steady state

probabilities pm;S;cðiÞ should be modified as well, which

influences EðDm;S;cÞ: For the transition probabilities qij;

we have to take into account that c 2 1 servers are

available to repair components during the replacement

time V

qij ¼
XN
n¼m

PmðnÞ
Xj

h¼0

Hm;S;c21ðmin{S; S 2 i þ n}; S 2 h; nvÞ

�
ð1

t¼0
fmðtÞHm;S;cðS 2 h; S 2 j; t þ LÞdt ð32Þ

It should be possible to derive a closed form expression

for qij; but it is clear that this is complex.

8. Conclusions and further research

In this paper, we presented both an exact and an

approximate method to make a trade-off between spare

part inventories, repair capacity and maintenance policy for

a simple model. The exact method works very well for

systems up to 100 components, for larger systems the

approximate method can be used. If the number of

components is high, as for the APAR radar, we recommend

to use Normal distributions for convenience and to reduce

computational effort.
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Although we discussed various model extensions, it is

clear that our model is just a first step towards the

integration of spare part management and preventive

maintenance optimisation. Practical situations tend to be

far more complex than the simple model that we addressed

here. Relevant issues include (a) multiple systems sharing

the same repair capacity, (b) multiple failure modes (c)

multiple item types that can be repaired by the same repair

shop, and (d) component wear-out (i.e. non-exponential

failure behaviour). A model taking into account these

aspects has to be far more extensive. Our future research

will deal with these issues. Below, we give some ideas how

to proceed.

To include the aging of components, we could add

one or more states representing the component quality

(state 0 is as good as new state, state 1 is degraded and

state 2 is failed). Our current model may be extended in

this direction if we assume an exponential sojourn time

in each state. An additional complication is that we have

different component types sharing the same repair

capacity (both failed and degraded components can be

repaired). Then, we need to decide in which order the

items have to be repaired. Also, the decision when to

initiate maintenance activities may be determined by both

the number of failed components and the number of

degraded components. The extension of our models

taking into account these aspects is the next step in

our research activities.

Appendix A. Notation

c repair capacity

k the least number of components needed for a

functional system

L lead-time: the time from maintenance

initiation until the start of maintenance

activities

m the number of failed components to initiate

maintenance

N the total number of components in the

system

S the total number of spares

l the failure rate of a single component

m the repair rate of a single component

Am the number of component failures during L;

given the maintenance initiation level m

Bm;S;c the number of ready for use spares just

before the start of maintenance as a

function of the maintenance initiation level

m; the total number of spares S and the

repair capacity c

fmðtÞ density function of the time duration t until

maintenance initiation, given maintenance

initiation level m

Hcða; b; tÞ probability to reduce the number of failed

spares from a to b during time t; given

repair capacity c

PmðnÞ probability that n system components are

failed at the start of maintenance, given

maintenance initiation level m

qi;j probability to start a spares cycle with j

ready for use spares if the number of ready

for use spares at the previous cycle was

equal to i

Rcði; jÞ time needed to restore i spares of the total j

spares to be restored with capacity c

ZcðtÞ number of spares that can be repaired

before the next maintenance period, given

repair capacity c
~ZcðtÞ approximation of ZcðtÞ; assuming the num-

ber of spares to be repaired as infinite

pm;S;cðsÞ the steady state probability of having s

ready for use spares at the maintenance

start as a function of the maintenance

initiation level m; the total number of

spares S and the repair capacity c

AVm;S;c the system availability, given the mainten-

ance initiation level m; the total number of

spares S and the repair capacity c

Tm time until maintenance initiation given

maintenance initiation level m

Um uptime during the lead-time L, given

maintenance initiation level m

Dm;S;c downtime caused by maintenance activities,

given maintenance initiation level m; the

total number of spares S and the repair

capacity c

Appendix B. The derivation of Hcði; j; tÞ

In this appendix, we derive an expression for Hcði; j; tÞ;

the probability that the number of failed spares will reduce

from i to j during t; if i . c: Then the number of spares to

restore exceeds c; but only c spares can be repaired

simultaneously. Let t be the time at which the first repair

is completed. In the remaining time t 2 t; i 2 1 2 j out of

i 2 1 failed components have to be restored. Hence,

Hcði; j; tÞ ¼
ðt

t¼0
cme2cmtHcði 2 1; j; t 2 tÞdt ðB:1Þ

We distinguish two situations, j , c and j $ c: In the first

situation, we start with Hcðc þ 1; j; tÞ :
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Hcðcþ1;j;tÞ¼
ðt

t¼0
cme2cmtHcðc;j;t2tÞdt

¼
ðt

t¼0
cme2cmt

c

j

0
@
1
Ae2jmðt2tÞð12e2mðt2tÞÞc2jdt

¼
Xc2j

h¼0

c

j

0
@
1
A c2j

h

0
@

1
Að21Þhcme2ðjþhÞmt

�
ðt

t¼0
e2ðc2j2hÞmtdt

¼
Xc2j21

h¼0

c

j

0
@
1
A c2j

h

0
@

1
Að21Þh

2
4

�
cme2ðjþhÞmtð12e2ðc2j2hÞmtÞ

ðc2j2hÞm

#

þ
c

j

0
@
1
Að21Þc2jcmte2cmt

¼
Xc2j21

h¼0

c

j

0
@
1
A c2j

h

0
@

1
Að21Þh

cðe2ðjþhÞmt2e2cmtÞ

ðc2j2hÞ

2
4

3
5

þ
c

j

0
@
1
Að21Þc2jcmte2cmt ðB:2Þ

In this way, we can calculate Hcði;j;tÞ recursively for i¼

cþ2; i¼cþ3; etc. Repeating this, we find Eq. (8).

If c # j , i we use Eq. (10) and we start with i ¼ j þ 1

Hcðj þ 1; j; tÞ ¼
ðt

t¼0
cme2cmtHcðj; j; t 2 tÞdt

¼
ðt

t¼0
cme2cmte2cmðt2tÞdt ¼ cmte2cmt

Again, we can calculate Hcði; j; tÞ recursively for i ¼

c þ 2; i ¼ c þ 3; etc. Then we find that

Hcði; j; tÞ ¼
ðcmtÞi2j

ði 2 jÞ!
e2cmt

Appendix C. The transition probabilities qij

Regarding the transition probabilities qij as defined in Eq.

(14), we can rewrite qij such that the integral is eliminated.

We distinguish the case i # m and the case i . m: In the

first case, Eq. (14) can be written as

qij¼
XN
n¼m

PmðnÞ
ð1

t¼0
fmðtÞHcðmin{S;S2iþn};S2j;tþLÞdt

� �

¼
XN
n¼m

PmðnÞf g
ð1

t¼0
fmðtÞHcðS;S2j;tþLÞdt

¼
ð1

t¼0
fmðtÞHcðS;S2j;tþLÞdt

Substituting fmðtÞ as defined in Eq. (7) and HcðS;S2j;t

þLÞ as defined in Eq. (8), we find expression (B.1) if j¼0

or S#c and expression (B.2) if j.0 and S.c:
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In the second case, i.m; we split Eq. (14) into two parts

qij ¼
XN
n¼m

(
PmðnÞ

ð1

t¼0
fmðtÞHcðmin{S; S 2 i þ n};

S 2 j; t þ LÞdt

)

¼
Xi21

n¼m

(
PmðnÞ

ð1

t¼0
fmðtÞHcðS 2 i þ n; S 2 j; t þ LÞdt

)

þ
XN
n¼i

(
PmðnÞ

)ð1

t¼0
fmðtÞHcðS; S 2 j; t þ LÞdt

For the second part we can use the expressions found in

case 1. For the first part, we find
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